Skip to content

Instantly share code, notes, and snippets.

View rodrigols89's full-sized avatar
🎯
Creating Things & Solving Problems

Rodrigo Leite rodrigols89

🎯
Creating Things & Solving Problems
View GitHub Profile
@rodrigols89
rodrigols89 / training-testing.py
Created August 17, 2020 18:57
training-testing.py
def createRegression(samples,variavel_numbers, n_noise):
from sklearn.datasets import make_regression
x, y = make_regression(n_samples=samples, n_features=variavel_numbers, noise=n_noise)
return x, y
if __name__ =='__main__':
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
@rodrigols89
rodrigols89 / set.py
Created September 4, 2020 02:26
Regressão - Exemplo01
from matplotlib import pyplot as plt
import pandas as pd
df = pd.DataFrame(
{
'Experience': [2, 3, 5, 13, 8, 16, 11, 1, 9],
'Salary': [15, 28, 42, 64, 50, 90, 58, 8, 54]
}
)
@rodrigols89
rodrigols89 / error.py
Created September 4, 2020 02:34
Regressão - Exemplo02
from matplotlib import pyplot as plt
import pandas as pd
df = pd.DataFrame(
{
'Experience': [2, 3, 5, 13, 8, 16, 11, 1, 9],
'Salary': [15, 28, 42, 64, 50, 90, 58, 8, 54]
}
)
@rodrigols89
rodrigols89 / m_b.py
Created September 4, 2020 02:44
Regressão - Exemplo03
from matplotlib import pyplot as plt
import pandas as pd
df = pd.DataFrame(
{
'Experience': [2, 3, 5, 13, 8, 16, 11, 1, 9],
'Salary': [15, 28, 42, 64, 50, 90, 58, 8, 54]
}
)
@rodrigols89
rodrigols89 / errorOLS.py
Created September 4, 2020 02:49
Regressão
from matplotlib import pyplot as plt
import pandas as pd
df = pd.DataFrame(
{
'Experience': [2, 3, 5, 13, 8, 16, 11, 1, 9],
'Salary': [15, 28, 42, 64, 50, 90, 58, 8, 54]
}
)
@rodrigols89
rodrigols89 / bestFitLine.py
Created September 4, 2020 02:51
Regressão
from matplotlib import pyplot as plt
import pandas as pd
df = pd.DataFrame(
{
'Experience': [2, 3, 5, 13, 8, 16, 11, 1, 9],
'Salary': [15, 28, 42, 64, 50, 90, 58, 8, 54]
}
)
@rodrigols89
rodrigols89 / galtonDataset.py
Created September 4, 2020 03:01
Regressão
import pandas as pd
with open('../datasets/Galton_Dataset.txt', 'r') as f:
data = pd.read_table(f, sep='\s+')
print(data.head(10))
from matplotlib import pyplot as plt
import pandas as pd
df = pd.DataFrame(
{
'Grade':[50, 50, 46, 95, 50, 5, 57, 42, 26, 72, 78, 60, 40, 17, 85],
'Salary':[50000, 54000, 50000, 189000, 55000, 40000, 59000, 42000, 47000, 78000, 119000, 95000, 49000, 29000, 130000]
}
)
from matplotlib import pyplot as plt
import pandas as pd
df = pd.DataFrame(
{
'Grade':[50, 50, 46, 95, 50, 5, 57, 42, 26, 72, 78, 60, 40, 17, 85],
'Salary':[50000, 54000, 50000, 189000, 55000, 40000, 59000, 42000, 47000, 78000, 119000, 95000, 49000, 29000, 130000]
}
)
from matplotlib import pyplot as plt
import pandas as pd
df = pd.DataFrame(
{
'Grade':[50, 50, 46, 95, 50, 5, 57, 42, 26, 72, 78, 60, 40, 17, 85],
'Salary':[50000, 54000, 50000, 189000, 55000, 40000, 59000, 42000, 47000, 78000, 119000, 95000, 49000, 29000, 130000]
}
)