Created
March 3, 2018 22:52
-
-
Save ruxi/5d3b56e60a609d52d79b700e49fd9fcf to your computer and use it in GitHub Desktop.
opendata hackathon 2018 (rough draft)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"- https://data.winnipeg.ca/Recreation/Pool-Facility-Usage/j4s8-s9ap\n", | |
" \n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:05.274240Z", | |
"start_time": "2018-03-03T22:49:05.269528Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"#!pip install sodapy" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:05.686883Z", | |
"start_time": "2018-03-03T22:49:05.277887Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"from sodapy import Socrata" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:06.217582Z", | |
"start_time": "2018-03-03T22:49:05.689848Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"WARNING:root:Requests made without an app_token will be subject to strict throttling limits.\n" | |
] | |
} | |
], | |
"source": [ | |
"client = Socrata(\"data.winnipeg.ca\", None)\n", | |
"results = client.get(\"t2d2-j4v9\", limit=2000)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:06.231800Z", | |
"start_time": "2018-03-03T22:49:06.220507Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"df = pd.DataFrame.from_records(results)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:06.249445Z", | |
"start_time": "2018-03-03T22:49:06.234000Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"Index(['activity_category', 'activity_name', 'activity_number',\n", | |
" 'activity_status', 'activity_type', 'attendance', 'center',\n", | |
" 'customer_type', 'end_date', 'end_time', 'event_type', 'item_name',\n", | |
" 'item_type', 'schedule_type', 'secondary_category', 'start_date',\n", | |
" 'start_time'],\n", | |
" dtype='object')" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.columns" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:06.273564Z", | |
"start_time": "2018-03-03T22:49:06.251690Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>0</th>\n", | |
" <th>1</th>\n", | |
" <th>2</th>\n", | |
" <th>3</th>\n", | |
" <th>4</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>activity_category</th>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Preschool - Birth to 5 years</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>activity_name</th>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Kinder Ballet Level I 3-5 years</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>activity_number</th>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>6259</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>activity_status</th>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Closed</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>activity_type</th>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Activity</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>attendance</th>\n", | |
" <td>30</td>\n", | |
" <td>15</td>\n", | |
" <td>30</td>\n", | |
" <td>11</td>\n", | |
" <td>6</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>center</th>\n", | |
" <td>Pan Am Pool</td>\n", | |
" <td>Cindy Klassen Recreation Complex</td>\n", | |
" <td>Pan Am Pool</td>\n", | |
" <td>Pan Am Pool</td>\n", | |
" <td>Pan Am Pool</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>customer_type</th>\n", | |
" <td>Authorized Agent</td>\n", | |
" <td>Authorized Agent</td>\n", | |
" <td>Authorized Agent</td>\n", | |
" <td>NaN</td>\n", | |
" <td>General Public</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>end_date</th>\n", | |
" <td>2016-01-19T00:00:00.000</td>\n", | |
" <td>2016-01-30T00:00:00.000</td>\n", | |
" <td>2016-01-22T00:00:00.000</td>\n", | |
" <td>2016-02-20T00:00:00.000</td>\n", | |
" <td>2016-03-05T00:00:00.000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>end_time</th>\n", | |
" <td>8:00 PM</td>\n", | |
" <td>8:30 AM</td>\n", | |
" <td>7:30 AM</td>\n", | |
" <td>9:45 AM</td>\n", | |
" <td>11:30 AM</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>event_type</th>\n", | |
" <td>Aquatics - Contract User</td>\n", | |
" <td>Aquatics - Contract User</td>\n", | |
" <td>Aquatics - Contract User</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Aquatics - Contract User</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>item_name</th>\n", | |
" <td>PAP - Middle - Lane 6</td>\n", | |
" <td>CKRC - Middle - Lane 7</td>\n", | |
" <td>PAP - Middle - Lane 10</td>\n", | |
" <td>PAP - Kiddie Pool - Area 1</td>\n", | |
" <td>PAP - Training - North - Lane 1</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>item_type</th>\n", | |
" <td>Pool - Indoor</td>\n", | |
" <td>Pool - Indoor</td>\n", | |
" <td>Pool - Indoor</td>\n", | |
" <td>Pool - Indoor</td>\n", | |
" <td>Pool - Indoor</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>schedule_type</th>\n", | |
" <td>External Reservation</td>\n", | |
" <td>External Reservation</td>\n", | |
" <td>External Reservation</td>\n", | |
" <td>Standard Activity</td>\n", | |
" <td>External Reservation</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>secondary_category</th>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>Movement/Fitness</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>start_date</th>\n", | |
" <td>2016-01-19T00:00:00.000</td>\n", | |
" <td>2016-01-30T00:00:00.000</td>\n", | |
" <td>2016-01-22T00:00:00.000</td>\n", | |
" <td>2016-02-20T00:00:00.000</td>\n", | |
" <td>2016-03-05T00:00:00.000</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>start_time</th>\n", | |
" <td>5:00 PM</td>\n", | |
" <td>7:30 AM</td>\n", | |
" <td>5:45 AM</td>\n", | |
" <td>9:00 AM</td>\n", | |
" <td>10:00 AM</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 0 \\\n", | |
"activity_category NaN \n", | |
"activity_name NaN \n", | |
"activity_number NaN \n", | |
"activity_status NaN \n", | |
"activity_type NaN \n", | |
"attendance 30 \n", | |
"center Pan Am Pool \n", | |
"customer_type Authorized Agent \n", | |
"end_date 2016-01-19T00:00:00.000 \n", | |
"end_time 8:00 PM \n", | |
"event_type Aquatics - Contract User \n", | |
"item_name PAP - Middle - Lane 6 \n", | |
"item_type Pool - Indoor \n", | |
"schedule_type External Reservation \n", | |
"secondary_category NaN \n", | |
"start_date 2016-01-19T00:00:00.000 \n", | |
"start_time 5:00 PM \n", | |
"\n", | |
" 1 \\\n", | |
"activity_category NaN \n", | |
"activity_name NaN \n", | |
"activity_number NaN \n", | |
"activity_status NaN \n", | |
"activity_type NaN \n", | |
"attendance 15 \n", | |
"center Cindy Klassen Recreation Complex \n", | |
"customer_type Authorized Agent \n", | |
"end_date 2016-01-30T00:00:00.000 \n", | |
"end_time 8:30 AM \n", | |
"event_type Aquatics - Contract User \n", | |
"item_name CKRC - Middle - Lane 7 \n", | |
"item_type Pool - Indoor \n", | |
"schedule_type External Reservation \n", | |
"secondary_category NaN \n", | |
"start_date 2016-01-30T00:00:00.000 \n", | |
"start_time 7:30 AM \n", | |
"\n", | |
" 2 3 \\\n", | |
"activity_category NaN Preschool - Birth to 5 years \n", | |
"activity_name NaN Kinder Ballet Level I 3-5 years \n", | |
"activity_number NaN 6259 \n", | |
"activity_status NaN Closed \n", | |
"activity_type NaN Activity \n", | |
"attendance 30 11 \n", | |
"center Pan Am Pool Pan Am Pool \n", | |
"customer_type Authorized Agent NaN \n", | |
"end_date 2016-01-22T00:00:00.000 2016-02-20T00:00:00.000 \n", | |
"end_time 7:30 AM 9:45 AM \n", | |
"event_type Aquatics - Contract User NaN \n", | |
"item_name PAP - Middle - Lane 10 PAP - Kiddie Pool - Area 1 \n", | |
"item_type Pool - Indoor Pool - Indoor \n", | |
"schedule_type External Reservation Standard Activity \n", | |
"secondary_category NaN Movement/Fitness \n", | |
"start_date 2016-01-22T00:00:00.000 2016-02-20T00:00:00.000 \n", | |
"start_time 5:45 AM 9:00 AM \n", | |
"\n", | |
" 4 \n", | |
"activity_category NaN \n", | |
"activity_name NaN \n", | |
"activity_number NaN \n", | |
"activity_status NaN \n", | |
"activity_type NaN \n", | |
"attendance 6 \n", | |
"center Pan Am Pool \n", | |
"customer_type General Public \n", | |
"end_date 2016-03-05T00:00:00.000 \n", | |
"end_time 11:30 AM \n", | |
"event_type Aquatics - Contract User \n", | |
"item_name PAP - Training - North - Lane 1 \n", | |
"item_type Pool - Indoor \n", | |
"schedule_type External Reservation \n", | |
"secondary_category NaN \n", | |
"start_date 2016-03-05T00:00:00.000 \n", | |
"start_time 10:00 AM " | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df.head().T" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:06.605440Z", | |
"start_time": "2018-03-03T22:49:06.275730Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"WARNING:root:Requests made without an app_token will be subject to strict throttling limits.\n" | |
] | |
} | |
], | |
"source": [ | |
"client = Socrata(\"data.winnipeg.ca\", None)\n", | |
"bugs = client.get(\"du7c-8488\", limit=2000)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:06.621642Z", | |
"start_time": "2018-03-03T22:49:06.608311Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"bugsdf = pd.DataFrame(bugs)\n", | |
"bugsdf.T\n", | |
"idvars = ['count_date', 'trap_days']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:06.645020Z", | |
"start_time": "2018-03-03T22:49:06.634085Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"37" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"idvars = ['count_date', 'trap_days']\n", | |
"location_only = [x for x in bugsdf.columns if \"average\" not in x]\n", | |
"location_only = [x for x in location_only if x not in idvars]\n", | |
"len(location_only)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:06.763449Z", | |
"start_time": "2018-03-03T22:49:06.648087Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Datasets.ipynb\tDatasets_v2.ipynb environment.yml\r\n" | |
] | |
} | |
], | |
"source": [ | |
"!ls " | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"hello world" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:06.776469Z", | |
"start_time": "2018-03-03T22:49:06.765589Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"bugcleaned = pd.melt(bugsdf[location_only + idvars], id_vars = idvars, var_name = 'location', value_name = 'bugcount')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:07.235648Z", | |
"start_time": "2018-03-03T22:49:06.779903Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"import seaborn as sns\n", | |
"import matplotlib.pyplot as plt" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:13:32.163458Z", | |
"start_time": "2018-03-03T22:13:32.060247Z" | |
} | |
}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:07.511118Z", | |
"start_time": "2018-03-03T22:49:07.238249Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"parkbikedata = \"9t9k-ya8b\"\n", | |
"parkbikedf = client.get(\"9t9k-ya8b\", limit=2000)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:07.578104Z", | |
"start_time": "2018-03-03T22:49:07.513702Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>0</th>\n", | |
" <th>1</th>\n", | |
" <th>2</th>\n", | |
" <th>3</th>\n", | |
" <th>4</th>\n", | |
" <th>5</th>\n", | |
" <th>6</th>\n", | |
" <th>7</th>\n", | |
" <th>8</th>\n", | |
" <th>9</th>\n", | |
" <th>...</th>\n", | |
" <th>1990</th>\n", | |
" <th>1991</th>\n", | |
" <th>1992</th>\n", | |
" <th>1993</th>\n", | |
" <th>1994</th>\n", | |
" <th>1995</th>\n", | |
" <th>1996</th>\n", | |
" <th>1997</th>\n", | |
" <th>1998</th>\n", | |
" <th>1999</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>asset_class</th>\n", | |
" <td>STAND-ALONE PLAY COMPONENT</td>\n", | |
" <td>SEATING</td>\n", | |
" <td>SEATING</td>\n", | |
" <td>SEATING</td>\n", | |
" <td>SEATING</td>\n", | |
" <td>SEATING</td>\n", | |
" <td>SWING SET</td>\n", | |
" <td>STAND-ALONE PLAY COMPONENT</td>\n", | |
" <td>PLAY STRUCTURE</td>\n", | |
" <td>SEATING</td>\n", | |
" <td>...</td>\n", | |
" <td>SEATING</td>\n", | |
" <td>SEATING</td>\n", | |
" <td>SEATING</td>\n", | |
" <td>STAND-ALONE PLAY COMPONENT</td>\n", | |
" <td>STAND-ALONE PLAY COMPONENT</td>\n", | |
" <td>SWING SET</td>\n", | |
" <td>STAND-ALONE PLAY COMPONENT</td>\n", | |
" <td>SEATING</td>\n", | |
" <td>BBQ</td>\n", | |
" <td>SEATING</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>asset_id</th>\n", | |
" <td>46292</td>\n", | |
" <td>47525</td>\n", | |
" <td>24478</td>\n", | |
" <td>22744</td>\n", | |
" <td>23769</td>\n", | |
" <td>24506</td>\n", | |
" <td>44743</td>\n", | |
" <td>45304</td>\n", | |
" <td>46922</td>\n", | |
" <td>62218</td>\n", | |
" <td>...</td>\n", | |
" <td>35198</td>\n", | |
" <td>24586</td>\n", | |
" <td>23821</td>\n", | |
" <td>46209</td>\n", | |
" <td>45287</td>\n", | |
" <td>62281</td>\n", | |
" <td>45419</td>\n", | |
" <td>23978</td>\n", | |
" <td>38673</td>\n", | |
" <td>22264</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>asset_size</th>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>1 BAY</td>\n", | |
" <td>N/A</td>\n", | |
" <td>SMALL</td>\n", | |
" <td>N/A</td>\n", | |
" <td>...</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>1 BAY</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>asset_type</th>\n", | |
" <td>N/A</td>\n", | |
" <td>BENCH</td>\n", | |
" <td>BENCH</td>\n", | |
" <td>BENCH</td>\n", | |
" <td>BENCH</td>\n", | |
" <td>BENCH</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>2 TO 5</td>\n", | |
" <td>BENCH</td>\n", | |
" <td>...</td>\n", | |
" <td>PLAYERS BENCH</td>\n", | |
" <td>BENCH</td>\n", | |
" <td>BENCH</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>BENCH</td>\n", | |
" <td>PIT</td>\n", | |
" <td>BENCH</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>geom_type</th>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>...</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" <td>POINT</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>park_id</th>\n", | |
" <td>1137</td>\n", | |
" <td>266</td>\n", | |
" <td>1179</td>\n", | |
" <td>1040</td>\n", | |
" <td>52</td>\n", | |
" <td>918</td>\n", | |
" <td>55</td>\n", | |
