Skip to content

Instantly share code, notes, and snippets.

View riga's full-sized avatar

Marcel Rieger riga

View GitHub Profile
@riga
riga / test_tf20_cmssw.sh
Created October 21, 2019 16:24
Test the TensorFlow 2.0 installation in CMSSW.
#!/usr/bin/env bash
action() {
export SCRAM_ARCH="slc7_amd64_gcc820"
export CMSSW_VERSION="CMSSW_11_0_0_pre9"
if [ ! -d "$CMSSW_VERSION" ]; then
scramv1 project CMSSW "$CMSSW_VERSION"
cd "$CMSSW_VERSION/src"
@riga
riga / setup_docker.sh
Last active November 29, 2020 21:54
Setup docker on CERN OpenStack.
#!/usr/bin/env bash
# install docker
yum remove -y docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-engine
yum install -y yum-utils device-mapper-persistent-data lvm2
yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
yum install -y docker-ce docker-ce-cli containerd.io
systemctl start docker
# enable autocompletion
@riga
riga / test_deepjet.py
Last active January 24, 2020 12:55
CMSSW TensorFlow 1.13.1 evaluation test for the DeepFlavor tagger
# coding: utf-8
"""
Test evaluation script for the DeepJet tagger.
Input dimensions and names from
https://github.com/cms-sw/cmssw/blob/02d4198c0b6615287fd88e9a8ff650aea994412e/RecoBTag/TensorFlow/plugins/DeepFlavourTFJetTagsProducer.cc
"""
import os
@riga
riga / hipchat_thecodinglove_integration.py
Last active August 29, 2015 14:23
HipChat Integration parsing the TheCodingLove.com feed
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
HipChat integration that parses the thecodinglove.com feed and sends
new posts to a HipChat room.
Dependencies:
requests, https://pypi.python.org/pypi/requests
feedparser, https://pypi.python.org/pypi/feedparser
@riga
riga / gist:e776812d53b748cdf51a
Last active August 29, 2015 14:09 — forked from arngarden/gist:6087798
Simple pylearn2 XOR setup with training and prediction
import theano
from pylearn2.models import mlp
from pylearn2.training_algorithms import sgd
from pylearn2.termination_criteria import EpochCounter
from pylearn2.datasets.dense_design_matrix import DenseDesignMatrix
import numpy as np
from random import randint
class XOR(DenseDesignMatrix):