Created
June 6, 2019 12:42
-
-
Save rounakdatta/62fd39e82261f1ee85da9744254bc7da to your computer and use it in GitHub Desktop.
My experiments with PySpark
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from pyspark.sql import SparkSession\n", | |
"\n", | |
"from pyspark.sql.types import StructType, StructField\n", | |
"from pyspark.sql.types import DoubleType, IntegerType, StringType" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"spark = SparkSession.builder.master(\"local\").appName('Hotstar').getOrCreate()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"schema = StructType([\n", | |
" StructField(\"Letter\", StringType()),\n", | |
" StructField(\"Frequency\", StringType()),\n", | |
" StructField(\"Percentage\", StringType())\n", | |
"])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = spark.read.csv(\"letter_frequency.csv\", header=True, schema=schema)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"+-------+----------+----------+\n", | |
"| Letter| Frequency|Percentage|\n", | |
"+-------+----------+----------+\n", | |
"| \"A\"| 24373121| 8.1|\n", | |
"| \"B\"| 4762938| 1.6|\n", | |
"| \"C\"| 8982417| 3.0|\n", | |
"| \"D\"| 10805580| 3.6|\n", | |
"| \"E\"| 37907119| 12.6|\n", | |
"| \"F\"| 7486889| 2.5|\n", | |
"| \"G\"| 5143059| 1.7|\n", | |
"| \"H\"| 18058207| 6.0|\n", | |
"| \"I\"| 21820970| 7.3|\n", | |
"| \"J\"| 474021| 0.2|\n", | |
"| \"K\"| 1720909| 0.6|\n", | |
"| \"L\"| 11730498| 3.9|\n", | |
"| \"M\"| 7391366| 2.5|\n", | |
"| \"N\"| 21402466| 7.1|\n", | |
"| \"O\"| 23215532| 7.7|\n", | |
"| \"P\"| 5719422| 1.9|\n", | |
"| \"Q\"| 297237| 0.1|\n", | |
"| \"R\"| 17897352| 5.9|\n", | |
"| \"S\"| 19059775| 6.3|\n", | |
"| \"T\"| 28691274| 9.5|\n", | |
"+-------+----------+----------+\n", | |
"only showing top 20 rows\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"df.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df.write.parquet(\"./letter_frequency.parquet\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from pyspark.sql import SQLContext\n", | |
"sc = spark.sparkContext\n", | |
"sqlContext = SQLContext(sc)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Reading Parquet files in Pyspark (Method 1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dfParquet = sqlContext.read.parquet(\"./letter_frequency.parquet\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"+-------+----------+----------+\n", | |
"| Letter| Frequency|Percentage|\n", | |
"+-------+----------+----------+\n", | |
"| \"A\"| 24373121| 8.1|\n", | |
"| \"B\"| 4762938| 1.6|\n", | |
"| \"C\"| 8982417| 3.0|\n", | |
"| \"D\"| 10805580| 3.6|\n", | |
"| \"E\"| 37907119| 12.6|\n", | |
"| \"F\"| 7486889| 2.5|\n", | |
"| \"G\"| 5143059| 1.7|\n", | |
"| \"H\"| 18058207| 6.0|\n", | |
"| \"I\"| 21820970| 7.3|\n", | |
"| \"J\"| 474021| 0.2|\n", | |
"| \"K\"| 1720909| 0.6|\n", | |
"| \"L\"| 11730498| 3.9|\n", | |
"| \"M\"| 7391366| 2.5|\n", | |
"| \"N\"| 21402466| 7.1|\n", | |
"| \"O\"| 23215532| 7.7|\n", | |
"| \"P\"| 5719422| 1.9|\n", | |
"| \"Q\"| 297237| 0.1|\n", | |
"| \"R\"| 17897352| 5.9|\n", | |
"| \"S\"| 19059775| 6.3|\n", | |
"| \"T\"| 28691274| 9.5|\n", | |
"+-------+----------+----------+\n", | |
"only showing top 20 rows\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"dfParquet.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"root\n", | |
" |-- Letter: string (nullable = true)\n", | |
" |-- Frequency: string (nullable = true)\n", | |
" |-- Percentage: string (nullable = true)\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"dfParquet.printSchema()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Reading Parquet files in Pyspark (Method 2) [*Recommended*]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dfParquetAlternate = spark.read.parquet(\"./letter_frequency.parquet\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"+-------+----------+----------+\n", | |
"| Letter| Frequency|Percentage|\n", | |
"+-------+----------+----------+\n", | |
"| \"A\"| 24373121| 8.1|\n", | |
"| \"B\"| 4762938| 1.6|\n", | |
"| \"C\"| 8982417| 3.0|\n", | |
"| \"D\"| 10805580| 3.6|\n", | |
"| \"E\"| 37907119| 12.6|\n", | |
"| \"F\"| 7486889| 2.5|\n", | |
"| \"G\"| 5143059| 1.7|\n", | |
"| \"H\"| 18058207| 6.0|\n", | |
"| \"I\"| 21820970| 7.3|\n", | |
"| \"J\"| 474021| 0.2|\n", | |
"| \"K\"| 1720909| 0.6|\n", | |
"| \"L\"| 11730498| 3.9|\n", | |
"| \"M\"| 7391366| 2.5|\n", | |
"| \"N\"| 21402466| 7.1|\n", | |
"| \"O\"| 23215532| 7.7|\n", | |
"| \"P\"| 5719422| 1.9|\n", | |
"| \"Q\"| 297237| 0.1|\n", | |
"| \"R\"| 17897352| 5.9|\n", | |
"| \"S\"| 19059775| 6.3|\n", | |
"| \"T\"| 28691274| 9.5|\n", | |
"+-------+----------+----------+\n", | |
"only showing top 20 rows\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"dfParquetAlternate.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment