Skip to content

Instantly share code, notes, and snippets.

View rodrigols89's full-sized avatar
🎯
Creating Things & Solving Problems

Rodrigo Leite rodrigols89

🎯
Creating Things & Solving Problems
View GitHub Profile
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
percentMissing = (data.isnull().sum() / len(data['ID'])) * 100
print(percentMissing)
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
isNullSum = data.isnull().sum()
print(isNullSum)
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
isnull = data.isnull()
print(isnull)
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
dt = data.dropna()
print("Full sample: {0}".format(data.shape))
print("Sample without NaN: {0}".format(dt.shape))
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
dt = data.dropna()
print(dt.head())
import pandas as pd
pd.set_option('display.max_columns', 18)
data = pd.read_csv('../datasets/athlete_events.csv')
print(data.head())
print(data.dtypes)
import pandas as pd
pd.set_option('display.max_columns', 42)
data = pd.read_csv('../datasets/2015-building-energy-benchmarking.csv')
data['DataYear'] = data['DataYear'].astype(object)
print(data.dtypes)
import pandas as pd
pd.set_option('display.max_columns', 42)
data = pd.read_csv('../datasets/2015-building-energy-benchmarking.csv')
print(data.dtypes)
import pandas as pd
pd.set_option('display.max_columns', 42)
data = pd.read_csv('../datasets/2015-building-energy-benchmarking.csv')
print(data.head())
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from matplotlib import pyplot as plt
diameterPassed = float(input("What's the diameter(cm) of the pizza you want? "))
diameters = [[7], [10], [15], [30], [45], [13], [60], [100], [5], [30], [90], [18], [70], [110], [25]]
prices = [[8], [11], [16], [38.5], [52], [14], [70], [90], [6], [38.5], [102], [20], [85], [100], [34]]
model = LinearRegression()