Skip to content

Instantly share code, notes, and snippets.

@rpCal
rpCal / Nai - projekt - 2
Created January 18, 2016 22:54
Nai - projekt - 2
Start aplikacji
Skutecznosc sieci z parametrami: wspolczynnik uczenia=0.1, liczba neuronow=2, liczba epok=500, momentum=0.20.1524476383514526
Correctly Classified Instances 13799 84.7552 %
Incorrectly Classified Instances 2482 15.2448 %
Kappa statistic 0.52
Mean absolute error 0.2105
Root mean squared error 0.3288
Relative absolute error 57.9322 %
Root relative squared error 77.3951 %
@rpCal
rpCal / text
Created January 18, 2016 21:39
Wyniki NAI 22:39
Start aplikacji
Skutecznosc sieci z parametrami: wspolczynnik uczenia=0.1, liczba neuronow=2, liczba epok=500, momentum=0.20.1524476383514526
Correctly Classified Instances 13799 84.7552 %
Incorrectly Classified Instances 2482 15.2448 %
Kappa statistic 0.52
Mean absolute error 0.2105
Root mean squared error 0.3288
Relative absolute error 57.9322 %
Root relative squared error 77.3951 %
@rpCal
rpCal / nai-projekt.java
Created January 18, 2016 20:41
NAI - projekt - v1
import java.io.File;
import java.io.IOException;
import weka.classifiers.Evaluation;
import weka.classifiers.functions.MultilayerPerceptron;
import weka.core.Instances;
import weka.core.converters.ArffLoader;
import weka.filters.Filter;
import weka.filters.supervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.Normalize;