" <td>410</td>\n", | |
" <td>1137</td>\n", | |
" <td>59</td>\n", | |
" <td>...</td>\n", | |
" <td>1070</td>\n", | |
" <td>1070</td>\n", | |
" <td>142</td>\n", | |
" <td>237</td>\n", | |
" <td>173</td>\n", | |
" <td>146</td>\n", | |
" <td>1129</td>\n", | |
" <td>609</td>\n", | |
" <td>1313</td>\n", | |
" <td>747</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>park_name</th>\n", | |
" <td>Frontenac Park</td>\n", | |
" <td>Muriel Street Park</td>\n", | |
" <td>Aberdeen Adventure Playground</td>\n", | |
" <td>Wightman Green</td>\n", | |
" <td>Rotary Prairie Nature Park</td>\n", | |
" <td>Cordova Park</td>\n", | |
" <td>Scouts Park</td>\n", | |
" <td>Parr Tot Lot</td>\n", | |
" <td>Frontenac Park</td>\n", | |
" <td>Central Corydon C.C - River Heights Site</td>\n", | |
" <td>...</td>\n", | |
" <td>Kirkbridge Park</td>\n", | |
" <td>Kirkbridge Park</td>\n", | |
" <td>Valour C.C-Clifton Site</td>\n", | |
" <td>George Minaker Park</td>\n", | |
" <td>Pinkham Park</td>\n", | |
" <td>Valour C.C - Isaac Brock Site</td>\n", | |
" <td>Evesham Key Park</td>\n", | |
" <td>Paulicelli Park</td>\n", | |
" <td>Kilcona Park</td>\n", | |
" <td>Parc Joseph Royal</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>prim_field</th>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>...</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" <td>N/A</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>the_geom</th>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.08174796...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.29729904...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.12915711...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.22794918...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.03366551...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.18933524...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.00751582...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.14154370...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.08170560...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.18075583...</td>\n", | |
" <td>...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.16548156...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.16275159...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.18967885...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.27178997...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.15868988...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.18664174...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.26272864...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.02866826...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.03826030...</td>\n", | |
" <td>{'type': 'Point', 'coordinates': [-97.12547259...</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"<p>9 rows × 2000 columns</p>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" 0 \\\n", | |
"asset_class STAND-ALONE PLAY COMPONENT \n", | |
"asset_id 46292 \n", | |
"asset_size N/A \n", | |
"asset_type N/A \n", | |
"geom_type POINT \n", | |
"park_id 1137 \n", | |
"park_name Frontenac Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.08174796... \n", | |
"\n", | |
" 1 \\\n", | |
"asset_class SEATING \n", | |
"asset_id 47525 \n", | |
"asset_size N/A \n", | |
"asset_type BENCH \n", | |
"geom_type POINT \n", | |
"park_id 266 \n", | |
"park_name Muriel Street Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.29729904... \n", | |
"\n", | |
" 2 \\\n", | |
"asset_class SEATING \n", | |
"asset_id 24478 \n", | |
"asset_size N/A \n", | |
"asset_type BENCH \n", | |
"geom_type POINT \n", | |
"park_id 1179 \n", | |
"park_name Aberdeen Adventure Playground \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.12915711... \n", | |
"\n", | |
" 3 \\\n", | |
"asset_class SEATING \n", | |
"asset_id 22744 \n", | |
"asset_size N/A \n", | |
"asset_type BENCH \n", | |
"geom_type POINT \n", | |
"park_id 1040 \n", | |
"park_name Wightman Green \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.22794918... \n", | |
"\n", | |
" 4 \\\n", | |
"asset_class SEATING \n", | |
"asset_id 23769 \n", | |
"asset_size N/A \n", | |
"asset_type BENCH \n", | |
"geom_type POINT \n", | |
"park_id 52 \n", | |
"park_name Rotary Prairie Nature Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.03366551... \n", | |
"\n", | |
" 5 \\\n", | |
"asset_class SEATING \n", | |
"asset_id 24506 \n", | |
"asset_size N/A \n", | |
"asset_type BENCH \n", | |
"geom_type POINT \n", | |
"park_id 918 \n", | |
"park_name Cordova Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.18933524... \n", | |
"\n", | |
" 6 \\\n", | |
"asset_class SWING SET \n", | |
"asset_id 44743 \n", | |
"asset_size 1 BAY \n", | |
"asset_type N/A \n", | |
"geom_type POINT \n", | |
"park_id 55 \n", | |
"park_name Scouts Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.00751582... \n", | |
"\n", | |
" 7 \\\n", | |
"asset_class STAND-ALONE PLAY COMPONENT \n", | |
"asset_id 45304 \n", | |
"asset_size N/A \n", | |
"asset_type N/A \n", | |
"geom_type POINT \n", | |
"park_id 410 \n", | |
"park_name Parr Tot Lot \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.14154370... \n", | |
"\n", | |
" 8 \\\n", | |
"asset_class PLAY STRUCTURE \n", | |
"asset_id 46922 \n", | |
"asset_size SMALL \n", | |
"asset_type 2 TO 5 \n", | |
"geom_type POINT \n", | |
"park_id 1137 \n", | |
"park_name Frontenac Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.08170560... \n", | |
"\n", | |
" 9 \\\n", | |
"asset_class SEATING \n", | |
"asset_id 62218 \n", | |
"asset_size N/A \n", | |
"asset_type BENCH \n", | |
"geom_type POINT \n", | |
"park_id 59 \n", | |
"park_name Central Corydon C.C - River Heights Site \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.18075583... \n", | |
"\n", | |
" ... \\\n", | |
"asset_class ... \n", | |
"asset_id ... \n", | |
"asset_size ... \n", | |
"asset_type ... \n", | |
"geom_type ... \n", | |
"park_id ... \n", | |
"park_name ... \n", | |
"prim_field ... \n", | |
"the_geom ... \n", | |
"\n", | |
" 1990 \\\n", | |
"asset_class SEATING \n", | |
"asset_id 35198 \n", | |
"asset_size N/A \n", | |
"asset_type PLAYERS BENCH \n", | |
"geom_type POINT \n", | |
"park_id 1070 \n", | |
"park_name Kirkbridge Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.16548156... \n", | |
"\n", | |
" 1991 \\\n", | |
"asset_class SEATING \n", | |
"asset_id 24586 \n", | |
"asset_size N/A \n", | |
"asset_type BENCH \n", | |
"geom_type POINT \n", | |
"park_id 1070 \n", | |
"park_name Kirkbridge Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.16275159... \n", | |
"\n", | |
" 1992 \\\n", | |
"asset_class SEATING \n", | |
"asset_id 23821 \n", | |
"asset_size N/A \n", | |
"asset_type BENCH \n", | |
"geom_type POINT \n", | |
"park_id 142 \n", | |
"park_name Valour C.C-Clifton Site \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.18967885... \n", | |
"\n", | |
" 1993 \\\n", | |
"asset_class STAND-ALONE PLAY COMPONENT \n", | |
"asset_id 46209 \n", | |
"asset_size N/A \n", | |
"asset_type N/A \n", | |
"geom_type POINT \n", | |
"park_id 237 \n", | |
"park_name George Minaker Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.27178997... \n", | |
"\n", | |
" 1994 \\\n", | |
"asset_class STAND-ALONE PLAY COMPONENT \n", | |
"asset_id 45287 \n", | |
"asset_size N/A \n", | |
"asset_type N/A \n", | |
"geom_type POINT \n", | |
"park_id 173 \n", | |
"park_name Pinkham Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.15868988... \n", | |
"\n", | |
" 1995 \\\n", | |
"asset_class SWING SET \n", | |
"asset_id 62281 \n", | |
"asset_size 1 BAY \n", | |
"asset_type N/A \n", | |
"geom_type POINT \n", | |
"park_id 146 \n", | |
"park_name Valour C.C - Isaac Brock Site \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.18664174... \n", | |
"\n", | |
" 1996 \\\n", | |
"asset_class STAND-ALONE PLAY COMPONENT \n", | |
"asset_id 45419 \n", | |
"asset_size N/A \n", | |
"asset_type N/A \n", | |
"geom_type POINT \n", | |
"park_id 1129 \n", | |
"park_name Evesham Key Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.26272864... \n", | |
"\n", | |
" 1997 \\\n", | |
"asset_class SEATING \n", | |
"asset_id 23978 \n", | |
"asset_size N/A \n", | |
"asset_type BENCH \n", | |
"geom_type POINT \n", | |
"park_id 609 \n", | |
"park_name Paulicelli Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.02866826... \n", | |
"\n", | |
" 1998 \\\n", | |
"asset_class BBQ \n", | |
"asset_id 38673 \n", | |
"asset_size N/A \n", | |
"asset_type PIT \n", | |
"geom_type POINT \n", | |
"park_id 1313 \n", | |
"park_name Kilcona Park \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.03826030... \n", | |
"\n", | |
" 1999 \n", | |
"asset_class SEATING \n", | |
"asset_id 22264 \n", | |
"asset_size N/A \n", | |
"asset_type BENCH \n", | |
"geom_type POINT \n", | |
"park_id 747 \n", | |
"park_name Parc Joseph Royal \n", | |
"prim_field N/A \n", | |
"the_geom {'type': 'Point', 'coordinates': [-97.12547259... \n", | |
"\n", | |
"[9 rows x 2000 columns]" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pd.DataFrame(parkbikedf).T" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:07.590691Z", | |
"start_time": "2018-03-03T22:49:07.582964Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"WARNING:root:Requests made without an app_token will be subject to strict throttling limits.\n" | |
] | |
} | |
], | |
"source": [ | |
"client = Socrata(\"data.winnipeg.ca\", None)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:07.599202Z", | |
"start_time": "2018-03-03T22:49:07.594577Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"bikeurl = \"https://data.winnipeg.ca/resource/9t9k-ya8b.json\"" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:07.974047Z", | |
"start_time": "2018-03-03T22:49:07.602187Z" | |
}, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"WARNING:root:Requests made without an app_token will be subject to strict throttling limits.\n" | |
] | |
} | |
], | |
"source": [ | |
"client = Socrata(\"data.winnipeg.ca\", None)\n", | |
"bikes = client.get(\"9t9k-ya8b\", limit=2000)\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"neighbourhood map\n", | |
"\n", | |
"https://data.winnipeg.ca/resource/xaux-29zr.json" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.618142Z", | |
"start_time": "2018-03-03T22:49:07.977123Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"WARNING:root:Requests made without an app_token will be subject to strict throttling limits.\n" | |
] | |
} | |
], | |
"source": [ | |
"client = Socrata(\"data.winnipeg.ca\", None)\n", | |
"neighbourhoods = client.get(\"xaux-29zr\", limit=2000)\n", | |
"import shapely.geometry\n", | |
"from geopandas import GeoDataFrame\n", | |
"neighbourhoods = GeoDataFrame(neighbourhoods)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.626792Z", | |
"start_time": "2018-03-03T22:49:08.621024Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"import shapely.geometry\n", | |
"example = [x['coordinates'] for x in neighbourhoods.the_geom][0]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.801674Z", | |
"start_time": "2018-03-03T22:49:08.630416Z" | |
} | |
}, | |
"outputs": [ | |
{ | |
"ename": "NameError", | |
"evalue": "name 'Polygon' is not defined", | |
"output_type": "error", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-20-c35807141f48>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnewgeom\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mPolygon\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'coordinates'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mneighbourhoods\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mthe_geom\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;32m<ipython-input-20-c35807141f48>\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnewgeom\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mPolygon\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'coordinates'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mneighbourhoods\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mthe_geom\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
"\u001b[0;31mNameError\u001b[0m: name 'Polygon' is not defined" | |
] | |
} | |
], | |
"source": [ | |
"newgeom = [Polygon(x['coordinates'][0][0]) for x in neighbourhoods.the_geom]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.803306Z", | |
"start_time": "2018-03-03T22:49:05.816Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"neighbourhoods['newgeom'] = newgeom\n", | |
"neighbourhoods = neighbourhoods.set_geometry('newgeom')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.805454Z", | |
"start_time": "2018-03-03T22:49:05.820Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"neighbourhoods.plot()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.807240Z", | |
"start_time": "2018-03-03T22:49:05.829Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"neighbourhoods" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.809377Z", | |
"start_time": "2018-03-03T22:49:05.833Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"neighbourhoods.the_geom[0].keys()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.811461Z", | |
"start_time": "2018-03-03T22:49:05.837Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"neighbourhoods.the_geom[0]['type']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.813522Z", | |
"start_time": "2018-03-03T22:49:05.841Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"example = neighbourhoods.the_geom[0]['coordinates']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.815562Z", | |
"start_time": "2018-03-03T22:49:05.845Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"example[0][0]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.817605Z", | |
"start_time": "2018-03-03T22:49:05.849Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from shapely.geometry import Polygon\n", | |
"Polygon(example[0][0])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.819621Z", | |
"start_time": "2018-03-03T22:49:05.859Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from shapely.geometry import MultiPolygon\n", | |
"MultiPolygon(example)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.821602Z", | |
"start_time": "2018-03-03T22:49:05.864Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"set(new_geom)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.823678Z", | |
"start_time": "2018-03-03T22:49:05.868Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"gdf.DataFrame(neighbourhoods)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.826019Z", | |
"start_time": "2018-03-03T22:49:05.877Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"import shapely.geometry" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.828181Z", | |
"start_time": "2018-03-03T22:49:05.884Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"neipd.DataFrame(neighbourhoods)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.830145Z", | |
"start_time": "2018-03-03T22:49:05.894Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"bikes_df = pd.DataFrame(bikes)\n", | |
"bikes_df.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.832160Z", | |
"start_time": "2018-03-03T22:49:05.898Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"testcoord = bikes_df.the_geom[0]\n", | |
"testcoord" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.834299Z", | |
"start_time": "2018-03-03T22:49:05.903Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"import ipyleaflet" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.836400Z", | |
"start_time": "2018-03-03T22:49:05.908Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"!jupyter nbextension enable --py --sys-prefix ipyleaflet" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.838561Z", | |
"start_time": "2018-03-03T22:49:05.913Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from ipyleaflet import Map" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.840775Z", | |
"start_time": "2018-03-03T22:49:05.920Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"Map(center = testcoord['coordinates'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.844480Z", | |
"start_time": "2018-03-03T22:49:05.925Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"# for x in bugcleaned.location.unique():\n", | |
"# print(x)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T21:15:44.002394Z", | |
"start_time": "2018-03-03T21:15:43.996590Z" | |
} | |
}, | |
"source": [ | |
"https://docs.google.com/document/d/1xWBXAFSwtUGgZ3hQmzXE7ODnufQEWkji26vnsqfZzZ0/\n", | |
"\n", | |
"http://winnipeg.ca/publicworks/insectcontrol/mosquitoes/nuisanceschedule.stm\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.846467Z", | |
"start_time": "2018-03-03T22:49:06.174Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"client = Socrata(\"data.winnipeg.ca\", None)\n", | |
"mapdata = \"tug6-p73s\"\n", | |
"mapdata = client.get(\"tug6-p73s\", limit=2000)\n", | |
"mapdata" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"North_east_1: 49.951867, -97.059306\n", | |
"North_east_2: 49.933941, -97.096341\n", | |
"North_east_3: 49.924809, -97.056330\n", | |
"North_east_4: 49.906175, -97.094797\n", | |
"North_east_5: 49.892358, -97.022426\n", | |
"North_east_6: 49.918257, -97.043848\n", | |
"North_east_7: 49.904900, -96.981602\n", | |
"North_west_1: 49.890104, -97.308464\n", | |
"North_west_2: 49.882624, -97.238131\n", | |
"North_west_3: 49.888943, -97.193254\n", | |
"North_west_4: 49.920877, -97.202540\n", | |
"North_west_5: 49.931627, -97.170450\n", | |
"North_west_6: 49.975104, -97.147863\n", | |
"North_west_7: 49.948876, -97.126311\n", | |
"Rural_aa: 49.981128, -97.244987\n", | |
"Rural_bb: 49.999793, -97.194880\n", | |
"Rural_cc: 49.991068, -97.089770\n", | |
"Rural_dd: 49.990523, -97.013920\n", | |
"Rural_ee: 49.852485, -96.986202\n", | |
"Rural_ff: 49.800355, -97.073122\n", | |
"Rural_gg: 49.782835, -97.339871\n", | |
"Rural_hh: 49.854707, -97.338403 \n", | |
"Rural_ii: 49.890188, -97.341707\n", | |
"South_east_1: 49.5242.6, 97.07156\n", | |
"South_east_2: 49.856801, -97.109705\n", | |
"south_east_3:49.859405, -97.066774\n", | |
"South_east_4: 49.824369, -97.133797\n", | |
"South_east_5: 49.829048, -97.098352\n", | |
"South_east_6: 49.827414, -97.060787\n", | |
"South_east_7: 49.806356, -97.100467\n", | |
"South_west_1: 49.832983, -97.332547\n", | |
"South_west_2: 49.852445, -97.275173\n", | |
"South_west_3: 49.868974, -97.243095\n", | |
"South_west_4: 49.868834, -97.184476\n", | |
"South_west_5: 49.818122, -97.165982\n", | |
"South_west_6: 49.805538, -97.138229\n", | |
"South_west_7: 49.827168, -97.170704\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.848332Z", | |
"start_time": "2018-03-03T22:49:06.426Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"import geopandas" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.850142Z", | |
"start_time": "2018-03-03T22:49:06.432Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from geopandas import GeoDataFrame" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.851832Z", | |
"start_time": "2018-03-03T22:49:06.437Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from shapely.geometry import Point" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.853538Z", | |
"start_time": "2018-03-03T22:49:06.443Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"mypoint = testcoord['coordinates']" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.855418Z", | |
"start_time": "2018-03-03T22:49:06.449Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"GeoDataFrame() " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.857129Z", | |
"start_time": "2018-03-03T22:49:06.454Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"from shapely.geometry import Point" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.859171Z", | |
"start_time": "2018-03-03T22:49:06.463Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"geotypes = [x['type'] for x in bikes_df.the_geom]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.860883Z", | |
"start_time": "2018-03-03T22:49:06.469Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"set(geotypes)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.862732Z", | |
"start_time": "2018-03-03T22:49:06.476Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"Point()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.864585Z", | |
"start_time": "2018-03-03T22:49:06.481Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"newgeom = [Point(x['coordinates']) for x in bikes_df.the_geom]\n", | |
"bikes_df['newgeom'] = newgeom" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.866612Z", | |
"start_time": "2018-03-03T22:49:06.487Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"gdf = bikes_df\n", | |
"gdf = gdf.set_geometry('newgeom')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.868884Z", | |
"start_time": "2018-03-03T22:49:06.492Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"gdf.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.871074Z", | |
"start_time": "2018-03-03T22:49:06.498Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"gdf.plot()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.873071Z", | |
"start_time": "2018-03-03T22:49:06.505Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"gdf.set_geometry('newgeom')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.875617Z", | |
"start_time": "2018-03-03T22:49:06.514Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"bikes_df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.877718Z", | |
"start_time": "2018-03-03T22:49:06.526Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"bikes_df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.879847Z", | |
"start_time": "2018-03-03T22:49:06.532Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"import geopandas as gpd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.881866Z", | |
"start_time": "2018-03-03T22:49:06.539Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"gdf = gpd.GeoDataFrame(bikes)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"ExecuteTime": { | |
"end_time": "2018-03-03T22:49:08.884023Z", | |
"start_time": "2018-03-03T22:49:06.546Z" | |
} | |
}, | |
"outputs": [], | |
"source": [ | |
"gdf.set_geometry('the_geom')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"hide_input": false, | |
"kernelspec": { | |
"display_name": "PythonPath (python)", | |
"language": "python", | |
"name": "python_ruxi" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.4" | |
}, | |
"latex_envs": { | |
"LaTeX_envs_menu_present": true, | |
"bibliofile": "biblio.bib", | |
"cite_by": "apalike", | |
"current_citInitial": 1, | |
"eqLabelWithNumbers": true, | |
"eqNumInitial": 1, | |
"labels_anchors": false, | |
"latex_user_defs": false, | |
"report_style_numbering": false, | |
"user_envs_cfg": false | |
}, | |
"toc": { | |
"colors": { | |
"hover_highlight": "#DAA520", | |
"running_highlight": "#FF0000", | |
"selected_highlight": "#FFD700" | |
}, | |
"moveMenuLeft": true, | |
"nav_menu": { | |
"height": "12px", | |
"width": "252px" | |
}, | |
"navigate_menu": true, | |
"number_sections": true, | |
"sideBar": true, | |
"threshold": 4, | |
"toc_cell": false, | |
"toc_section_display": "block", | |
"toc_window_display": false | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment