この文章ではCNN実装であるCaffeを用いて,特徴ベクトルの抽出やパラメータの学習を行うための方法について説明する.
以下の作業を行いたいのであれば,Caffeを用いることが望ましい.
- CNNを利用した画像の多クラス分類
- CNNによる特徴ベクトルの抽出
- CNNの転移学習
- Stacked Auto Encoder
/* | |
* Copyright (c) 2012 Masaki Saito | |
* | |
* Permission is hereby granted, free of charge, to any person obtaining a copy | |
* of this software and associated documentation files (the "Software"), to deal | |
* in the Software without restriction, including without limitation the rights | |
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
* copies of the Software, and to permit persons to whom the Software is | |
* furnished to do so, subject to the following conditions: | |
* |
#pragma once | |
#include <algorithm> | |
#include <functional> | |
#include <boost/iterator/iterator_facade.hpp> | |
#include <boost/tuple/tuple.hpp> | |
namespace aoba { | |
namespace detail { |
#pragma once | |
#include <boost/cstdint.hpp> | |
#include <boost/config.hpp> | |
#include <cmath> | |
namespace aoba { | |
struct halton_sequence_engine { | |
public: |
import gzip | |
import os | |
import numpy as np | |
import six | |
from six.moves.urllib import request | |
parent = 'http://yann.lecun.com/exdb/mnist' | |
train_images = 'train-images-idx3-ubyte.gz' | |
train_labels = 'train-labels-idx1-ubyte.gz' |
_base_ = './deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py' | |
model = dict( | |
pretrained='torchvision://resnet101', | |
backbone=dict(type='ResNet', depth=101)) | |
data = dict( | |
test=dict( | |
type='CustomDataset', | |
img_dir='/mnt/nfs-mnj-hot-01/tmp/msaito/ddad/train_val/GT/000000/rgb/CAMERA_09', | |
img_suffix='.png', |