I hereby claim:
- I am reuben on github.
- I am reuben_ (https://keybase.io/reuben_) on keybase.
- I have a public key whose fingerprint is B19B 574B E186 B1BF CD23 9A86 B21F EB8E D85D 838C
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object:
| def model(batch_x, seq_length, dropout): | |
| def clipped_relu(x): | |
| return tf.minimum(tf.nn.relu(x), relu_clip) | |
| with slim.arg_scope([slim.variable], device="/cpu:0"): | |
| with slim.arg_scope([slim.fully_connected], activation_fn=clipped_relu): | |
| with slim.arg_scope([slim.dropout], keep_prob=(1.0 - dropout)): | |
| fc_1 = slim.dropout(slim.fully_connected(batch_x, n_hidden_1)) | |
| fc_2 = slim.dropout(slim.fully_connected(fc_1, n_hidden_2)) | |
| fc_3 = slim.dropout(slim.fully_connected(fc_2, n_hidden_3)) |
| import tensorflow as tf | |
| q1 = tf.FIFOQueue(capacity=100, dtypes=[tf.int32], shapes=[[]]) | |
| q2 = tf.FIFOQueue(capacity=100, dtypes=[tf.int32], shapes=[[]]) | |
| q3 = tf.FIFOQueue(capacity=100, dtypes=[tf.int32], shapes=[[]]) | |
| idx = tf.placeholder(tf.int32) | |
| def deq1(): | |
| return tf.Print(q1.dequeue(), [1], "deq1 called") |
| Epoch: 0006 avg_cer= 0.353960361 | |
| ################################################################################ | |
| Training WER: 0.918583 | |
| -------------------------------------------------------------------------------- | |
| - WER: 0.333333 | |
| - loss: 6.105622 | |
| - source: "the day before" | |
| - result: "the day befr" | |
| -------------------------------------------------------------------------------- |
| ################################################################################ | |
| Training WER: 1.155599 | |
| -------------------------------------------------------------------------------- | |
| - WER: 0.333333 | |
| - loss: 6.089048 | |
| - source: "this is the" | |
| - result: "this is thef" | |
| -------------------------------------------------------------------------------- | |
| - WER: 0.500000 | |
| - loss: 3.750518 |
| Epoch: 0001 avg_cer= 0.778651515 | |
| ################################################################################ | |
| Training WER: 0.996094 | |
| -------------------------------------------------------------------------------- | |
| - WER: 1.000000 | |
| - loss: 2.899460 | |
| - source: "and" | |
| - result: "an" | |
| -------------------------------------------------------------------------------- |
| import tensorflow as tf | |
| import numpy as np | |
| import os | |
| from util.audio import audiofile_to_input_vector | |
| from util.text import * | |
| from glob import glob | |
| from threading import Thread | |
| from Queue import Queue |
| diff --git a/util/importers/fisher.py b/util/importers/fisher.py | |
| index 8cc4e70..53f65b3 100644 | |
| --- a/util/importers/fisher.py | |
| +++ b/util/importers/fisher.py | |
| @@ -150,10 +150,11 @@ def _maybe_convert_wav(data_dir, original_data, converted_data): | |
| for root, dirnames, filenames in os.walk(source_dir): | |
| for filename in fnmatch.filter(filenames, "*.sph"): | |
| sph_file = os.path.join(root, filename) | |
| - wav_filename = os.path.splitext(os.path.basename(sph_file))[0] + ".wav" | |
| - wav_file = os.path.join(target_dir, wav_filename) |
| curl -LO https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/ctools/sph2pipe_v2.5.tar.gz | |
| tar xf sph2pipe_v2.5.tar.gz | |
| pushd sph2pipe_v2.5 | |
| gcc -o sph2pipe *.c -lm | |
| sudo cp sph2pipe /usr/bin | |
| popd | |
| rm -r sph2pipe_v2.5{,.tar.gz} |
| #!/usr/bin/env python | |
| # -*- coding: utf-8 -*- | |
| import random | |
| def rand_prime(n): | |
| n = n+1 if n % 2 == 0 else n | |
| while True: | |
| p = random.randrange(n, 2*n, 2) | |
| if all(p % n != 0 for n in range(3, int((p ** 0.5) + 1), 2)): |