Created
November 16, 2016 21:51
-
-
Save roycoding/7bfcd821ae5be40804979973be149953 to your computer and use it in GitHub Desktop.
Neural Network in Python 3
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"# Introduction to Neural Networks\n", | |
"### Roy Keyes\n", | |
"#### @roycoding" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Neural network Python code from Michael Nielsen's [\"Neural Networks and Deep Learning\"](http://neuralnetworksanddeeplearning.com), chapter 1.\n", | |
"\n", | |
"Github: [https://github.com/mnielsen/neural-networks-and-deep-learning](https://github.com/mnielsen/neural-networks-and-deep-learning)\n", | |
"\n", | |
"The below code is modified for readability and compatibility with Python 3." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import random\n", | |
"import pickle\n", | |
"import gzip" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## The neural network class with training and optimization functions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"class Network(object):\n", | |
"\n", | |
" def __init__(self, sizes):\n", | |
" \"\"\"The list ``sizes`` contains the number of neurons in the\n", | |
" respective layers of the network. For example, if the list\n", | |
" was [2, 3, 1] then it would be a three-layer network, with the\n", | |
" first layer containing 2 neurons, the second layer 3 neurons,\n", | |
" and the third layer 1 neuron. The biases and weights for the\n", | |
" network are initialized randomly, using a Gaussian\n", | |
" distribution with mean 0, and variance 1. Note that the first\n", | |
" layer is assumed to be an input layer, and by convention we\n", | |
" won't set any biases for those neurons, since biases are only\n", | |
" ever used in computing the outputs from later layers.\"\"\"\n", | |
" \n", | |
" self.num_layers = len(sizes)\n", | |
" self.sizes = sizes\n", | |
" self.biases = [np.random.randn(y, 1) for y in sizes[1:]]\n", | |
" self.weights = [np.random.randn(y, x)\n", | |
" for x, y in zip(sizes[:-1], sizes[1:])]\n", | |
"\n", | |
" \n", | |
" def feedforward(self, a):\n", | |
" \"\"\"Return the output of the network if ``a`` is input.\"\"\"\n", | |
" for b, w in zip(self.biases, self.weights):\n", | |
" a = sigmoid(np.dot(w, a)+b)\n", | |
" return a\n", | |
"\n", | |
" \n", | |
" def SGD(self, training_data, epochs, mini_batch_size, eta,\n", | |
" test_data=None):\n", | |
" \"\"\"Train the neural network using mini-batch stochastic\n", | |
" gradient descent. The ``training_data`` is a list of tuples\n", | |
" ``(x, y)`` representing the training inputs and the desired\n", | |
" outputs. The other non-optional parameters are\n", | |
" self-explanatory. If ``test_data`` is provided then the\n", | |
" network will be evaluated against the test data after each\n", | |
" epoch, and partial progress printed out. This is useful for\n", | |
" tracking progress, but slows things down substantially.\"\"\"\n", | |
" \n", | |
" if test_data: n_test = len(test_data)\n", | |
" n = len(training_data)\n", | |
" for j in range(epochs): # Modified for Python 3\n", | |
" random.shuffle(training_data)\n", | |
" mini_batches = [\n", | |
" training_data[k:k+mini_batch_size]\n", | |
" for k in range(0, n, mini_batch_size)] # Modified for Python 3\n", | |
" for mini_batch in mini_batches:\n", | |
" self.update_mini_batch(mini_batch, eta)\n", | |
" if test_data:\n", | |
" print(\"Epoch {0}: {1} / {2}\".format(j, self.evaluate(test_data), n_test))\n", | |
" else:\n", | |
" print(\"Epoch {0} complete\".format(j))\n", | |
"\n", | |
" \n", | |
" def update_mini_batch(self, mini_batch, eta):\n", | |
" \"\"\"Update the network's weights and biases by applying\n", | |
" gradient descent using backpropagation to a single mini batch.\n", | |
" The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``\n", | |
" is the learning rate.\"\"\"\n", | |
" \n", | |
" nabla_b = [np.zeros(b.shape) for b in self.biases]\n", | |
" nabla_w = [np.zeros(w.shape) for w in self.weights]\n", | |
" for x, y in mini_batch:\n", | |
" delta_nabla_b, delta_nabla_w = self.backprop(x, y)\n", | |
" nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]\n", | |
" nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]\n", | |
" self.weights = [w-(eta/len(mini_batch))*nw\n", | |
" for w, nw in zip(self.weights, nabla_w)]\n", | |
" self.biases = [b-(eta/len(mini_batch))*nb\n", | |
" for b, nb in zip(self.biases, nabla_b)]\n", | |
"\n", | |
" \n", | |
" def backprop(self, x, y):\n", | |
" \"\"\"Return a tuple ``(nabla_b, nabla_w)`` representing the\n", | |
" gradient for the cost function C_x. ``nabla_b`` and\n", | |
" ``nabla_w`` are layer-by-layer lists of numpy arrays, similar\n", | |
" to ``self.biases`` and ``self.weights``.\"\"\"\n", | |
" \n", | |
" nabla_b = [np.zeros(b.shape) for b in self.biases]\n", | |
" nabla_w = [np.zeros(w.shape) for w in self.weights]\n", | |
" # feedforward\n", | |
" activation = x\n", | |
" activations = [x] # list to store all the activations, layer by layer\n", | |
" zs = [] # list to store all the z vectors, layer by layer\n", | |
" for b, w in zip(self.biases, self.weights):\n", | |
" z = np.dot(w, activation)+b\n", | |
" zs.append(z)\n", | |
" activation = sigmoid(z)\n", | |
" activations.append(activation)\n", | |
" # backward pass\n", | |
" delta = self.cost_derivative(activations[-1], y) * \\\n", | |
" sigmoid_prime(zs[-1])\n", | |
" nabla_b[-1] = delta\n", | |
" nabla_w[-1] = np.dot(delta, activations[-2].transpose())\n", | |
" \n", | |
" # Note that the variable l in the loop below is used a little\n", | |
" # differently to the notation in Chapter 2 of the book. Here,\n", | |
" # l = 1 means the last layer of neurons, l = 2 is the\n", | |
" # second-last layer, and so on. It's a renumbering of the\n", | |
" # scheme in the book, used here to take advantage of the fact\n", | |
" # that Python can use negative indices in lists.\n", | |
" \n", | |
" for l in range(2, self.num_layers): # Modified for Python 3\n", | |
" z = zs[-l]\n", | |
" sp = sigmoid_prime(z)\n", | |
" delta = np.dot(self.weights[-l+1].transpose(), delta) * sp\n", | |
" nabla_b[-l] = delta\n", | |
" nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())\n", | |
" return (nabla_b, nabla_w)\n", | |
"\n", | |
" \n", | |
" def evaluate(self, test_data):\n", | |
" \"\"\"Return the number of test inputs for which the neural\n", | |
" network outputs the correct result. Note that the neural\n", | |
" network's output is assumed to be the index of whichever\n", | |
" neuron in the final layer has the highest activation.\"\"\"\n", | |
" \n", | |
" test_results = [(np.argmax(self.feedforward(x)), y)\n", | |
" for (x, y) in test_data]\n", | |
" return sum(int(x == y) for (x, y) in test_results)\n", | |
"\n", | |
" \n", | |
" def cost_derivative(self, output_activations, y):\n", | |
" \"\"\"Return the vector of partial derivatives \\partial C_x /\n", | |
" \\partial a for the output activations.\"\"\"\n", | |
" \n", | |
" return (output_activations-y)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Miscellaneous functions" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def sigmoid(z):\n", | |
" \"\"\"The sigmoid function.\"\"\"\n", | |
" return 1.0/(1.0+np.exp(-z))\n", | |
"\n", | |
"def sigmoid_prime(z):\n", | |
" \"\"\"Derivative of the sigmoid function.\"\"\"\n", | |
" return sigmoid(z)*(1-sigmoid(z))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Code to load the training data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def load_data(filename=None):\n", | |
" \"\"\"Return the MNIST data as a tuple containing the training data,\n", | |
" the validation data, and the test data.\n", | |
"\n", | |
" The ``training_data`` is returned as a tuple with two entries.\n", | |
" The first entry contains the actual training images. This is a\n", | |
" numpy ndarray with 50,000 entries. Each entry is, in turn, a\n", | |
" numpy ndarray with 784 values, representing the 28 * 28 = 784\n", | |
" pixels in a single MNIST image.\n", | |
"\n", | |
" The second entry in the ``training_data`` tuple is a numpy ndarray\n", | |
" containing 50,000 entries. Those entries are just the digit\n", | |
" values (0...9) for the corresponding images contained in the first\n", | |
" entry of the tuple.\n", | |
"\n", | |
" The ``validation_data`` and ``test_data`` are similar, except\n", | |
" each contains only 10,000 images.\n", | |
"\n", | |
" This is a nice data format, but for use in neural networks it's\n", | |
" helpful to modify the format of the ``training_data`` a little.\n", | |
" That's done in the wrapper function ``load_data_wrapper()``, see\n", | |
" below.\n", | |
" \"\"\"\n", | |
" \n", | |
" if not filename:\n", | |
" filename = './neural-networks-and-deep-learning/data/mnist.pkl.gz'\n", | |
" f = gzip.open(filename, 'rb')\n", | |
" training_data, validation_data, test_data = pickle.load(f, encoding='latin1') # Encoding needed for Python 3\n", | |
" f.close()\n", | |
" return (training_data, validation_data, test_data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def load_data_wrapper(filename=None):\n", | |
" \"\"\"Return a tuple containing ``(training_data, validation_data,\n", | |
" test_data)``. Based on ``load_data``, but the format is more\n", | |
" convenient for use in our implementation of neural networks.\n", | |
"\n", | |
" In particular, ``training_data`` is a list containing 50,000\n", | |
" 2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray\n", | |
" containing the input image. ``y`` is a 10-dimensional\n", | |
" numpy.ndarray representing the unit vector corresponding to the\n", | |
" correct digit for ``x``.\n", | |
"\n", | |
" ``validation_data`` and ``test_data`` are lists containing 10,000\n", | |
" 2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional\n", | |
" numpy.ndarry containing the input image, and ``y`` is the\n", | |
" corresponding classification, i.e., the digit values (integers)\n", | |
" corresponding to ``x``.\n", | |
"\n", | |
" Obviously, this means we're using slightly different formats for\n", | |
" the training data and the validation / test data. These formats\n", | |
" turn out to be the most convenient for use in our neural network\n", | |
" code.\"\"\"\n", | |
" \n", | |
" tr_d, va_d, te_d = load_data(filename=filename)\n", | |
" training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]\n", | |
" training_results = [vectorized_result(y) for y in tr_d[1]]\n", | |
" training_data = list(zip(training_inputs, training_results)) # Modified for Python 3\n", | |
" validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]\n", | |
" validation_data = list(zip(validation_inputs, va_d[1])) # Modified for Python 3\n", | |
" test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]\n", | |
" test_data = list(zip(test_inputs, te_d[1])) # Modified for Python 3\n", | |
" return (training_data, validation_data, test_data)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"def vectorized_result(j):\n", | |
" \"\"\"Return a 10-dimensional unit vector with a 1.0 in the jth\n", | |
" position and zeroes elsewhere. This is used to convert a digit\n", | |
" (0...9) into a corresponding desired output from the neural\n", | |
" network.\"\"\"\n", | |
" e = np.zeros((10, 1))\n", | |
" e[j] = 1.0\n", | |
" return e" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Train a network" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### First load the data\n", | |
"Split data into training and test sets." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"training_data, validation_data, test_data = load_data_wrapper()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Initialize a network\n", | |
"Hidden layer nodes = 30" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 34, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"net = Network([784, 30, 10])" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### Train and evaluate!" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch 0: 9092 / 10000\n", | |
"Epoch 1: 9220 / 10000\n", | |
"Epoch 2: 9314 / 10000\n", | |
"Epoch 3: 9363 / 10000\n", | |
"Epoch 4: 9407 / 10000\n", | |
"Epoch 5: 9393 / 10000\n", | |
"Epoch 6: 9447 / 10000\n", | |
"Epoch 7: 9450 / 10000\n", | |
"Epoch 8: 9460 / 10000\n", | |
"Epoch 9: 9434 / 10000\n", | |
"Epoch 10: 9465 / 10000\n", | |
"Epoch 11: 9477 / 10000\n", | |
"Epoch 12: 9478 / 10000\n", | |
"Epoch 13: 9516 / 10000\n", | |
"Epoch 14: 9487 / 10000\n", | |
"Epoch 15: 9495 / 10000\n", | |
"Epoch 16: 9498 / 10000\n", | |
"Epoch 17: 9490 / 10000\n", | |
"Epoch 18: 9504 / 10000\n", | |
"Epoch 19: 9456 / 10000\n", | |
"Epoch 20: 9505 / 10000\n", | |
"Epoch 21: 9507 / 10000\n", | |
"Epoch 22: 9526 / 10000\n", | |
"Epoch 23: 9506 / 10000\n", | |
"Epoch 24: 9521 / 10000\n", | |
"Epoch 25: 9522 / 10000\n", | |
"Epoch 26: 9531 / 10000\n", | |
"Epoch 27: 9523 / 10000\n", | |
"Epoch 28: 9522 / 10000\n", | |
"Epoch 29: 9530 / 10000\n" | |
] | |
} | |
], | |
"source": [ | |
"net.SGD(training_data, 30, 10, 3.0, test_data=test_data)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"#### A larger network\n", | |
"Hidden layer nodes = 100" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 39, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Epoch 0: 6579 / 10000\n", | |
"Epoch 1: 7591 / 10000\n", | |
"Epoch 2: 7699 / 10000\n", | |
"Epoch 3: 7785 / 10000\n", | |
"Epoch 4: 7792 / 10000\n", | |
"Epoch 5: 7992 / 10000\n", | |
"Epoch 6: 8008 / 10000\n", | |
"Epoch 7: 8020 / 10000\n", | |
"Epoch 8: 7928 / 10000\n", | |
"Epoch 9: 8244 / 10000\n", | |
"Epoch 10: 8408 / 10000\n", | |
"Epoch 11: 8173 / 10000\n", | |
"Epoch 12: 8406 / 10000\n", | |
"Epoch 13: 8750 / 10000\n", | |
"Epoch 14: 9569 / 10000\n", | |
"Epoch 15: 9583 / 10000\n", | |
"Epoch 16: 9626 / 10000\n", | |
"Epoch 17: 9653 / 10000\n", | |
"Epoch 18: 9661 / 10000\n", | |
"Epoch 19: 9634 / 10000\n", | |
"Epoch 20: 9656 / 10000\n", | |
"Epoch 21: 9642 / 10000\n", | |
"Epoch 22: 9665 / 10000\n", | |
"Epoch 23: 9674 / 10000\n", | |
"Epoch 24: 9638 / 10000\n", | |
"Epoch 25: 9642 / 10000\n", | |
"Epoch 26: 9661 / 10000\n", | |
"Epoch 27: 9663 / 10000\n", | |
"Epoch 28: 9669 / 10000\n", | |
"Epoch 29: 9686 / 10000\n" | |
] | |
} | |
], | |
"source": [ | |
"net = Network([784, 100, 10])\n", | |
"net.SGD(training_data, 30, 10, 6.0, test_data=test_data)" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment