Skip to content

Instantly share code, notes, and snippets.

@rwcitek
Last active June 25, 2025 01:36
Show Gist options
  • Save rwcitek/19e7a99744d63ac56372fa486127d29b to your computer and use it in GitHub Desktop.
Save rwcitek/19e7a99744d63ac56372fa486127d29b to your computer and use it in GitHub Desktop.
ddds-schedule-pt.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/rwcitek/19e7a99744d63ac56372fa486127d29b/ddds-schedule-pt.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"# A Week in the Life of the Part-Time Data Science Boot Camp"
],
"metadata": {
"id": "-PiCN-LePwmu"
}
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "YCKOni_NbgZp"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n"
]
},
{
"cell_type": "code",
"source": [
"df = pd.DataFrame()\n",
"df.index = \"Sunday Monday Tuesday Wednesday Thursday Friday Saturday\".split()\n",
"df[\"Sleep\"] = 8\n",
"df[\"Hygiene\"] = 1\n",
"df[\"Meals\"] = 2\n",
"df[\"Commute\"] = 2\n",
"df[\"Exercise\"] = 1\n",
"df[\"Work (40hrs)\"] = [0, 10, 10, 10, 10, 0, 0]\n",
"df[\"Lecture (8hrs)\"] = [0, 0, 0, 0, 0, 8, 0]\n",
"df[\"Practice (16hrs)\"] = [ 8, 0, 0, 0, 0, 0, 8]\n",
"df[\"Free\"] = 24 - df.sum(axis=1)\n",
"df[\"Total\"] = df.sum(axis=1)\n",
"\n",
"df\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 269
},
"id": "weXnsCEl7JJ5",
"outputId": "75c98b8d-d80f-4402-8454-67746a2a41ee"
},
"execution_count": 2,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Sleep Hygiene Meals Commute Exercise Work (40hrs) \\\n",
"Sunday 8 1 2 2 1 0 \n",
"Monday 8 1 2 2 1 10 \n",
"Tuesday 8 1 2 2 1 10 \n",
"Wednesday 8 1 2 2 1 10 \n",
"Thursday 8 1 2 2 1 10 \n",
"Friday 8 1 2 2 1 0 \n",
"Saturday 8 1 2 2 1 0 \n",
"\n",
" Lecture (8hrs) Practice (16hrs) Free Total \n",
"Sunday 0 8 2 24 \n",
"Monday 0 0 0 24 \n",
"Tuesday 0 0 0 24 \n",
"Wednesday 0 0 0 24 \n",
"Thursday 0 0 0 24 \n",
"Friday 8 0 2 24 \n",
"Saturday 0 8 2 24 "
],
"text/html": [
"\n",
" <div id=\"df-5ef72a6d-fd5e-4d79-8daa-99794fde8728\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Sleep</th>\n",
" <th>Hygiene</th>\n",
" <th>Meals</th>\n",
" <th>Commute</th>\n",
" <th>Exercise</th>\n",
" <th>Work (40hrs)</th>\n",
" <th>Lecture (8hrs)</th>\n",
" <th>Practice (16hrs)</th>\n",
" <th>Free</th>\n",
" <th>Total</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Sunday</th>\n",
" <td>8</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>8</td>\n",
" <td>2</td>\n",
" <td>24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Monday</th>\n",
" <td>8</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>10</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Tuesday</th>\n",
" <td>8</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>10</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Wednesday</th>\n",
" <td>8</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>10</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Thursday</th>\n",
" <td>8</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>10</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Friday</th>\n",
" <td>8</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>8</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Saturday</th>\n",
" <td>8</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>8</td>\n",
" <td>2</td>\n",
" <td>24</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5ef72a6d-fd5e-4d79-8daa-99794fde8728')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-5ef72a6d-fd5e-4d79-8daa-99794fde8728 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-5ef72a6d-fd5e-4d79-8daa-99794fde8728');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
" <div id=\"df-e86feba5-d751-4118-bde7-6648b1c64f51\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-e86feba5-d751-4118-bde7-6648b1c64f51')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-e86feba5-d751-4118-bde7-6648b1c64f51 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" <div id=\"id_3596de9b-5970-4444-9013-4a525f955786\">\n",
" <style>\n",
" .colab-df-generate {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-generate:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-generate {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-generate:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
" <button class=\"colab-df-generate\" onclick=\"generateWithVariable('df')\"\n",
" title=\"Generate code using this dataframe.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n",
" </svg>\n",
" </button>\n",
" <script>\n",
" (() => {\n",
" const buttonEl =\n",
" document.querySelector('#id_3596de9b-5970-4444-9013-4a525f955786 button.colab-df-generate');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" buttonEl.onclick = () => {\n",
" google.colab.notebook.generateWithVariable('df');\n",
" }\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "df",
"summary": "{\n \"name\": \"df\",\n \"rows\": 7,\n \"fields\": [\n {\n \"column\": \"Sleep\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 8,\n \"max\": 8,\n \"num_unique_values\": 1,\n \"samples\": [\n 8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hygiene\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Meals\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2,\n \"max\": 2,\n \"num_unique_values\": 1,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Commute\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2,\n \"max\": 2,\n \"num_unique_values\": 1,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Exercise\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Work (40hrs)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 5,\n \"min\": 0,\n \"max\": 10,\n \"num_unique_values\": 2,\n \"samples\": [\n 10\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Lecture (8hrs)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 0,\n \"max\": 8,\n \"num_unique_values\": 2,\n \"samples\": [\n 8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Practice (16hrs)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 0,\n \"max\": 8,\n \"num_unique_values\": 2,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Free\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 2,\n \"num_unique_values\": 2,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 24,\n \"max\": 24,\n \"num_unique_values\": 1,\n \"samples\": [\n 24\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 2
}
]
},
{
"cell_type": "code",
"source": [
"sp = df.iloc[:,:-1].plot(\n",
" figsize=(12, 8),\n",
" kind='bar',\n",
" stacked=True,\n",
" colormap='tab20c',\n",
" ylim=(0,25),\n",
")\n",
"plt.xticks(rotation=0, ha='center', fontsize=12)\n",
"plt.yticks(fontsize=12)\n",
"plt.title(\"Week in the Life of the Part-Time Data Science Boot Camp\", fontsize=18)\n",
"plt.ylabel(\"Hours\", fontsize = 14)\n",
"plt.xlabel('')\n",
"\n",
"plt.legend(\n",
" *(zip(*(list(zip(*sp.get_legend_handles_labels()))[::-1]))), # reverse legend order\n",
" bbox_to_anchor=(1.2, .5),\n",
" loc='center right'\n",
")\n",
"\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 708
},
"id": "NabYF1286y1E",
"outputId": "57647a09-72f1-4ba7-bf89-bbd4f219a199"
},
"execution_count": 3,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1200x800 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKAAAAKzCAYAAAApy3WzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoU1JREFUeJzs3XmcTfXjx/H3NWP2zTSMIfvY97WQmMKMJL6UJbJFvkVCIZW1QimVr1LfyBJ9UUrIkmRkK5Sxr2OXXWMMZjFzfn/Mb465ZjFj5riD1/PxuA/uOZ9zPp9z7udu7/mcz7UZhmEIAAAAAAAAsEg+RzcAAAAAAAAA9zYCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKMBBmjRpIpvNplGjRuXqfo8cOSKbzSabzaYjR47k6r5zS/fu3WWz2dS9e3dHNyXXhIeHm+c9I2vXrlXLli1VsGBBOTk5yWazqU2bNneukTlw9epVDR8+XBUrVpS7u7t5rBEREblWR1bOIfKmlMctPDzc0U3BPYj+BQDAvYEACnnWpUuX5OzsLJvNpg8++CDDcnv37jU/nJYsWTLTfYaFhclms6l+/fq53FpIUkREhEaNGqWPP/7Y0U25bakDvBkzZuTafn///Xc99thjWrp0qS5cuCB/f38FBgaqQIECuVaHlTp06KB33nnHfL4FBgYqMDBQ+fPnz9L2o0aN0qhRo/JsKJoVKaHxzTdPT0+VK1dO3bt31++//+6QtuXkuZfeMWX1lpvPkbwo9etB6pubm5sKFSqkSpUqqWPHjpo4caJOnjxpaVtmzJihUaNGOTyEMQxD3377rf71r3+pRIkScnd3l5eXl8qUKaNHHnlEgwYN0g8//KDo6GiHtvN+NWrUqAyfrx4eHipbtqy6deumDRs2OLqp6bLiveLw4cMaOXKkGjVqpCJFisjV1VXe3t4qW7asOnTooDlz5ujq1au5Vh8AIGPOjm4AkBFfX1/VrFlTW7ZsUXh4uF577bV0y61evdr8/9GjR3XkyJF0g6jr169r3bp1kqTHHnvMkjbnBfnz51f58uXN/99JERERGj16tEqUKKEBAwbc0bodzcPDwzzv6fn44491/fp1NWzYUIsWLZK/v/8dbF3O7N27V0uWLJEkzZs3T+3bt8/2PkaPHi0pOcS5VVCc1+XPn9/u8Tt//rwOHDigAwcOaNasWRo5cqRGjhx5R9uUk+deYGBgustjYmJ05cqVTMu4u7tLktn3PTw8slX33cTHx8c83sTEREVFRencuXPas2eP5s2bpyFDhqhDhw765JNPFBAQkOv1z5gxQ2vWrJGU/DxyhKioKLVp08ZshyQ5OzvLw8NDx44d06FDh7R+/Xp99NFHmj59eq6Ncr0f+pcVUj9vk5KSdPHiRR08eFAHDx40X6tyexR2TuXme0VCQoIGDx6sTz/9VNevXzeX+/r6KiEhwTwX8+fPV+HChTV16lS1bNkyR3UCADLHCCjkaSEhIZKSL11KTExMt0zKX4MLFy5sd/9mmzdvNr9Mpez3XlS0aFHt3btXe/fuVdGiRR3dnPtGvXr1zPOenh07dkiSOnbseFeFT9KNtj/wwAO3FT7daxo0aKDTp0+bt6tXr+rnn39WcHCwDMPQqFGj9NNPPzm6mVmW+lhS31KH/hmV6dChgySZfb9evXqOOgzLffLJJ+Zxnzt3TvHx8fr777+1YMECtWjRQomJifrmm29UvXr1u3qkX2a6du2qNWvWyMnJSa+++qr279+vuLg4XbhwQdeuXdO2bdv03nvvqXr16rla7/3Qv6yQ+rl69uxZxcXFad26dapdu7ak5LAnr46Eyqn4+Hg1b95cn3zyia5fv66wsDAtW7ZMV65cUVRUlK5cuaJz587pm2++UaNGjXT69GmtXLnS0c0GgHseARTytJSgKDo6Wn/99Ve6ZVL+Ejt48GBJ9iOiUktZ7uLiooYNG+Z2U4FMpQzv9/LycnBLsu9ubvud4OLiombNmunHH3+Ui4uLJGny5MkObhXuhKCgILVt21ZLly7VvHnzlD9/fv39999q2bKl3YiLe8GBAwe0ePFiSdI777yjDz74QGXLllW+fMkfJZ2dnVWtWjUNGTJEERERZjiJvMPJyUkNGzbUwoULzWU//vij4xpkoVdeecX8g+TEiRO1bNkyhYWF2Y2iCwgIUKdOnfTbb7/pu+++u2suiQeAuxkBFPK0Ro0aydk5+UrR9EY27dmzR2fOnFH58uXVsWNHSbK7NCC1lO0feugh8zKKFJcvX9b48eNVv359+fv7y9XVVcWKFVPHjh21cePGW7bzp59+Urt27VS0aFG5urqqQIECevTRRzVlyhTFx8dn44hvmDlzpvLnzy+bzaY333wzy9tlNgn5zZM8Hzx4UD179lSxYsXk6uqqBx98UL17976tuUxsNpt69OghKflSyJvnnshsmP93332nJk2ayN/fXx4eHqpRo4Y++eQTJSUl3fJYBwwYoMqVK8vLy0seHh6qUKGCXnnlFR07dizbx5ATGU2gffNj0aNHD7vzcvNjlNO+mJnY2Fh9/PHHatCggQoUKCA3NzeVKFFCXbt2TXcy8ZS5RFIuo7n5cc3K5TUpE86nCAkJsdtHZpdY3G7/jI+P12effaaQkBAFBATIxcVFhQsXVuvWrbVs2bJbtvl2VapUyRxZsHnzZnP54cOH9d577yksLEzlypWTp6envLy8VKlSJQ0YMCDTvpr6xwoSEhL04Ycfqk6dOvLz8zMnZc7Jcy+3ZDRJ9M2vR0ePHlXv3r1VvHhxubm5qUyZMnrrrbfM0amStHPnTnXp0kXFihWTm5ubypYtq3feeUcJCQmZtsHRrwft27fX2LFjJUm7d+/WzJkz05S5nb4wY8YM2Ww2871t9OjRaR7j1K8jOelvmUn9GtG6detblr/5fTa1PXv2qG/fvqpUqZK8vb3l5eVlvo8vWLAgzWt/ViYhv5334dTPL8Mw9OWXX+qhhx6Sj4+PvL29Vb9+fc2ePfuWx5rd48lJm3PDgw8+qAceeEBS8qW2GYmMjNSLL76osmXLyt3dXT4+PqpVq5bGjBlzyzm+Ll26pDFjxqhWrVrm5atly5bViy++qEOHDqUpn5P3ipvt3r1bX3zxhSSpZ8+eGjhw4C23adeunYYPH2637PTp0/rPf/6j1q1bq2LFivL19ZW7u7uCg4PVq1cv7dq1K8P93fxjKzNmzFD9+vXl6+urAgUKqGnTpvrtt9/M8tevX9d//vMf1a5dWz4+PvL19dUTTzyR4R9fb/7MsWXLFj399NMKCgqSm5ubgoODNXjwYEVFRd3y2AHgjjKAPO7hhx82JBlPPPFEmnWfffaZIcl44YUXDMMwjODgYEOScejQIbty8fHxhqenpyHJGDFihN26rVu3Gg8++KAhyZBkODk5Gd7e3uZ9m81mjB07Nt22Xb161Xj66afNspIMHx8fw2azmfcffvhh4+LFi2m2bdy4sSHJGDlyZJp148aNMyQZ+fLlMyZPnpzVU2UYhmEcPnzYrPvw4cN261avXm2u+/XXXw0vLy9DkuHt7W04Ozub64oUKWKcOHEiW/UGBgYaPj4+ZrsDAwPtbhMmTDDLduvWzZBkdOvWzejbt6+5jZ+fn9257Nq1a4b1zZ4923B1dTXLurq6Gu7u7uZ9b29vY8WKFdk6BsOwP3/Tp0/P8napz+3N5yUwMNDIly+f2T9Sn5djx46ZZXPSF2/lxIkTRpUqVcx95c+f3/D19TXv58uXz5g0aZLdNhMmTMj0ce3fv/8t6+3fv78RGBho1lOgQAG7fdSpUyfdc3i7/fPIkSNG5cqV7c5Z6uOUZPz73/++rXOY8pxt3LhxhmWeeeYZ8/zevJ0kw8XFxXjggQfM/iDJ8PX1NdauXZtpnUOHDjUaNGhgSDKcnZ2NAgUKGDabzVi9enW2nnvZMXLkyHT7dHpSyq1evdpueern04IFC8znuI+Pj+Hk5GSua9SokREfH28sWbLE8PDwMM9L6tfSDh06ZFh/Xnk9uHbtmhEQEGAe081upy/MnTvXCAwMNPLnz29IMjw9PdM8xqlfR3LS3zIzf/58cx8///xztrdPMX78eLv2uLm5Gf7+/nbL/vnnH7ttMupfhpE778NvvfWW0bp1a/P5lfJ8Srnd/Lkhp8eTkzbfSlaetydOnDDLfPLJJ+mWmTdvnt1zytvb2+5+sWLFjN27d6e77c6dO+3ey9zc3Ozey1xdXY3vvvvObpvsvFfcyksvvWS+hx45ciTL290s5bNKSr/w9/e3ey9K7zhu3rZbt27m/52dne3Og7Ozs7F48WIjNjbWaN68ufmcTfm8Ksnw8PAwtmzZkmb/qd8vFy5caLi4uJj9KOX/kowSJUqk+SwIAI5EAIU8b9iwYeaHn+vXr9uta9++vSHJ+OabbwzDMIznn3/ekGRMmzbNrty6devS/QD7999/G4UKFTIkGW3btjW2bNlixMfHG4ZhGGfOnDGGDx9uftj44Ycf0rStS5cuhiSjdOnSxpw5c4xLly4ZhpH8JeTHH380SpcubUgy2rRpk2bb9AKopKQko3///uYHm2+//Tbb5yurAVSBAgWMp556ytizZ49hGIYRFxdnzJs3z/xw9Nxzz2W77unTp5sfeDKT8mGsQIEChouLizFx4kTz3J0/f97o1auX2c5Vq1al2f7nn3828uXLZzg7OxtDhgwxDh8+bCQlJRlJSUnG3r17zRDAx8fHOHr0aLaOIbcDqBQlSpTIdJ857YuZuX79uvHQQw+ZXz5nz55txMXFGYZhGJGRkcaTTz5phjVLly5Ns31WH9fMZPYFMkVO+2dMTIxRoUIFQ5LRpEkTIzw83IiNjTUMwzCioqKMiRMnmqHWxx9/nO1jyEoAVbduXUOSERgYaC575ZVXjE8//dTYv3+/kZiYaBiGYSQkJBh//PGHERYWZkjJodrVq1czrNPLy8vw8vIypk+fbpY7f/68ceHCBcMwcucxulluB1B+fn7G448/buzatcswjOQv4ZMmTTKDqLfeesvw9fU1OnToYH5pvHz5svHmm2+a+1i5cmWauvPa60HK+5KLi4tx7do1u3W50RfS+6NFbtWRmcOHD5sBSdWqVY19+/Zla3vDuPFHI0nGU089ZWzdutVcd+XKFePnn382OnToYL4fpMjs9SM33ocLFChg+Pr6GjNmzDDPy/Hjx41WrVoZUnKwu3///lw7npy0+VYye95ev37d2LBhg/k6VahQoTThmGEYxp9//mkGng0bNjS2b99uGIZhJCYmGosWLTKCgoIMSUaZMmWMy5cv220bHR1tlCpVypBkFC1a1Pjpp5/MfhgREWH+UdHV1dWIiIhIU3dW3itupXz58oakbIVW6Xn77beNCRMmGDt27DASEhIMw0g+Bzt37jQ6d+5sSMmB8MmTJ9Nsm/I5x8/Pz3B3dze++OILs2/t3bvXqF27tiHJKFmypNGvXz/D39/fmD9/vhEfH28kJSUZW7ZsMcqUKWM+BjdL/X7p6+trNGnSxAwEExISjHnz5hkFChQwJBl169ZN8/kZAByFAAp53s8//2y+yf7xxx9261L+Wpby5j9r1qx0v5y+88475l/hUr6QGoZh9OzZ05BkPPvssxnWP3HiREOSUb16dbvlv/32m/kBLvVfn1M7fvy4+Zes1B9MDSPtl4m4uDjzi4uvr+9tf/jKagAVEhJifihMbdKkSYYkw93d3fzAlVXZDaAy+1KX8uGsV69edssTExONsmXLGpKML774IsM6nnrqKUOS8corr2TrGBwVQOWkL97K3LlzzbalNwokISHBDKiqVKmSZr0jAqjb6Z9jxowxA6KU8O5m33//vSHJCAgIyHb/vlUA9ccff5ijHlq3bp2lfV6/ft2oVq2aIcn4+uuvM6xTkrFo0aIM93M3BFCVK1e2e/1N8dxzz5llmjVrZiQlJaUp06hRI0OS8fzzz9stz4uvB++++665zYEDB7JcV1b7wq0CqJzUcSu9e/c2j81msxk1a9Y0XnrpJWPatGnGjh070n3sUly8eNEMkDt27Jhp2Ztl1L9y631YSh51ebPY2FijSJEihiTjnXfeyZXjyWmbbyX18zb1CKKCBQuaYa+Pj4/RuXPnDEcHpQSVwcHBxpUrV9Ks/+uvv8w/iNw8wnL8+PGGlDwKdMeOHWm2jY6ONkqWLGlIMlq2bJlmfU4DqISEBDMo7d27923tI6tatmxpSDLefvvtNOtSf86ZPXt2mvUHDx4010tKd1TiqlWrzPXHjx+3W5f6/bJcuXLpBsorV640y8yfPz8HRwoAuYc5oJDnNWzY0JzYN/UE47t379aZM2dUtmxZFSlSRJLUuHFjSWnni0rZrn79+nJ1dZWUPB/ON998I0kaOnRohvV37dpVkrRt2zadOXPGXD5t2jRJUufOnVWsWLF0t33wwQfNidRXrFiRYR3R0dEKCwvT/PnzFRQUpN9++83yn9l+4403zMljU0uZ2+PatWs6cOCApW0oVqyYunXrlu66p556SpK0fft2u+W//fabDhw4oICAAPXq1SvDfac8bpmd97wip33xVubNmycpuf83b948zXpnZ2eNHDlSUvL8Oym/eudIt9M/U56TgwYNUv78+dPdb5s2beTj46Pz58/rzz//zJW2/v333/r666/VunVrJSUlyWazacCAAVna1snJSWFhYZKkdevWZViucuXKatWqVW4012EGDhxovv6mFhoaav7/9ddfTzOPWuoyd8PrQepfubx48WKWt8tqX8iJnNbx2Wefafjw4fL09JRhGNq6das+++wzPf/886pataoKFy6sQYMGpfv69N133+ny5cvKnz+/Jk6cmO7jnF259T7csGHDdH8d19XVNcO+d7vHk5ufHW7lzJkz5u3cuXPmrwlfvXpVly5dSvdxioqKMuscPHiw3aTdKWrWrKm2bdtKkv73v//ZrUt5v3n66adVpUqVNNt6e3tryJAhkqRly5bp0qVLt3186bl48aIMw5Aky39xtmXLlpIyfy4VL15czz77bJrlZcqUUXBwsKTk+U4feeSRNGUaN25svmbe3P9SGzx4cLpzrjVt2lQNGjSQJM2dOzeTIwGAO8fZ0Q0AbsXDw0N169bV+vXrFR4ebn5BTwmZUkInKfmNvmTJkjpy5IgiIyNVpkwZxcfHm5M3p/6A+eeffyo2NlaS0v1Snp6jR48qMDBQkrR+/XpJyR8mU8KD9KR8uDp69Gi660+dOqXGjRsrIiJC5cqV04oVK7I12ebteuihh9JdnhLmSdn78nQ76tatm+GH9pR23NyGlPN+6dIlu7beLGUC14zOe16S0754K1u2bJGU/GE0IyEhIXJyclJiYqK2bNmiqlWrZmnfVslu/zx58qT5WD///PNycnLKcN8pk+4ePXo0w3oys2bNmgz7bcqX0ZsD5LVr12ratGn6/fffdeLECbtJt1OcOHEiwzrvhV/urFevXrrLU/fjunXrZlrmn3/+sVt+N74e5LQvOLIOZ2dnjRkzRq+++qoWL16sNWvWaPPmzdqzZ4/i4+N19uxZffTRR/r666/1008/2T3mGzZskCTVrl1bQUFBt39wqeTW+3BmrwMZvRfd7vHkVpuzIiWISREbG6u9e/dq8uTJmjZtmlauXKm5c+eqTZs2Zpm//vrL3C6z94xmzZpp/vz52r59uxISEpQ/f37Fx8ebQcmttpWkpKQk/fXXX+mGf3nFtm3b9MUXX2jdunU6cuSIYmJi0pzXzJ5LderUyfD9IjAwUAcPHszwdc/JyUkBAQE6efJkmte+1B577LFM123YsMH8HAAAjkYAhbtCSEiI1q9fr3Xr1un69etydnY2A6ibv+g1btxYR44cUXh4uMqUKaNNmzaZPyOf+k3677//Nv+f1dEkKftJvX10dPQtfw3m5m1T++9//ytJcnNz0y+//JLhX0Rzm7e3d7rLU351UNItf3XKqjakbsfNbUg57wkJCVl63K5du5aDFt4ZOe2Lt3L27FlJUtGiRTMs4+bmpoCAAJ05c8Ys70jZ7Z+pz+H58+ezVEd2zmFq+fPnN/+ybrPZ5O7uriJFiqhBgwbq1auXypUrZ1d+6NChev/99837Tk5OKlCggDmyMyYmRleuXEk3JEhRqFCh22praq+88oo5OuFmp0+fzvH+byUrj+mtytwNrwepg4qUXxpLkRt94VbuRB2+vr7q0qWLunTpIik52Fi3bp0mTZqkxYsX6/z582rXrp0OHDggNzc3STf6WIkSJW673pvl1vvw7bwX3e7x5Fabb4ebm5tq1KihqVOn6uLFi/rhhx/UvXt3HTt2TD4+PpJk9/qf2XvGgw8+KCn519suXryowMBAXbx40RxllZVtb64vN/j7+8tms8kwjBz/EW3y5Ml65ZVXzF8xtNls8vX1NUclXbt2TdHR0Zk+l7LSt26n/6WW2blOWZcX3tcBQJK4BA93hZS/jsXExJh/xUn5SerUI6BS30+57C7lX09PT7u/xqZ8SJKSP0QYyXOiZXpLHXalbD9lypQsbTtjxox0j+3JJ5+Ur6+vYmNj1aNHj1z9sHkvSjnvDz30UJbO+81/qcyLctoXYX8O9+zZk6VzmPLz2NnVoEEDnT59WqdPn9apU6d06NAhrVu3Tu+//36a8GnlypVmGPDSSy9px44diouL08WLF819pPxEeGZ9NbMRXVmVcslNere7VV58Pdi2bZuk5Mu3Un8xzK2+kJk7UUd63Nzc1LRpUy1atMi8rPrEiRNavny5WSY3Lrm7WW69D9+O2z0eR7Y5td69e0tKfl1YunSpJXU4grOzs/k6vHXr1tvez549ezRgwAAlJSXpmWee0aZNmxQbG6t//vnHfC5NnDhRUu4+lwDgXkcAhbtCgwYNzL84hYeHa/fu3Tp79qzKlClj95c0Ke08UCn/NmzY0G5emMKFC5v/v50h7inb5/SSjtq1a+uXX35RgQIFtGrVKrVs2TJHf5m+1+XWec9LctoXbyVl9ExmlwnExsbqwoULduXvJlafw9uVMu9GaGioPv30U1WpUiVNmHQnRh9J0owZM+7akDYjee31IDY2Vr/++qsk6eGHHzZH/0h3pi/khf72wgsvmP/ft2+f+X8rHitHPv63W3de6bOpR24dPnzY/H/q1//M3jNS1jk7O5sjQv39/c3+lpVtb64vtzz++OOSkgOo2z3P3333nRITE1WxYkXNnTtXdevWNUcRprhTr923cvLkyVuuuxvf1wHcmwigcFdwc3PTww8/LCl5RFN68z+lKF26tB588EGdPHlSO3fuTHf+J0l2HyYWL16c7TalzMmyZMmSbG97szp16mjVqlXy9/dXeHi4WrRoYc5TczdJmTTayi+0Kef99OnT98ycBjnti7dSp04dSdKqVasyLBMeHq7r16+b7cltKaMFrOobJUuWNEebWHEOb9fx48clJU/amx7DMMzAIifuxHMvL8prrweTJ082LwG9eYRdTvtCVh7jO9XfMuPl5WX+P/Wk8ymTIW/ZskWnTp3Klbpy8304u273eBzZ5tRSh0Cenp7m/2vVqmX2tczeM3755RdJUvXq1c0/7rm4uKhatWpZ3jZfvnyqVauW3brceK946aWXZLPZlJiYqDFjxmR5u5RL7aQbz6Xq1aun+4MY0o3jcLTUP9CT0bqUzwEA4GgEULhrpARI69evN9/0M7oMKSWYeu+998w5P24OoDw9Pc1fJnnvvfd07NixTOu/eS6BlL/y7ty5U1OmTMl02ytXrpiT4GakZs2a+vXXXxUQEKC1a9cqLCxMly9fznSbvCZlDomoqCjL6ggJCTF/OWbgwIG3PK9WT6SeG3LaF2+lY8eOkqSNGzfq559/TrP++vXr5of0KlWqpPvLRTl1J/pGyiUl06ZNu+WlF3eqX/j6+kq6cVnWzT7//HMdOnQox/XcifObF+Wl14P58+frjTfekJT8PEqZHylFTvtCVh5jK/vb4cOHtX///luWmzlzpvn/1OHCM888Ix8fH12/fl0DBw7MlbA0t9+Hs+N2j8eRbU4t9QToqcMJPz8/85f/JkyYkO60ANu2bdOCBQskSZ06dbJbl/J+891332nnzp1pto2JiTEvE33iiSfMPpsiN17LKleubL4ffPXVV/r4449vuc3ChQv1zjvvmPdT2rVjx450H9tly5al+cVlR/nggw/MHzJJbfXq1eak9x06dLjTzQKAdBFA4a6REiBduXJFixYtkpT+CKjUy1N+Htjb21u1a9dOU27s2LEqUqSIzp8/r/r16+vrr7+2C33OnTunBQsW6F//+leaD1mNGzdWjx49JEl9+/bVwIED7T7Yx8XF6ffff9eQIUNUokSJLE0AWb16df36668qWLCg1q9fr9DQ0CxNUppXpAQX0dHRmj9/viV1ODs76/PPP5ezs7PWrVunRx99VKtWrbKboPPQoUP6/PPPVbduXX322We3XVdMTIzOnz+f6S313EM5kZO+eCvt2rUzf+Wpffv2+uabb8zzdfjwYbVr184cKZh68uLclNI35syZY9k8Z6+++qqqVq2q2NhYhYSEaPLkyeZlhVLyF5ply5apa9euatSokSVtuFnKT94vW7ZMb7/9tnl5bVRUlMaOHauXX345zUTVt+NOPPfyojv5epCe06dP6/vvv1fLli3VoUMHJSQkqGjRolqyZInd5OpSzvtCymO8dOnSDC+5sbK/7dq1SxUrVlTLli01a9YsHTlyxFyXkJCgrVu3qkePHua8OPXq1bP7aXlfX1/z9WXevHn617/+pYiICHP91atX9dNPP6l169ZZft+z4n04q273eBzZZim5z7711ltmUPjwww+rfv36dmXeeecd5c+fXwcPHlRoaKh27NghKXmE0NKlS/XEE0/o+vXrKlOmjPr06WO37YsvvqhSpUopISFBLVq00LJly8yRRTt27FBoaKgOHz4sV1dXu8AnRW69V0yaNMl8nR84cKCeeOIJrVixwu6HCC5evKhvv/1Wjz32mP71r3/ZBdQpz6Vdu3apb9++5rorV67oiy++0NNPP50rr9254dSpU2rZsqV5yev169f13Xff6emnn5aUHAS3bdvWkU0EgBsM4C4RFxdnuLu7G5IMSUapUqUyLLtv3z6znCTjiSeeyLDs7t27jXLlypll8+XLZ/j7+xuenp52+2jatGm6berVq5ddOS8vL6NAgQJGvnz57JafOHHCbtvGjRsbkoyRI0em2e+uXbuMwMBAQ5JRr149459//snyeTp8+LBZ5+HDh+3WrV692lyXmZQyq1evznK9KR5//HFze29vb6NEiRJGiRIljI8++sgs061bN0OS0a1btwz3M336dEOSUaJEiXTX//DDD4a3t7dZV/78+Y0HHnjAcHV1tTvv77zzTrban/r8ZeW2detWwzBufW5LlChhSDKmT5+eYd056Yu3cuLECaNy5crmPlxcXAw/Pz+7uj755JN0t73VY5EVX3/9td1jVbRoUaNEiRJGw4YNzTK50T9PnjxpPPzww2YZm81m+Pn5GT4+PnbnMDg4ONvHkPKcbdy4cZa3iY+PNxo1amTXntSvDy1btjTeeuutDPeb2evEzbLy3MuOkSNHZunxMIyMH5PMXo9SZOVxzwuvBz4+PkZgYKARGBhoFCxY0HBxcbHbt5OTk/Hcc88ZFy5cSHdfOe0L+/fvN9zc3Mzna2BgoPkYHz9+PFfqyMzy5cvTvP65uLgY/v7+hs1ms1teq1Yt4+TJk+nuZ+zYsXbvj+7u7oa/v7/dspvf8zJ7zlv1Ppwi5XmQ0fm6nePJSZtvJfXzNqW/ptx8fX3t9l21atUMH6e5c+fa9XEfHx+z/0kyihUrZuzevTvdbXfs2GEULVrULOvm5mb3Guzq6mp8++236W6blfeKrIqLizP69u1rODs72x23r69vmvfVBx980Fi+fLnd9h07drQr4+fnZzg5ORmSjNq1axv/+c9/MnxdysrnnKz0v4w+O6R+3Vy4cKGRP39+89hSv+4VL17cOHToUDbOGgBYixFQuGu4uLiYcy5IGY9+kqRy5crZTUp88+V3qVWsWFHbt2/XF198oebNmysgIEDR0dEyDEPBwcF65pln9N///jfdUQUuLi768ssvtWHDBnXv3l1lypRRYmKiYmJiVKhQITVp0kQjRozQ9u3bM/2Z3JtVqlRJ4eHhCgoK0qZNm9S0aVP9888/Wd7ekb777jsNHDhQ5cqVU0JCgo4ePaqjR4/m+qVBbdq00cGDBzVy5EjVq1dPXl5eioqKkqurq6pXr65evXrphx9+0ODBg3O1XivlpC/eStGiRbVlyxZNnDhRDz/8sNzd3XX16lUVK1ZMzz33nP7880/179/fgqNK1qVLF3399dd65JFH5OHhoVOnTuno0aOZTlR7O4oUKaJ169bpf//7n5566ikFBQXp6tWrio+PV8mSJdWqVSt9/PHH+u2333K13ozkz59fP//8s0aOHKly5copf/78MgxD9erV05QpU7Ro0aJc+YU76c499/KiO/F6EB0dbf5q4KVLl+Tj46OKFSuqQ4cOmjhxoo4dO6ZZs2aZEzLfLKd9oWzZslq9erWeeuopFSxYUBcuXDAf45T526zsb6GhoTpw4IA++eQTPfPMM6pYsaJcXV0VFRUlDw8PlS1bVu3bt9fcuXO1efNmFSlSJN39DBs2TNu2bVPv3r3Nyyfj4+NVtmxZderUSd9//715GVZWWPU+nFW3czx3qs03/9rl1atXVbhwYYWGhurLL7/Uli1bMnycOnTooF27dqlPnz4qU6aM4uLi5OzsrBo1amj06NHauXOnKlasmO62VapU0a5duzRq1CjVqFFDzs7OiouLU5kyZfTvf/9bu3btMkfn3Cw33ytcXFw0efJk7du3T2+99ZYaNGigwMBAc2RVcHCwOnbsqLlz55qjvVKbM2eOPv74Y1WrVk2urq5KTExU1apVNW7cOK1fv95uvjNHat26tTZs2KB27drJzc1NhmGoVKlSevXVVxUREaFSpUo5uokAYLIZxn02YykAAAAA3KXCw8PNP67yVQ7A3YQRUAAAAAAAALBUngugNm/erH79+qly5cry9PRU8eLF1b59+zS/vNK9e3fZbLY0twoVKjio5QAAAAAAAEiP862L3Fnvvfee1q9fr2eeeUbVqlXT6dOnNXnyZNWqVUu///673c+Du7q6aurUqXbb3/xzrgAAAAAAAHCsPBdADRo0SN98841cXFzMZR06dFDVqlU1fvx4zZ4921zu7OysLl26OKKZAAAAAAAAyKI8dwlegwYN7MInKfmXXypXrqw9e/akKZ+YmKjo6Og71TwAAAAAcJgmTZrIMAwmIAdw18lzAVR6DMPQmTNnFBAQYLf86tWr8vHxka+vr/z9/dW3b1/FxMQ4qJUAAAAAAABIT567BC89c+bM0cmTJzVmzBhzWVBQkIYMGaJatWopKSlJy5cv12effaZt27YpPDxczs7pH1pcXJzi4uLM+0lJSbp48aIeeOAB2Ww2y48FAAAAAHB/MwxDly9fVpEiRZQv310xLgTIMZuRx8du7t27Vw899JAqV66stWvXysnJKcOyY8eO1Ztvvqn//e9/6tixY7plRo0apdGjR1vVXAAAAAAAsuT48eN68MEHHd0M4I7I0wHU6dOn1bBhQyUkJOj3339XkSJFMi1/7do1eXl5qUePHml+HS/FzSOgLl26pOLFi+v48ePy8fHJ1fYDAAAAAHCz6OhoFStWTFFRUfySO+4befYSvEuXLqlFixaKiorS2rVrbxk+SZK7u7seeOABXbx4McMyrq6ucnV1TbPcx8eHAAoAAAAAcMcwDQzuJ3kygIqNjVWrVq20f/9+/fLLL6pUqVKWtrt8+bLOnz+vggULWtxCAAAAAAAAZFWeC6ASExPVoUMHbdy4UT/++KPq16+fpkxsbKwSEhLk7e1tt/ztt9+WYRgKCwu7U80FAAAAAADALeS5AOrVV1/VokWL1KpVK128eFGzZ8+2W9+lSxedPn1aNWvWVKdOnVShQgVJ0ooVK7R06VKFhYWpdevWjmg6AAAAAAAA0pHnJiFv0qSJ1qxZk+F6wzAUFRWll19+Wb///rv+/vtvJSYmKjg4WJ07d9Zrr72m/PnzZ7m+6Oho+fr66tKlS8wBBQAAAACwHN9DcT/KcwHUncYTHwAAAABwJ/E9FPejfI5uAAAAAAAAAO5tBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSzo5uAG7Yv3+/o5uQJ5QrV87RTcgThvRb5Ogm5BnvT37K0U3IE+gTN9AnktEnbqBPJKNPJKM/3MDny2R8vryBPpGMPgHceYyAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAlnJ2dANww6pVqxzdhDyhXLlyjm4CAADAPcFm83d0E5DH8J0jGd85gDuPEVAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEvluQBq8+bN6tevnypXrixPT08VL15c7du31/79+9OU3bNnj8LCwuTl5SV/f38999xzOnfunANaDQAAAAAAgIw4O7oBN3vvvfe0fv16PfPMM6pWrZpOnz6tyZMnq1atWvr9999VpUoVSdKJEyf06KOPytfXV2PHjlVMTIw++OAD7dixQ5s2bZKLi4uDjwQAAAAAAABSHgygBg0apG+++cYuQOrQoYOqVq2q8ePHa/bs2ZKksWPH6sqVK/rzzz9VvHhxSVK9evXUrFkzzZgxQy+88IJD2g8AAAAAAAB7ee4SvAYNGqQZvVS2bFlVrlxZe/bsMZctWLBATz75pBk+SVLTpk1Vrlw5zZ8//461FwAAAAAAAJnLcwFUegzD0JkzZxQQECBJOnnypM6ePas6deqkKVuvXj1t3bo1w33FxcUpOjra7gYAAAAAAADr3BUB1Jw5c3Ty5El16NBBknTq1ClJUlBQUJqyQUFBunjxouLi4tLd17hx4+Tr62veihUrZl3DAQAAAAAAkPcDqL1796pv376qX7++unXrJkm6du2aJMnV1TVNeTc3N7syNxs2bJguXbpk3o4fP25RywEAAAAAACDlwUnIUzt9+rRatmwpX19ffffdd3JycpIkubu7S1K6o5xiY2PtytzM1dU13eAKAAAAAAAA1sizAdSlS5fUokULRUVFae3atSpSpIi5LuXSu5RL8VI7deqU/P39CZkAAAAAAADyiDwZQMXGxqpVq1bav3+/fvnlF1WqVMlufdGiRVWwYEFt2bIlzbabNm1SjRo17lBLAQAAAAAAcCt5bg6oxMREdejQQRs3btS3336r+vXrp1uuXbt2WrJkid0cTqtWrdL+/fv1zDPP3KnmAgAAAAAA4Bby3AioV199VYsWLVKrVq108eJFzZ492259ly5dJElvvPGGvv32W4WEhOiVV15RTEyMJkyYoKpVq6pHjx6OaDoAAAAAAADSkecCqIiICEnS4sWLtXjx4jTrUwKoYsWKac2aNRo0aJBef/11ubi4qGXLlvrwww+Z/wkAAAAAACAPyXMBVHh4eJbLVq5cWStWrLCuMQAAAAAAAMixPDcHFAAAAAAAAO4tBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAAMBSBFAAAAAAAACwFAEUAAAAAAAALOXs6AYAAAAAAICcS0xMVEJCgqObgfuIi4uL8uXL2tgmAigAAAAAAO5ihmHo9OnTioqKcnRTcJ/Jly+fSpUqJRcXl1uWJYACAAAAAOAulhI+FSpUSB4eHrLZbI5uEu4DSUlJ+vvvv3Xq1CkVL178lv2OAAoAAAAAgLtUYmKiGT498MADjm4O7jMFCxbU33//revXryt//vyZlmUScgAAAAAA7lIpcz55eHg4uCW4H6VcepeYmHjLsgRQAAAAAADc5bjsDo6QnX5HAAUAAAAAAABLEUABAAAAAADAUkxCDgAAAADAPWj//v13tL5y5cplq3z37t01c+bMNMsPHDig4ODg3GoW8ggCKAAAAAAA4BBhYWGaPn263bKCBQva3Y+Pjzcnu8bdi0vwAAAAAACAQ7i6uqpw4cJ2t8cff1z9+vXTgAEDFBAQoNDQUEnSzp071aJFC3l5eSkwMFDPPfeczp8/b+4rKSlJ48aNU6lSpeTu7q7q1avru+++c9Sh4SYEUAAAAAAAIE+ZOXOmXFxctH79en3++eeKiorSY489ppo1a2rLli1avny5zpw5o/bt25vbjBs3TrNmzdLnn3+uXbt2aeDAgerSpYvWrFnjwCNBCi7BAwAAAAAADrFkyRJ5eXmZ91u0aCFJKlu2rN5//31z+TvvvKOaNWtq7Nix5rKvvvpKxYoV0/79+1WiRAmNHTtWv/zyi+rXry9JKl26tNatW6cvvvhCjRs3vkNHhIwQQAEAAAAAAIcICQnRlClTzPuenp7q1KmTateubVdu27ZtWr16tV1YlSIyMlIJCQm6evWqmjVrZrcuPj5eNWvWtKbxyBYCKAAAAAAA4BCenp7p/uKdp6en3f2YmBi1atVK7733XpqyQUFB2rlzpyTpp59+UtGiRe3Wu7q65mKLcbsIoAAAAAAAQJ5Wq1YtLViwQCVLlpSzc9ooo1KlSnJ1ddWxY8e43C6PYhJyAAAAAACQp/Xt21cXL15Up06dtHnzZkVGRmrFihXq0aOHEhMT5e3trddee00DBw7UzJkzFRkZqb/++kv/+c9/NHPmTEc3H2IEFAAAAAAA96Ry5co5ugm5pkiRIlq/fr2GDh2q5s2bKy4uTiVKlFBYWJjy5UseW/P222+rYMGCGjdunA4dOiQ/Pz/VqlVLb7zxhoNbD4kACgAAAAAAOMCMGTPSXR4eHp7u8rJly+r777/PcH82m02vvPKKXnnllVxoHXIbl+ABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAADgvnbkyBHZbDZFRERYWs+FCxdUqFAhHTlyJFf3O2rUKNWoUSNX9ylJDz/8sBYsWJAr+3LOlb0AAAAAAIA8ZcqUKXe0vhdffDFb5bt3766ZM2dKkvLnz6/ixYura9eueuONN+TsbF1c0b17d0VFRWnhwoXmsmLFiunUqVMKCAiwrF5Jevfdd9W6dWuVLFnSXNa/f3+tX79eO3fuVMWKFdMNwQzD0Icffqj//ve/Onr0qAICAvTSSy/pzTfftLS9b731lgYOHKh//etfypcvZ2OY8twIqJiYGI0cOVJhYWHy9/eXzWbTjBkz0pTr3r27bDZbmluFChXufKMBAAAAAEC2hYWF6dSpUzpw4IBeffVVjRo1ShMmTEi3bHx8vGXtcHJyUuHChS0Nvq5evapp06bp+eefT7OuZ8+e6tChQ4bbvvLKK5o6dao++OAD7d27V4sWLVK9evVy1J6snM8WLVro8uXLWrZsWY7qkvJgAHX+/HmNGTNGe/bsUfXq1TMt6+rqqq+//trullFHBQAAAAAAeYurq6sKFy6sEiVK6MUXX1TTpk21aNEiSckDT9q0aaN3331XRYoUUfny5SVJX3/9terUqSNvb28VLlxYzz77rM6ePWu33127dunJJ5+Uj4+PvL291ahRI0VGRmrUqFGaOXOmfvzxR3MgS3h4eLqX4GW0jxRTp05VxYoV5ebmpgoVKuizzz7L9FiXLl0qV1dXPfzww3bLJ02apL59+6p06dLpbrdnzx5NmTJFP/74o5566imVKlVKtWvXVrNmzdKU/frrr1WyZEn5+vqqY8eOunz5srmuSZMm6tevnwYMGKCAgACFhobKMAyNGjVKxYsXl6urq4oUKaL+/fub2zg5OemJJ57Q3LlzMz22rMhzl+AFBQXp1KlTKly4sLZs2aK6detmWNbZ2VldunS5g60DAAAAAABWcXd314ULF8z7q1atko+Pj1auXGkuS0hI0Ntvv63y5cvr7NmzGjRokLp3766lS5dKkk6ePKlHH31UTZo00a+//iofHx+tX79e169f12uvvaY9e/YoOjpa06dPlyT5+/vr77//tmtHZvuQpDlz5mjEiBGaPHmyatasqa1bt6p3797y9PRUt27d0j22tWvXqnbt2tk+J4sXL1bp0qW1ZMkShYWFyTAMNW3aVO+//778/f3NcpGRkVq4cKGWLFmif/75R+3bt9f48eP17rvvmmVmzpypF198UevXr5ckLViwQB999JHmzp2rypUr6/Tp09q2bZtd/fXq1dP48eOz3e6b5bkAKiX9zKrExERduXJFPj4+FrYKAAAAAABYxTAMrVq1SitWrNDLL79sLvf09NTUqVPl4uJiLuvZs6f5/9KlS2vSpEmqW7euYmJi5OXlpU8//VS+vr6aO3eu8ufPL0kqV66cuY27u7vi4uIyzR5utY+RI0fqww8/VNu2bSVJpUqV0u7du/XFF19kGEAdPXpURYoUyc5pkSQdOnRIR48e1bfffqtZs2YpMTFRAwcO1NNPP61ff/3VLJeUlKQZM2bI29tbkvTcc89p1apVdgFU2bJl9f7775v3f/rpJxUuXFhNmzY15+G6+dK+IkWK6Pjx40pKSsrRPFB57hK87Lh69ap8fHzk6+srf39/9e3bVzExMY5uFgAAAAAAyIIlS5bIy8tLbm5uatGihTp06KBRo0aZ66tWrWoXPknSn3/+qVatWql48eLy9vZW48aNJUnHjh2TJEVERKhRo0ZmcHQ7MtvHlStXFBkZqeeff15eXl7m7Z133rG7RO9m165dk5ubW7bbkpSUpLi4OM2aNUuNGjVSkyZNNG3aNK1evVr79u0zy5UsWdIMn6TkK8xuvjTx5hFYzzzzjK5du6bSpUurd+/e+uGHH8xRXinc3d3NNuREnhsBlVVBQUEaMmSIatWqpaSkJC1fvlyfffaZtm3bpvDw8AwnDouLi7M7adHR0XeqyQAAAAAAIJWQkBBNmTJFLi4uKlKkSJrv8p6ennb3r1y5otDQUIWGhmrOnDkqWLCgjh07ptDQUHNSbXd39xy3K7N9pAx8+fLLL/XQQw/ZrXNycspwu4CAAP3zzz/ZbktQUJCcnZ3tRmBVrFhRUnLoljI31s1hmc1mU1JSkt2ym89nsWLFtG/fPv3yyy9auXKlXnrpJU2YMEFr1qwx93fx4kV5enrm+LzetQHUuHHj7O537NhR5cqV05tvvqnvvvtOHTt2zHC70aNH34kmAgAAAACATHh6eio4ODjL5ffu3asLFy5o/PjxKlasmCRpy5YtdmWqVaummTNnKiEhId0RTC4uLkpMTMy0nsz2ERgYqCJFiujQoUPq3Llzlttes2ZNzZ49O8vlUzRs2FDXr19XZGSkypQpI0nav3+/JKlEiRLZ3t/N3N3d1apVK7Vq1Up9+/ZVhQoVtGPHDtWqVUuStHPnTtWsWTPH9dzVl+DdbODAgcqXL59++eWXDMsMGzZMly5dMm/Hjx+/gy0EAAAAAAC3q3jx4nJxcdF//vMfHTp0SIsWLdLbb79tV6Zfv36Kjo5Wx44dtWXLFh04cEBff/21eblayZIltX37du3bt0/nz59XQkJCmnputY/Ro0dr3LhxmjRpkvbv368dO3Zo+vTpmjhxYoZtDw0N1a5du9KMgjp48KAiIiJ0+vRpXbt2TREREYqIiDBHdDVt2lS1atVSz549tXXrVv3555/q06ePmjVrZjcq6nbMmDFD06ZN086dO3Xo0CHNnj1b7u7udsHW2rVr1bx58xzVI93FI6DS4+7urgceeEAXL17MsIyrq6tcXV3vYKsAAAAAALjzXnzxRUc3IdcVLFhQM2bM0BtvvKFJkyapVq1a+uCDD/TUU0+ZZR544AH9+uuvGjx4sBo3biwnJyfVqFFDDRs2lCT17t1b4eHhqlOnjmJiYrR69WqVLFnSrp5b7aNXr17y8PDQhAkTNHjwYHl6eqpq1aoaMGBAhm2vWrWqatWqpfnz56tPnz7m8l69emnNmjXm/ZTRRocPH1bJkiWVL18+LV68WC+//LIeffRReXp6qkWLFvrwww9zejrl5+en8ePHa9CgQUpMTFTVqlW1ePFiPfDAA5KSfw1ww4YNtzVy62b3VAB1+fJlnT9/XgULFnR0UwAAAAAAQCZmzJhxW+s7deqkTp062S0zDMPufrVq1bRixYp0ty9YsKB+/vnnNMuzsw9JevbZZ/Xss89muD49I0aM0ODBg9W7d2/zF+XCw8NvuV2RIkW0YMGCDNePGjXKbvJ2SRowYIBdIJZePW3atFGbNm0y3O+kSZPUvXt3Pfjgg7ds463clQFUbGysEhIS7GZ3l6S3335bhmEoLCzMQS0DAAAAAABIX8uWLXXgwAGdPHnSnMMqLytUqJAGDRqUK/vKkwHU5MmTFRUVpb///luStHjxYp04cUKS9PLLL+uff/5RzZo11alTJ1WoUEGStGLFCi1dulRhYWFq3bq1w9oOAAAAAACQkcwu08trXn311VzbV54MoD744AMdPXrUvP/999/r+++/lyR16dJFfn5+evLJJ7Vy5UrNnDlTiYmJCg4O1tixY/Xaa6+Zw9gAAAAAAADgeHkygDpy5Mgty3z99dfWNwQAAAAAAAA5xlAhAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAwCKPPvqovvnmmyyXP3LkiGw2myIiInK1HZ9//rlatWqVq/vMDmeH1QwAAAAAACxz4MD5O1pf2bIB2SrfvXt3RUVFaeHChbneliNHjqhUqVLaunWratSokev7z6pFixbpzJkz6tixo7ns9OnTGjx4sFauXKnLly+rfPnyevPNN9WuXTtL29KzZ0+9/fbbWrt2rRo1amRpXelhBBQAAAAAAEAG4uPjb3vbSZMmqUePHsqX70b80rVrV+3bt0+LFi3Sjh071LZtW7Vv315bt2697XoSExOVlJSUaRkXFxc9++yzmjRp0m3XkxMEUAAAAAAAIM/ZuXOnWrRoIS8vLwUGBuq5557T+fM3RnUlJSXp/fffV3BwsFxdXVW8eHG9++67kqRSpUpJkmrWrCmbzaYmTZpIkpo0aaIBAwbY1dOmTRt1797dvF+yZEm9/fbb6tq1q3x8fPTCCy9IktatW6dGjRrJ3d1dxYoVU//+/XXlypUM23/u3Dn9+uuvaS5727Bhg15++WXVq1dPpUuX1ltvvSU/Pz/9+eefduUOHTqkkJAQeXh4qHr16tq4caO5bsaMGfLz89OiRYtUqVIlubq66tixYwoPD1e9evXk6ekpPz8/NWzYUEePHjW3a9WqlRYtWqRr167d4uznPgIoAAAAAACQp0RFRemxxx5TzZo1tWXLFi1fvlxnzpxR+/btzTLDhg3T+PHjNXz4cO3evVvffPONAgMDJUmbNm2SJP3yyy86deqUvv/++2zV/8EHH6h69eraunWrhg8frsjISIWFhaldu3bavn275s2bp3Xr1qlfv34Z7mPdunXy8PBQxYoV7ZY3aNBA8+bN08WLF5WUlKS5c+cqNjbWDMlSvPnmm3rttdcUERGhcuXKqVOnTrp+/bq5/urVq3rvvfc0depU7dq1S/7+/mrTpo0aN26s7du3a+PGjXrhhRdks9nMberUqaPr16/rjz/+yNb5yA3MAQUAAAAAAPKUyZMnq2bNmho7dqy57KuvvlKxYsW0f/9+BQUF6ZNPPtHkyZPVrVs3SVKZMmX0yCOPSJIKFiwoSXrggQdUuHDhbNf/2GOP6dVXXzXv9+rVS507dzZHT5UtW1aTJk1S48aNNWXKFLm5uaXZx9GjRxUYGGh3+Z0kzZ8/Xx06dNADDzwgZ2dneXh46IcfflBwcLBduddee00tW7aUJI0ePVqVK1fWwYMHVaFCBUlSQkKCPvvsM1WvXl2SdPHiRV26dElPPvmkypQpI0lpwi8PDw/5+vrajYq6UwigAAAAAABAnrJt2zatXr1aXl5eadZFRkYqKipKcXFxevzxxy2pv06dOmnas337ds2ZM8dcZhiGkpKSdPjw4TRBjyRdu3Yt3WBq+PDhioqK0i+//KKAgAAtXLhQ7du319q1a1W1alWzXLVq1cz/BwUFSZLOnj1rBlAuLi52Zfz9/dW9e3eFhoaqWbNmatq0qdq3b29um8Ld3V1Xr17NzunIFQRQAAAAAAAgT4mJiVGrVq303nvvpVkXFBSkQ4cO3dZ+8+XLJ8Mw7JYlJCSkKefp6ZmmPX369FH//v3TlC1evHi6dQUEBOiff/6xWxYZGanJkydr586dqly5siSpevXqWrt2rT799FN9/vnnZtn8+fOb/0+5jC71ROPu7u52l9dJ0vTp09W/f38tX75c8+bN01tvvaWVK1fq4YcfNstcvHjRHCF2JxFAAQAAAACAPKVWrVpasGCBSpYsKWfntNFF2bJl5e7urlWrVqlXr15p1ru4uEhK/nW41AoWLKhTp06Z9xMTE7Vz506FhITcsj27d+9Oc5lcZmrWrKnTp0/rn3/+UYECBSTJHHl082V5Tk5Ot/wVu+zUW7NmTQ0bNkz169fXN998YwZQkZGRio2NVc2aNXOlruxgEnIAAAAAAOAQly5dUkREhN3t+PHj6tu3ry5evKhOnTpp8+bNioyM1IoVK9SjRw8lJibKzc1NQ4cO1ZAhQzRr1ixFRkbq999/17Rp0yRJhQoVkru7uzl5+aVLlyQlz+30008/6aefftLevXv14osvKioq6pbtHDp0qDZs2KB+/fopIiJCBw4c0I8//pjpJOQ1a9ZUQECA1q9fby6rUKGCgoOD1adPH23atEmRkZH68MMPtXLlSrVp0yZH5/Lw4cMaNmyYNm7cqKNHj+rnn3/WgQMH7C4PXLt2rUqXLm3OEXUnMQIKAAAAAIB7UNmyAY5uwi2Fh4enGY3z/PPPa+rUqVq/fr2GDh2q5s2bKy4uTiVKlFBYWJg5emj48OFydnbWiBEj9PfffysoKEj//ve/JUnOzs6aNGmSxowZoxEjRqhRo0YKDw9Xz549tW3bNnXt2lXOzs4aOHDgLUc/ScnzMa1Zs0ZvvvmmGjVqJMMwVKZMGXXo0CHDbZycnNSjRw/NmTNHTz75pKTky+qWLl2q119/Xa1atVJMTIyCg4M1c+ZMPfHEE7d7GiUlTzC+d+9ezZw5UxcuXFBQUJD69u2rPn36mGX+97//qXfv3jmq53bZjJsvfrzPREdHy9fXV5cuXZKPj49D2zJr/1SH1p9XdC2Xdvjk/Yj+cAN9Ihl94gb6RDL6xA30iWT0iWT0hxvoE8noEzfQJ5I5uk/k5vfQ2NhYHT58WKVKlUp3wms41unTp1W5cmX99ddfKlGihEPbsmvXLj322GPav3+/fH19c2Wf2el/XIIHAAAAAABggcKFC2vatGk6duyYo5uiU6dOadasWbkWPmUXl+ABAAAAAABYJKdzO+WWpk2bOrR+RkABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAO5po0aNUo0aNbK93apVq1SxYkUlJibmantsNpsWLlyYq/tcvny5atSooaSkpFzdb25xdnQDAAAAAABA7hvSb9Edre/9yU9lueznn3+uwYMH659//pGzc3I0ERMTowIFCqhhw4YKDw83y4aHhyskJEQHDx5UmTJlcrvZmRoyZIjeeustOTk5pVm3fv16NW7cWFWqVFFERITduk8//VQTJkzQ6dOnVb16df3nP/9RvXr1LG1rWFiYhg8frjlz5ui5556ztK7bYdkIqLi4OCUkJFi1ewAAAAAAcJcKCQlRTEyMtmzZYi5bu3atChcurD/++EOxsbHm8tWrV6t48eK3FT4ZhqHr16/fVhvXrVunyMhItWvXLs26qKgode3aVY8//niadfPmzdOgQYM0cuRI/fXXX6pevbpCQ0N19uzZ22qHlPXj6N69uyZNmnTb9VgpRwHUb7/9phEjRigqKspcduHCBbVo0UJeXl7y9fXV66+/ntM2AgAAAACAe0j58uUVFBSUZqRT69atVapUKf3+++92y0NCQiQlD3bp37+/ChUqJDc3Nz3yyCPavHmzXVmbzaZly5apdu3acnV11bp169LUHxkZqdKlS6tfv34yDCPdNs6dO1fNmjWTm5tbmnX//ve/9eyzz6p+/fpp1k2cOFG9e/dWjx49VKlSJX3++efy8PDQV199ZVfu/Pnz+te//iUPDw+VLVtWixbdGLGW0XFs27ZNISEh8vb2lo+Pj2rXrm0X4rVq1UpbtmxRZGRkusfkSDkKoD744AN988038vPzM5e9+uqrWrFihUqVKiU/Pz9NmDBB8+fPz2k7AQAAAADAPSQkJESrV682769evVpNmjRR48aNzeXXrl3TH3/8YQZQQ4YM0YIFCzRz5kz99ddfCg4OVmhoqC5evGi379dff13jx4/Xnj17VK1aNbt127dv1yOPPKJnn31WkydPls1mS7d9a9euVZ06ddIsnz59ug4dOqSRI0emWRcfH68///xTTZs2NZfly5dPTZs21caNG+3Kjh49Wu3bt9f27dv1xBNPqHPnzrc8js6dO+vBBx/U5s2b9eeff+r1119X/vz5zfLFixdXYGCg1q5dm+4xOVKOAqitW7fqkUceMe/HxsZq/vz5at68ufbv3699+/apePHimjJlSo4bCgAAAAAA7h0hISFav369rl+/rsuXL2vr1q1q3LixHn30UXNk1MaNGxUXF6eQkBBduXJFU6ZM0YQJE9SiRQtVqlRJX375pdzd3TVt2jS7fY8ZM0bNmjVTmTJl5O/vby7fsGGDmjRpotdee03vvPNOpu07evSoihQpYrfswIEDev311zV79mxz7qrUzp8/r8TERAUGBtotDwwM1OnTp+2Wde/eXZ06dVJwcLDGjh2rmJgYbdq0KdPjOHbsmJo2baoKFSqobNmyeuaZZ1S9enW7bYoUKaKjR49memyOkKMA6sKFCypatKh5f+PGjYqNjVWPHj0kSd7e3nryySe1b9++nLUSAAAAAADcU5o0aaIrV65o8+bNWrt2rcqVK6eCBQuqcePG5jxQ4eHhKl26tIoXL67IyEglJCSoYcOG5j7y58+vevXqac+ePXb7Tm/k0rFjx9SsWTONGDFCr7766i3bd+3aNbvL7xITE/Xss89q9OjRKleuXA6OPFnqkVmenp7y8fFJM0/UzccxaNAg9erVS02bNtX48ePTvdTO3d1dV69ezXH7cluOAih3d3ddvnzZvL969WrZbDY1btzYXObl5aV//vknJ9UAAAAAAIB7THBwsB588EGtXr1aq1evNrOEIkWKqFixYtqwYYNWr16txx57LNv79vT0TLOsYMGCqlevnv73v/8pOjr6lvsICAiwyzMuX76sLVu2qF+/fnJ2dpazs7PGjBmjbdu2ydnZWb/++qsCAgLk5OSkM2fO2O3rzJkzKly4sN2y1JfOSZLNZlNSUlKmxzFq1Cjt2rVLLVu21K+//qpKlSrphx9+sCtz8eJFFSxY8JbHd6flKIAKDg7W8uXLFRcXp/j4eM2dO1eVKlWyO6nHjh1ToUKFctxQAAAAAABwbwkJCVF4eLjCw8PVpEkTc/mjjz6qZcuWadOmTeb8T2XKlJGLi4vWr19vlktISNDmzZtVqVKlW9bl7u6uJUuWyM3NTaGhoXYDatJTs2ZN7d6927zv4+OjHTt2KCIiwrz9+9//Vvny5RUREaGHHnpILi4uql27tlatWmVul5SUpFWrVqU7YfntKFeunAYOHKiff/5Zbdu21fTp0811sbGxioyMVM2aNXOlrtyUowCqd+/eOnjwoIKDg1WxYkVFRkaal9+l+PPPP7PUEQAAAAAAwP0lJCRE69atU0REhN3VVI0bN9YXX3yh+Ph4M4Dy9PTUiy++qMGDB2v58uXavXu3evfuratXr+r555/PUn2enp766aef5OzsrBYtWigmJibDsqGhoXa/oJcvXz5VqVLF7pbya3xVqlQxRysNGjRIX375pWbOnKk9e/boxRdf1JUrV9LkJdl17do19evXT+Hh4Tp69KjWr1+vzZs3q2LFimaZ33//Xa6urrkWduWmtDNmZcPzzz+vAwcOaNq0abp27ZpefPFFDRgwwFy/ceNG7d+/X7169cppOwEAAAAAQDa8P/kpRzfhlkJCQnTt2jVVqFDBbuLuxo0b6/LlyypfvryCgoLM5ePHj1dSUpKee+45Xb58WXXq1NGKFStUoECBLNfp5eWlZcuWKTQ0VC1bttTSpUvTvWSvc+fOGjJkiPbt26fy5ctnef8dOnTQuXPnNGLECJ0+fVo1atTQ8uXL00xMnl1OTk66cOGCunbtqjNnziggIEBt27bV6NGjzTL/+9//1LlzZ3l4eOSoLivYDMMwrNp5fHy8rl27Jk9Pz3Rnh88LoqOj5evrq0uXLsnHx8ehbZm1f6pD688rupYjsJToD6nRJ5LRJ26gTySjT9xAn0hGn0hGf7iBPpGMPnEDfSKZo/tEbn4PjY2N1eHDh1WqVCm7CbOROwYPHqzo6Gh98cUXjm7KLZ0/f17ly5fXli1bVKpUqTtSZ3b6X44uwXvsscc0fPjwDNe7uLjI19c3z4ZPAAAAAAAAGXnzzTdVokSJNJOD50VHjhzRZ599dsfCp+zKUQD1xx9/KDExMbfaAgAAAAAAkGf4+fnpjTfeUL58OYpP7og6deqoQ4cOjm5GhnJ0BitUqKCjR4/mVlsAAAAAAABwD8rRtXEvv/yy+vXrp927d/NLd7mgyzVXRzcBeQj9ATejT+Bm9AncjD6Bm9EncDP6BABHyVEAVbp0aTVp0kQPP/yw+vTpo7p16yowMFA2my1N2UcffTQnVQEAAAAAAOAulaMAqkmTJrLZbDIMQx9++GG6wVMK5ooCAAAAAAC4P+UogBoxYkSmoRMAAAAAAACQowBq1KhRudQMAAAAAAAA3Kvy/u8IAgAAAAAA3AGjRo1SjRo1HN2MexIBFAAAAAAAuOO6d+8um82W5hYWFuawNr322mtatWqVw+q/l+XoErx8+fJlaQ4om82m69ev56QqAAAAAACQDbP2T72j9XUt1yvb24SFhWn69Ol2y1xdXXOrSXbi4+Pl4uKSaRkvLy95eXlZUv/9LkcjoB599NF0b9WrV5eHh4cMw1C1atXUqFGj3GovAAAAAAC4R7i6uqpw4cJ2twIFCig8PFwuLi5au3atWfb9999XoUKFdObMGUnS8ePH1b59e/n5+cnf31+tW7fWkSNHzPLdu3dXmzZt9O6776pIkSIqX768JOnEiRPq1KmT/P395enpqTp16uiPP/6QlPYSvPDwcNWrV0+enp7y8/NTw4YNdfToUXP9jz/+qFq1asnNzU2lS5fW6NGjGYCTgRyNgAoPD89w3dWrV/X6669r+fLlWrlyZU6qAQAAAAAA95EmTZpowIABeu6557Rt2zYdOnRIw4cP17fffqvAwEAlJCQoNDRU9evX19q1a+Xs7Kx33nlHYWFh2r59uznSadWqVfLx8TFziZiYGDVu3FhFixbVokWLVLhwYf31119KSkpK04br16+rTZs26t27t/73v/8pPj5emzZtMq8EW7t2rbp27apJkyapUaNGioyM1AsvvCBJGjly5B06U3ePHAVQmfHw8NCkSZNUt25dDR48OM2QOgAAAAAAcH9bsmRJmkve3njjDb3xxht65513tHLlSr3wwgvauXOnunXrpqeeekqSNG/ePCUlJWnq1KlmIDR9+nT5+fkpPDxczZs3lyR5enpq6tSpZiD13//+V+fOndPmzZvl7+8vSQoODk63bdHR0bp06ZKefPJJlSlTRpJUsWJFc/3o0aP1+uuvq1u3bpKk0qVL6+2339aQIUMIoNJhWQCVolGjRpo9e7bV1QAAAAAAgLtMSEiIpkyZYrcsJRhycXHRnDlzVK1aNZUoUUIfffSRWWbbtm06ePCgvL297baNjY1VZGSkeb9q1ap28z5FRESoZs2aZh2Z8ff3V/fu3RUaGqpmzZqpadOmat++vYKCgsw2rF+/Xu+++665TWJiomJjY3X16lV5eHhk40zc+ywPoM6dO6eYmBirqwEAAAAAAHcZT0/PDEcgSdKGDRskSRcvXtTFixfl6ekpKflSutq1a2vOnDlptilYsKDd/lNzd3fPVvumT5+u/v37a/ny5Zo3b57eeustrVy5Ug8//LBiYmI0evRotW3bNs12bm5u2arnfmBZAJWUlKQ5c+Zo3rx5qlOnjlXVAAAAAACAe1BkZKQGDhyoL7/8UvPmzVO3bt30yy+/KF++fKpVq5bmzZunQoUKycfHJ8v7rFatmqZOnaqLFy9maRSUJNWsWVM1a9bUsGHDVL9+fX3zzTd6+OGHVatWLe3bty/TAA035OhX8EqXLp3urXjx4vLw8FD37t2VL18+jRs3LrfaCwAAAAAA7hFxcXE6ffq03e38+fNKTExUly5dFBoaqh49emj69Onavn27PvzwQ0lS586dFRAQoNatW2vt2rU6fPiwwsPD1b9/f504cSLD+jp16qTChQurTZs2Wr9+vQ4dOqQFCxZo48aNacoePnxYw4YN08aNG3X06FH9/PPPOnDggDkP1IgRIzRr1iyNHj1au3bt0p49ezR37ly99dZb1pysu1yORkAlJSWZk32llj9/flWpUkV169ZVv379VLly5ZxUAwAAAAAA7kHLly8351RKUb58eT377LM6evSolixZIkkKCgrSf//7X3Xq1EnNmzdX9erV9dtvv2no0KFq27atLl++rKJFi+rxxx/PdESUi4uLfv75Z7366qt64okndP36dVWqVEmffvppmrIeHh7au3evZs6cqQsXLigoKEh9+/ZVnz59JEmhoaFasmSJxowZo/fee0/58+dXhQoV1KtXr1w8Q/cOm2EYhqMb4UjR0dHy9fXVpUuXsjVszwpJ2752aP15Rb7qzzm6CXkC/eEG+kQy+sQN9Ilk9Ikb6BPJ6BPJ6A830CeS0SduoE8kc3SfyM3vobGxsTp8+LBKlSrFvEO447LT/3J0CR4AAAAAAABwK7k2CfnJkycVERGh6Oho+fj4qEaNGipatGhu7R4AAAAAAAB3qRwHUAcPHtSLL76oX3/9Nc26xx9/XJ999hkzwgMAAAAAANzHchRAHT9+XI888ojOnj2rChUq6NFHH1VQUJBOnz6t3377Tb/88osaNWqkTZs2qVixYrnVZgAAAAAAANxFchRAjR49WmfPntVnn32mPn36pPlFvC+++EIvvviixowZoy+//DJHDQUAAAAAAMDdKUcB1IoVK9SqVSv9+9//Tnd9nz59tHTpUi1btiwn1QAAAAAAAOAulqNfwTt79qyqVKmSaZkqVaro3LlzOakGAAAAAAAAd7EcBVAFCxbU7t27My2ze/duFSxYMCfVAAAAAAAA4C6WowAqNDRUixYt0rRp09Jd/9VXX2nx4sUKCwvLSTUAAAAAAAC4i+VoDqiRI0dq8eLFeuGFF/Txxx+rcePGCgwM1JkzZ/Tbb79p165dCggI0MiRI3OrvQAAAAAAALjL5CiAKl68uNavX68+ffooPDxcu3btslsfEhKiKVOmqFixYjlqJAAAAAAAyJ6kbV/f0fryVX8u29ucPn1a7777rn766SedPHlShQoVUo0aNTRgwAA9/vjjFrTSWk2aNFGNGjX08ccfO7opeU6OAihJKlu2rH799VcdP35cERERio6Olo+Pj2rUqEHwBAAAAAAA0nXkyBE1bNhQfn5+mjBhgqpWraqEhAStWLFCffv21d69ex3dROSiHM0BlVqxYsXUqlUrde7cWa1atSJ8AgAAAAAAGXrppZdks9m0adMmtWvXTuXKlVPlypU1aNAg/f7775KkY8eOqXXr1vLy8pKPj4/at2+vM2fOmPsYNWqUatSooa+++krFixeXl5eXXnrpJSUmJur9999X4cKFVahQIb377rt2ddtsNn3xxRd68skn5eHhoYoVK2rjxo06ePCgmjRpIk9PTzVo0ECRkZHmNt27d1ebNm3s9jNgwAA1adLEXL9mzRp98sknstlsstlsOnLkiCRp586datGihby8vBQYGKjnnntO58+fz/2TmodlewTUSy+9lO1KbDabPv3002xvBwAAAAAA7j0XL17U8uXL9e6778rT0zPNej8/PyUlJZnh05o1a3T9+nX17dtXHTp0UHh4uFk2MjJSy5Yt0/LlyxUZGamnn35ahw4dUrly5bRmzRpt2LBBPXv2VNOmTfXQQw+Z27399tuaOHGiJk6cqKFDh+rZZ59V6dKlNWzYMBUvXlw9e/ZUv379tGzZsiwd0yeffKL9+/erSpUqGjNmjCSpYMGCioqK0mOPPaZevXrpo48+0rVr1zR06FC1b99ev/76a85O5F0k2wHU559/nu5ym80mwzAyXEcABQAAAAAAJOngwYMyDEMVKlTIsMyqVau0Y8cOHT582LzKatasWapcubI2b96sunXrSpKSkpL01VdfydvbW5UqVVJISIj27dunpUuXKl++fCpfvrzee+89rV692i6A6tGjh9q3by9JGjp0qOrXr6/hw4crNDRUkvTKK6+oR48eWT4mX19fubi4yMPDQ4ULFzaXT548WTVr1tTYsWPNZV999ZWKFSum/fv3q1y5clmu426W7QBq9erVaZbNmDFDs2bNSncdAAAAAABAahkNYEltz549KlasmN0UP5UqVZKfn5/27NljBlAlS5aUt7e3WSYwMFBOTk7Kly+f3bKzZ8/a7b9atWp26yWpatWqdstiY2PNua5v17Zt27R69Wp5eXmlWRcZGUkAlZHGjRunWZYy9C29dQAAAAAAAKmVLVtWNpstVyYaz58/v919m82W7rKkpKQMt7PZbBkuS9kuX758aYKzhISEW7YvJiZGrVq10nvvvZdmXVBQ0C23v1fk2iTkAAAAAAAAWeHv76/Q0FB9+umnunLlSpr1UVFRqlixoo4fP67jx4+by3fv3q2oqChVqlTpTjZXUvJ8TqdOnbJbFhERYXffxcVFiYmJdstq1aqlXbt2qWTJkgoODra7pTf/1b2KAAoAAAAAANxxn376qRITE1WvXj0tWLBABw4c0J49ezRp0iTVr19fTZs2VdWqVdW5c2f99ddf2rRpk7p27arGjRurTp06d7y9jz32mLZs2aJZs2bpwIEDGjlypHbu3GlXpmTJkvrjjz905MgRnT9/XklJSerbt68uXryoTp06afPmzYqMjNSKFSvUo0ePNGHVvYwACgAAAAAA3HGlS5fWX3/9pZCQEL366quqUqWKmjVrplWrVmnKlCmy2Wz68ccfVaBAAT366KNq2rSpSpcurXnz5jmkvaGhoRo+fLiGDBmiunXr6vLly+ratatdmddee01OTk6qVKmSChYsqGPHjqlIkSJav369EhMT1bx5c1WtWlUDBgyQn5+f3TxV9zqbkZWZv25h9OjRGjNmzF2Z3EVHR8vX11eXLl3K0aRiuSFp29cOrT+vyFf9OUc3IU+gP9xAn0hGn7iBPpGMPnEDfSIZfSIZ/eEG+kQy+sQN9Ilkju4Tufk9NDY2VocPH1apUqXk5uaWSy0EsiY7/e/+idoAAAAAAADgENn+FbwnnngizbKDBw9muE5Knjn+p59+ym5VAAAAAAAAuAdkO4Bavnx5ttel/HQhAAAAAAAA7j/ZDqAOHz5sRTsAAAAAAABwj8p2AFWiRAkr2gEAAAAAAIB7FJOQAwAAAAAAwFIEUAAAAAAAALAUARQAAAAAAAAsRQAFAAAAAAAASxFAAQAAAACAe1737t3Vpk0bRzfjvpXtX8EDAAAAAAB5X9LERne0vnyD1marfPfu3TVz5kz16dNHn3/+ud26vn376rPPPlO3bt00Y8aMXGwlHIUAKi9Z9V9HtyBvqP6co1uQN9AfbqBPJKNP3ECfSEafuIE+kYw+kYz+cAN9Ihl94gb6RDL6RJ5RrFgxzZ07Vx999JHc3d0lSbGxsfrmm29UvHhxB7cOuYlL8AAAAAAAgEPUqlVLxYoV0/fff28u+/7771W8eHHVrFnTXJaUlKRx48apVKlScnd3V/Xq1fXdd9+Z6xMTE/X888+b68uXL69PPvkk07q/++47Va1aVe7u7nrggQfUtGlTXblyJfcPEpIIoAAAAAAAgAP17NlT06dPN+9/9dVX6tGjh12ZcePGadasWfr888+1a9cuDRw4UF26dNGaNWskJQdUDz74oL799lvt3r1bI0aM0BtvvKH58+enW+epU6fUqVMn9ezZU3v27FF4eLjatm0rwzCsO9D7HJfgAQAAAAAAh+nSpYuGDRumo0ePSpLWr1+vuXPnKjw8XJIUFxensWPH6pdfflH9+vUlSaVLl9a6dev0xRdfqHHjxsqfP79Gjx5t7rNUqVLauHGj5s+fr/bt26ep89SpU7p+/bratm2rEiVKSJKqVq1q8ZHe3wigAAAAAACAwxQsWFAtW7bUjBkzZBiGWrZsqYCAAHP9wYMHdfXqVTVr1sxuu/j4eLvL9D799FN99dVXOnbsmK5du6b4+HjVqFEj3TqrV6+uxx9/XFWrVlVoaKiaN2+up59+WgUKFLDkGEEABQAAAAAAHKxnz57q16+fpOQgKbWYmBhJ0k8//aSiRYvarXN1dZUkzZ07V6+99po+/PBD1a9fX97e3powYYL++OOPdOtzcnLSypUrtWHDBv3888/6z3/+ozfffFN//PGHSpUqlduHBxFAAQAAAAAABwsLC1N8fLxsNptCQ0Pt1lWqVEmurq46duyYGjdunO7269evV4MGDfTSSy+ZyyIjIzOt02azqWHDhmrYsKFGjBihEiVK6IcfftCgQYNyfkBIgwAKAAAAAAA4lJOTk/bs2WP+PzVvb2+99tprGjhwoJKSkvTII4/o0qVLWr9+vXx8fNStWzeVLVtWs2bN0ooVK1SqVCl9/fXX2rx5c4ajmf744w+tWrVKzZs3V6FChfTHH3/o3LlzqlixouXHer8igAIAAAAAAA7n4+OT4bq3335bBQsW1Lhx43To0CH5+fmpVq1aeuONNyRJffr00datW9WhQwfZbDZ16tRJL730kpYtW5ZhXb/99ps+/vhjRUdHq0SJEvrwww/VokULS44NBFAAAAAAANyT8g1a6+gmZGrGjBmZrl+4cKH5f5vNpldeeUWvvPJKumVdXV01ffp0TZ8+3W75uHHj0q2vYsWKWr58ebbbjNuXz9ENAAAAAAAAwL2NAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFgqzwVQMTExGjlypMLCwuTv7y+bzaYZM2akW3bPnj0KCwuTl5eX/P399dxzz+ncuXN3tsEAAAAAACDPCg8Pl81mU1RUlKObcl9zdnQDbnb+/HmNGTNGxYsXV/Xq1RUeHp5uuRMnTujRRx+Vr6+vxo4dq5iYGH3wwQfasWOHNm3aJBcXlzvbcAAAAAAA8pDpm4/d0fp61C2erfLdu3dXVFSUFi5caLc8PDxcISEh+ueff+Tn55fjdjVo0ECnTp2Sr69vjveF25fnAqigoCCdOnVKhQsX1pYtW1S3bt10y40dO1ZXrlzRn3/+qeLFkzt5vXr11KxZM82YMUMvvPDCnWw2AAAAAADIg1xcXFS4cGFHN+O+l+cuwXN1dc1Sx1iwYIGefPJJM3ySpKZNm6pcuXKaP3++lU0EAAAAAAAWu3Llinx8fPTdd9/ZLV+4cKE8PT11+fJlSdKGDRtUo0YNubm5qU6dOlq4cKFsNpsiIiIkpX8J3rp169SoUSO5u7urWLFi6t+/v65cuWKuL1mypMaOHauePXvK29tbxYsX13//+1+7dhw/flzt27eXn5+f/P391bp1ax05csSSc3EvyHMBVFacPHlSZ8+eVZ06ddKsq1evnrZu3eqAVgEAAAAAgNzi6empjh07avr06XbLp0+frqefflre3t6Kjo5Wq1atVLVqVf311196++23NXTo0Ez3GxkZqbCwMLVr107bt2/XvHnztG7dOvXr18+u3Icffqg6depo69ateumll/Tiiy9q3759kqSEhASFhobK29tba9eu1fr16+Xl5aWwsDDFx8fn7om4R+S5S/Cy4tSpU5KSL9e7WVBQkC5evKi4uDi5urqmWR8XF6e4uDjzfnR0tHUNBQAAAAAAGVqyZIm8vLzsliUmJpr/79WrlzmHU1BQkM6ePaulS5fql19+kSR98803stls+vLLL+Xm5qZKlSrp5MmT6t27d4Z1jhs3Tp07d9aAAQMkSWXLltWkSZPUuHFjTZkyRW5ubpKkJ554Qi+99JIkaejQofroo4+0evVqlS9fXvPmzVNSUpKmTp0qm80mKTkY8/PzU3h4uJo3b55r5+hecVeOgLp27ZokpRswpXSUlDI3GzdunHx9fc1bsWLFrGsoAAAAAADIUEhIiCIiIuxuU6dONdfXq1dPlStX1syZMyVJs2fPVokSJfToo49Kkvbt26dq1aqZWUDKNpnZtm2bZsyYIS8vL/MWGhqqpKQkHT582CxXrVo18/82m02FCxfW2bNnzX0cPHhQ3t7e5j78/f0VGxuryMjInJ+Ye9BdOQLK3d1dkuxGMqWIjY21K3OzYcOGadCgQeb96OhoQigAAAAAABzA09NTwcHBdstOnDhhd79Xr1769NNP9frrr2v69Onq0aOHOerodsTExKhPnz7q379/mnWp55nOnz+/3TqbzaakpCRzH7Vr19acOXPS7KNgwYK33bZ72V0ZQKVcepdyKV5qp06dkr+/f7qjo6TkUVMZrQMAAAAAAHlLly5dNGTIEE2aNEm7d+9Wt27dzHXly5fX7Nmz7abh2bx5c6b7q1Wrlnbv3p0m+MqOWrVqad68eSpUqJB8fHxuez/3k7vyEryiRYuqYMGC2rJlS5p1mzZtUo0aNe58owAAAAAAQK4rUKCA2rZtq8GDB6t58+Z68MEHzXXPPvuskpKS9MILL2jPnj1asWKFPvjgA0nKcJTU0KFDtWHDBvXr108RERE6cOCAfvzxxzSTkGemc+fOCggIUOvWrbV27VodPnxY4eHh6t+/f5oRXEh2VwZQktSuXTstWbJEx48fN5etWrVK+/fv1zPPPOPAlgEAAAAAgNz0/PPPKz4+Xj179rRb7uPjo8WLFysiIkI1atTQm2++qREjRkiS3bxQqVWrVk1r1qzR/v371ahRI9WsWVMjRoxQkSJFstweDw8P/fbbbypevLjatm2rihUr6vnnn1dsbCwjojKQJy/Bmzx5sqKiovT3339LkhYvXmwmiC+//LJ8fX31xhtv6Ntvv1VISIheeeUVxcTEaMKECapatap69OjhyOYDAAAAAOBwPeoWv3UhB5oxY0a6y5s0aSLDMOyWnTx5Ug888IBat26dpnyDBg20bds28/6cOXOUP39+cz6n9PZXt25d/fzzzxm27ciRI2mWRURE2N0vXLiwOTk6bi1PBlAffPCBjh49at7//vvv9f3330tKvvYz5dfr1qxZo0GDBun111+Xi4uLWrZsqQ8//JA5ngAAAAAAuAdcvXpVp06d0vjx49WnTx+5uLikKTNr1iyVLl1aRYsW1bZt2zR06FC1b98+wx8ng2PkyQAqvaQxPZUrV9aKFSusbQwAAAAAAHCI999/X++++64effRRDRs2LN0yp0+f1ogRI3T69GkFBQXpmWee0bvvvnuHW4pbyZMBFAAAAAAAwKhRozRq1KhMywwZMkRDhgy5Mw3CbbtrJyEHAAAAAADA3YEACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAHmSzWbTwoULHd0M5AJnRzcAAAAAAADkvlpv/3pH6/tr+GPZ3ubcuXMaMWKEfvrpJ505c0YFChRQ9erVNWLECDVs2NCCVsJRCKAAAAAAAIBDtGvXTvHx8Zo5c6ZKly6tM2fOaNWqVbpw4YKjm4ZcxiV4AAAAAADgjouKitLatWv13nvvKSQkRCVKlFC9evU0bNgwPfXUU+luc/z4cbVv315+fn7y9/dX69atdeTIEbsyU6dOVcWKFeXm5qYKFSros88+M9cdOXJENptNc+fOVYMGDeTm5qYqVapozZo1Vh4qRAAFAAAAAAAcwMvLS15eXlq4cKHi4uJuWT4hIUGhoaHy9vbW2rVrtX79enl5eSksLEzx8fGSpDlz5mjEiBF69913tWfPHo0dO1bDhw/XzJkz7fY1ePBgvfrqq9q6davq16+vVq1aMerKYgRQAAAAAADgjnN2dtaMGTM0c+ZM+fn5qWHDhnrjjTe0ffv2dMvPmzdPSUlJmjp1qqpWraqKFStq+vTpOnbsmMLDwyVJI0eO1Icffqi2bduqVKlSatu2rQYOHKgvvvjCbl/9+vVTu3btVLFiRU2ZMkW+vr6aNm2a1Yd8XyOAAgAAAAAADtGuXTv9/fffWrRokcLCwhQeHq5atWppxowZacpu27ZNBw8elLe3tzl6yt/fX7GxsYqMjNSVK1cUGRmp559/3lzv5eWld955R5GRkXb7ql+/vvl/Z2dn1alTR3v27LH6cO9rTEIOAAAAAAAcxs3NTc2aNVOzZs00fPhw9erVSyNHjlT37t3tysXExKh27dqaM2dOmn0ULFhQMTExkqQvv/xSDz30kN16Jycny9qPrGEEFAAAAAAAyDMqVaqkK1eupFleq1YtHThwQIUKFVJwcLDdzdfXV4GBgSpSpIgOHTqUZn2pUqXs9vX777+b/79+/br+/PNPVaxY0fJju58RQAEAAAAAgDvuwoULeuyxxzR79mxt375dhw8f1rfffqv3339frVu3TlO+c+fOCggIUOvWrbV27VodPnxY4eHh6t+/v06cOCFJGj16tMaNG6dJkyZp//792rFjh6ZPn66JEyfa7evTTz/VDz/8oL1796pv3776559/1LNnzzty3PcrLsHLQ2Y2SjuM8H7Uw9ENyCPoDzfQJ5LRJ26gTySjT9xAn0hGn0hGf7iBPpGMPnEDfSIZfSJv8PLy0kMPPaSPPvpIkZGRSkhIULFixdS7d2+98cYbacp7eHjot99+09ChQ9W2bVtdvnxZRYsW1eOPPy4fHx9JUq9eveTh4aEJEyZo8ODB8vT0VNWqVTVgwAC7fY0fP17jx49XRESEgoODtWjRIgUEBNyJw75vEUABAAAAAHAP+mv4Y45uQqZcXV01btw4jRs3LsMyhmHY3S9cuLBmzpyZ6X6fffZZPfvss5mWqVixov7444+sNxY5xiV4AAAAAAAAsBQBFAAAAAAAACzFJXgAAAAAAOC+ULJkyTSX9eHOYAQUAAAAAAAALEUABQAAAAAAAEsRQAEAAAAAcJfjsjI4Qnb6HQEUAAAAAAB3qfz580uSrl696uCW4H4UHx8vSXJycrplWSYhBwAAAADgLuXk5CQ/Pz+dPXtWkuTh4SGbzebgVuF+kJSUpHPnzsnDw0POzreOlwigAAAAAAC4ixUuXFiSzBAKuFPy5cun4sWLZyn0JIACAAAAAOAuZrPZFBQUpEKFCikhIcHRzcF9xMXFRfnyZW12JwIoAAAAAADuAU5OTlmaiwdwBCYhBwAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYigAKAAAAAAAAliKAAgAAAAAAgKUIoAAAAAAAAGApAigAAAAAAABYytnRDcAN/1l+0NFNyBN61C3u6CbkCfSHG+gTyegTN9AnktEnbqBPJKNPJKM/3ECfSEafuIE+kYw+Adx5jIACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFjqrg2gwsPDZbPZ0r39/vvvjm4eAAAAAAAA/p+zoxuQU/3791fdunXtlgUHBzuoNQAAAAAAALjZXR9ANWrUSE8//bSjmwEAAAAAAIAM3LWX4KV2+fJlXb9+3dHNAAAAAAAAQDru+gCqR48e8vHxkZubm0JCQrRlyxZHNwkAAAAAAACp3LWX4Lm4uKhdu3Z64oknFBAQoN27d+uDDz5Qo0aNtGHDBtWsWTPd7eLi4hQXF2fej46OvlNNBgAAAAAAuC/dtQFUgwYN1KBBA/P+U089paefflrVqlXTsGHDtHz58nS3GzdunEaPHn2nmgkAAAAAAHDfu+svwUstODhYrVu31urVq5WYmJhumWHDhunSpUvm7fjx43e4lQAAAAAAAPeXu3YEVEaKFSum+Ph4XblyRT4+PmnWu7q6ytXV1QEtAwAAAAAAuD/dUyOgJOnQoUNyc3OTl5eXo5sCAAAAAAAA3cUB1Llz59Is27ZtmxYtWqTmzZsrX7679tAAAAAAAADuKXftJXgdOnSQu7u7GjRooEKFCmn37t3673//Kw8PD40fP97RzQMAAAAAAMD/u2sDqDZt2mjOnDmaOHGioqOjVbBgQbVt21YjR45UcHCwo5sHAAAAAACA/3fXBlD9+/dX//79Hd0MAAAAAAAA3AITJQEAAAAAAMBSBFAAAAAAAACwFAHU/7V35/E1Xfv/x99HNIMkkopEE0OCmBUV5XsjSg01hJRbQriCmvql2rpX26/b2xpquLTVosVtKWpqTVfRGqLSIobSoqaaZ1pzpIYgWb8//HLq5BwkajcJr+fjkUceZ+119lnnrLX3Xvuz914LAAAAAAAAliIABQAAAAAAAEsRgAIAAAAAAIClCEABAAAAAADAUgSgAAAAAAAAYCkCUAAAAAAAALAUASgAAAAAAABYigAUAAAAAAAALEUACgAAAAAAAJYiAAUAAAAAAABLEYACAAAAAACApQhAAQAAAAAAwFIEoAAAAAAAAGApAlAAAAAAAACwFAEoAAAAAAAAWIoAFAAAAAAAACxFAAoAAAAAAACWIgAFAAAAAAAASxGAAgAAAAAAgKUIQAEAAAAAAMBSBKAAAAAAAABgKQJQAAAAAAAAsBQBKAAAAAAAAFiKABQAAAAAAAAsRQAKAAAAAAAAliIABQAAAAAAAEsRgAIAAAAAAIClCEABAAAAAADAUgSgAAAAAAAAYCkCUAAAAAAAALAUASgAAAAAAABYigAUAAAAAAAALEUACgAAAAAAAJYiAAUAAAAAAABLEYACAAAAAACApQhAAQAAAAAAwFIEoAAAAAAAAGApAlAAAAAAAACwFAEoAAAAAAAAWIoAFAAAAAAAACxFAAoAAAAAAACWIgAFAAAAAAAASxGAAgAAAAAAgKUIQAEAAAAAAMBSBKAAAAAAAABgKQJQAAAAAAAAsBQBKAAAAAAAAFiKABQAAAAAAAAsRQAKAAAAAAAAliIABQAAAAAAAEsRgAIAAAAAAIClCEABAAAAAADAUgSgAAAAAAAAYCkCUAAAAAAAALAUASgAAAAAAABYigAUAAAAAAAALEUACgAAAAAAAJYiAAUAAAAAAABLEYACAAAAAACApQhAAQAAAAAAwFIEoAAAAAAAAGApAlAAAAAAAACwFAEoAAAAAAAAWIoAFAAAAAAAACxFAAoAAAAAAACWIgAFAAAAAAAASxGAAgAAAAAAgKUIQAEAAAAAAMBSBKAAAAAAAABgKQJQAAAAAAAAsBQBKAAAAAAAAFiKABQAAAAAAAAsRQAKAAAAAAAAliIABQAAAAAAAEsRgAIAAAAAAIClCEABAAAAAADAUgSgAAAAAAAAYCkCUAAAAAAAALAUASgAAAAAAABYigAUAAAAAAAALEUACgAAAAAAAJYiAAUAAAAAAABLEYACAAAAAACApQhAAQAAAAAAwFIEoAAAAAAAAGApAlAAAAAAAACwFAEoAAAAAAAAWIoAFAAAAAAAACxFAAoAAAAAAACWIgAFAAAAAAAASxGAAgAAAAAAgKUIQAEAAAAAAMBSBKAAAAAAAABgKQJQAAAAAAAAsBQBKAAAAAAAAFiKABQAAAAAAAAsRQAKAAAAAAAAliIABQAAAAAAAEsRgAIAAAAAAIClCEABAAAAAADAUgSgAAAAAAAAYCkCUAAAAAAAALAUASgAAAAAAABYigAUAAAAAAAALEUACgAAAAAAAJYiAAUAAAAAAABLEYACAAAAAACApfJ0ACo1NVWvv/66QkJC5OXlpVq1aikhISGniwUAAAAAAIBb5OkAVOfOnTVq1Ch16NBBo0ePlpubm5o1a6Y1a9bkdNEAAAAAAADw/+XP6QLcq++//16ff/653nnnHfXr10+SFB8fr8qVK+u1117T2rVrc7iEAAAAAAAAkPLwHVBz586Vm5ubevToYU/z9PRU165dtW7dOh09ejQHSwcAAAAAAIAMeTYAtXnzZpUtW1YFCxZ0SK9Zs6YkacuWLTlQKgAAAAAAAGSWZx/BO3nypIKDg53SM9JOnDjh8n2pqalKTU21v05OTpYkXbx40YJSZk/a1Us5XYRcITfURW5Ae/gdbeIm2sTvaBM30SZ+R5u4iTZxE+3hd7SJm2gTv6NN3JTTbSLj840xOVoO4M+UZwNQV65ckYeHh1O6p6enfbkrw4cP16BBg5zSixcvfn8LiHvmNyynS4DchjaBzGgTyIw2gVvRHpAZbQKZ5ZY2kZKSIj8/v5wuBvCnyLMBKC8vL4c7mTJcvXrVvtyV/v376+9//7v9dXp6us6dO6eAgADZbDZrCptHXLx4UcWLF9fRo0edHm3Ew4k2gcxoE7gV7QGZ0SaQGW0CmdEmbjLGKCUlRSEhITldFOBPk2cDUMHBwTp+/LhT+smTJyXpthuyh4eH051T/v7+9718eVnBggUf6oMBnNEmkBltAreiPSAz2gQyo00gM9qEuPMJD508Owh5tWrVtGfPHqdndzds2GBfDgAAAAAAgJyXZwNQrVu3Vlpamj7++GN7WmpqqiZPnqxatWoxphMAAAAAAEAukWcfwatVq5batGmj/v3769SpUwoPD9fUqVN16NAhTZo0KaeLlyd5eHhowIABLgd3x8OJNoHMaBO4Fe0BmdEmkBltApnRJoCHl83k4Xkfr169qjfffFPTp0/X+fPnVaVKFb399ttq3LhxThcNAAAAAAAA/1+eDkABAAAAAAAg98uzY0ABAAAAAAAgbyAABQAAAAAAAEsRgEKW2Ww2DRw4MKeLgVxo4MCBstlsOV0M5DLffvutbDabvv3225wuCu6iXr16qlevXk4X47Zye/nygoztce7cuTldlLvq3LmzwsLCcroYyKLs7OvZlvFH0K8A8j4CULnYtm3b1Lp1a4WGhsrT01NFixZVo0aNNHbs2JwuGv5kU6ZMkc1mk81m05o1a5yWG2NUvHhx2Ww2NW/ePAdKiD9DRhu42x8ds7xn9uzZstls+u9//+u0rGrVqrLZbEpMTHRaVqJECUVGRv4ZRUQuxD4B99OtfY3Mf//3f/+X08XDfXA/zy3GjRunKVOm3P9CAnig5c/pAsC1tWvX6umnn1aJEiXUvXt3PfbYYzp69KjWr1+v0aNHq0+fPjldROQAT09PzZw5U1FRUQ7p3333nY4dO8Z0tg+4adOmObz+7LPPlJCQ4JReoUKFP7NYuA8ytuk1a9aoVatW9vSLFy9q+/btyp8/v5KSkvT000/blx09elRHjx5Vu3bt/vTyInfIzj5h165df2bRkIcNHjxYJUuWdEirXLnybfM/9dRTunLlitzd3a0uGv6A+31uMW7cOBUuXFidO3e2psAAHkgEoHKpoUOHys/PTxs3bpS/v7/DslOnTuVMoZDjmjVrpjlz5mjMmDHKn//3zXfmzJmKiIjQmTNncrB0sNrf/vY3h9fr169XQkKCUzrynpCQEJUsWdLpDsd169bJGKM2bdo4Lct4nTkgjYdHdvYJf1YA6urVq3J3d1e+fNxkn1c1bdpUNWrUuGu+W+va09PzTygZ/oi8cG5hjNHVq1fl5eWV00UBYBF6B7nU/v37ValSJacDhCQFBQVJkg4dOiSbzeby9tfM4zVljNGzb98+de7cWf7+/vLz81OXLl10+fJlh/empqaqb9++CgwMlK+vr2JiYnTs2DGnzzh8+LB69eqlcuXKycvLSwEBAWrTpo0OHTpkz3PgwAHZbDa9//77Tu9fu3atbDabZs2albUfBYqLi9PZs2eVkJBgT7t27Zrmzp2r9u3bO+W/dOmS/vGPf6h48eLy8PBQuXLl9O6778oY45DPZrPpxRdf1IIFC1S5cmV5eHioUqVKWrp0qdM616xZoyeffFKenp4qXbq0/vOf/7gs6+TJk1W/fn0FBQXJw8NDFStW1Pjx4x3ydOrUSYULF9b169ed3v/MM8+oXLlyWfpd8LuwsDCXVyNdjbuRmpqqAQMGKDw8XB4eHipevLhee+01paamOuRLSEhQVFSU/P395ePjo3Llyumf//ynQ55jx46pZcuW8vb2VlBQkPr27eu0HklavXq12rRpoxIlStg/s2/fvrpy5Yo9z+TJk2Wz2bR582an9w8bNkxubm46fvx4Nn6VvCEqKkqbN292+C2SkpJUqVIlNW3aVOvXr1d6errDMpvNptq1a0uSpk+froiICHl5ealQoUJq166djh496vQ5H3/8sUqXLi0vLy/VrFlTq1evdsqTMc7G7NmzNXToUBUrVkyenp5q0KCB9u3b55R/w4YNatKkifz8/FSgQAHVrVtXSUlJDnlSUlL0yiuvKCwsTB4eHgoKClKjRo30448/Zrt8165d01tvvaWIiAj5+fnJ29tbderUcXhM0RijsLAwPfvss07vv3r1qvz8/NSzZ0+nZQ+69PT0u9ZpVvcjGe3k888/17/+9S8VLVpUBQoU0MWLF3X9+nUNGjRIZcqUkaenpwICAhQVFeVw/JJkP+54enqqcuXKLh9DlaR3331XkZGRCggIkJeXlyIiIpzGs6pbt66qVq3q8v3lypVT48aNs/ALwZU71fXtxuVhW85dsnJuIWWt/xYWFqYdO3bou+++sz+mmbFvuN24oBmPeN56nhAWFqbmzZtr2bJlqlGjhry8vOz9SvoVwIOJO6ByqdDQUK1bt07bt2+/423P2RUbG6uSJUtq+PDh+vHHHzVx4kQFBQVpxIgR9jzdunXT9OnT1b59e0VGRmrlypWKjo52WtfGjRu1du1atWvXTsWKFdOhQ4c0fvx41atXTzt37lSBAgVUqlQp1a5dWzNmzFDfvn0d3j9jxgz5+vq67FDAtbCwMP3lL3/RrFmz1LRpU0nSkiVLlJycrHbt2mnMmDH2vMYYxcTEKDExUV27dlW1atW0bNkyvfrqqzp+/LhTUHDNmjWaP3++evXqJV9fX40ZM0bPPfecjhw5ooCAAEk3xw545plnFBgYqIEDB+rGjRsaMGCAihQp4lTW8ePHq1KlSoqJiVH+/Pm1aNEi9erVS+np6erdu7ckqWPHjvrss8+0bNkyh7GrfvnlF61cuVIDBgy4778hbkpPT1dMTIzWrFmjHj16qEKFCtq2bZvef/997dmzRwsWLJAk7dixQ82bN1eVKlU0ePBgeXh4aN++fQ7BhStXrqhBgwY6cuSIXnrpJYWEhGjatGlauXKl0+fOmTNHly9f1v/+7/8qICBA33//vcaOHatjx45pzpw5kqTWrVurd+/emjFjhp544gmH98+YMUP16tVT0aJFrftxckhUVJSmTZumDRs22DvySUlJioyMVGRkpJKTk7V9+3ZVqVLFvqx8+fIKCAjQ0KFD9eabbyo2NlbdunXT6dOnNXbsWD311FPavHmz/YRj0qRJ6tmzpyIjI/XKK6/owIEDiomJUaFChVS8eHGnMv373/9Wvnz51K9fPyUnJ2vkyJHq0KGDNmzYYM+zcuVKNW3aVBERERowYIDy5ctnP4FZvXq1atasKUl64YUXNHfuXL344ouqWLGizp49qzVr1mjXrl2qXr16tsp38eJFTZw4UXFxcerevbtSUlI0adIkNW7cWN9//72qVasmm82mv/3tbxo5cqTOnTunQoUK2d+/aNEiXbx48aG8ezArdZpdb7/9ttzd3dWvXz+lpqbK3d1dAwcO1PDhw9WtWzfVrFlTFy9e1KZNm/Tjjz+qUaNGkqTly5frueeeU8WKFTV8+HCdPXtWXbp0UbFixZw+Y/To0YqJiVGHDh107do1ff7552rTpo0WL15s76N07NhR3bt3d+o7bdy4UXv27NG//vWve/6OD5Pk5OTb3lHtqq5dYVvOfbJ6bpGV/tsHH3ygPn36yMfHR2+88YYkuewLZsXu3bsVFxennj17qnv37ipXrhz9CuBBZpArLV++3Li5uRk3Nzfzl7/8xbz22mtm2bJl5tq1a/Y8Bw8eNJLM5MmTnd4vyQwYMMD+esCAAUaSef755x3ytWrVygQEBNhfb9myxUgyvXr1csjXvn17p3VevnzZ6XPXrVtnJJnPPvvMnvaf//zHSDK7du2yp127ds0ULlzYdOrU6W4/BYwxkydPNpLMxo0bzYcffmh8fX3tv3+bNm3M008/bYwxJjQ01ERHRxtjjFmwYIGRZIYMGeKwrtatWxubzWb27dtnT5Nk3N3dHdK2bt1qJJmxY8fa01q2bGk8PT3N4cOH7Wk7d+40bm5uJvPuxFX7aNy4sSlVqpT9dVpamilWrJhp27atQ75Ro0YZm81mDhw4kLUf6CHVu3dvp989NDTU5XZVt25dU7duXfvradOmmXz58pnVq1c75JswYYKRZJKSkowxxrz//vtGkjl9+vRty/HBBx8YSWb27Nn2tEuXLpnw8HAjySQmJtrTXbWL4cOHG5vN5tCu4uLiTEhIiElLS7On/fjjj7fd5z0IduzYYSSZt99+2xhjzPXr1423t7eZOnWqMcaYIkWKmI8++sgYY8zFixeNm5ub6d69uzl06JBxc3MzQ4cOdVjftm3bTP78+e3p165dM0FBQaZatWomNTXVnu/jjz82khzaR2JiopFkKlSo4JB39OjRRpLZtm2bMcaY9PR0U6ZMGdO4cWOTnp5uz3f58mVTsmRJ06hRI3uan5+f6d27922/f3bKd+PGDYc8xhhz/vx5U6RIEYfj3O7du40kM378eIe8MTExJiwszKHMDwJX+4QMWa1TY7K+H8lYZ6lSpZy27apVq9qPR7dTrVo1ExwcbC5cuGBPW758uZFkQkNDHfJmXv+1a9dM5cqVTf369e1pFy5cMJ6enub11193yPvSSy8Zb29v89tvv92xPA+7jL6Gq7871XXGsox9Pdty7pSVcwtjstZ/M8aYSpUqOdRlhoxzjswy2tfBgwftaaGhoUaSWbp0qUNe+hXAg4tH8HKpRo0aad26dYqJidHWrVs1cuRINW7cWEWLFtXChQvveb0vvPCCw+s6dero7NmzunjxoiTp66+/liS99NJLDvleeeUVp3Xd+nz29evXdfbsWYWHh8vf39/hkYrY2Fh5enpqxowZ9rRly5bpzJkzXLG6B7Gxsbpy5YoWL16slJQULV682OXjd19//bXc3Nyc6vIf//iHjDFasmSJQ3rDhg1VunRp++sqVaqoYMGCOnDggCQpLS1Ny5YtU8uWLVWiRAl7vgoVKrh8rOHW9pFxNbVu3bo6cOCAkpOTJUn58uVThw4dtHDhQqWkpNjzz5gxQ5GRkU6DoOL+mTNnjipUqKDy5cvrzJkz9r/69etLkv3xh4w7Z7788kuHx79u9fXXXys4OFitW7e2pxUoUEA9evRwyntru7h06ZLOnDmjyMhIGWMcbo2Pj4/XiRMnHB7DmDFjhry8vPTcc8/d+xfPxSpUqKCAgAD72E5bt27VpUuX7LPcRUZG2u88W7dundLS0hQVFaX58+crPT1dsbGxDnX52GOPqUyZMvbfcNOmTTp16pReeOEFh7sWOnfuLD8/P5dl6tKli0PeOnXqSJJ9v7Blyxbt3btX7du319mzZ+2ffenSJTVo0ECrVq2ytxt/f39t2LBBJ06ccPlZ2Smfm5ubPU96errOnTunGzduqEaNGg7Hn7Jly6pWrVoOx59z585pyZIl6tChg8vHRB50d6vTe9GpUyenMVv8/f21Y8cO7d271+V7Tp48qS1btqhTp04O9duoUSNVrFjRKf+t6z9//rySk5NVp04dh/r28/PTs88+q1mzZtkfNU9LS9MXX3xhf5QHd/fRRx8pISHB4S+Dq7rOjG05d8rquUVW+m/3U8mSJZ36kfQrgAcXAahc7Mknn9T8+fN1/vx5ff/99+rfv79SUlLUunVr7dy5857WeWvgQJIeffRRSTc7c9LNcZ3y5cvnEIiQ5HIsnitXruitt96yjy9UuHBhBQYG6sKFCw4HKH9/f7Vo0UIzZ860p82YMUNFixa1n+wi6wIDA9WwYUPNnDlT8+fPV1pamsMBOsPhw4cVEhIiX19fh/SMGdIOHz7skJ65bUg320dG2zh9+rSuXLmiMmXKOOVz1T6SkpLUsGFDeXt7y9/fX4GBgfZxg25tH/Hx8bpy5Yp93I/du3frhx9+UMeOHe/4O+CP2bt3r3bs2KHAwECHv7Jly0r6fUDStm3bqnbt2urWrZuKFCmidu3aafbs2Q7BqMOHDys8PNzpBMBVuzhy5Ig6d+6sQoUKycfHR4GBgapbt64kx3bRqFEjBQcH20820tPTNWvWLD377LNObfpBYbPZFBkZaR/rKSkpSUFBQQoPD5fkGIDK+B8VFaW9e/fKGKMyZco41eeuXbvsdZmxzWfehh955BGVKlXKZZnudszICC506tTJ6bMnTpyo1NRUe72OHDlS27dvV/HixVWzZk0NHDjQIeiR3fJNnTpVVapUsY8vFBgYqK+++srpBCk+Pl5JSUn29c+ZM0fXr19/aPcxd6vTe+HqYsHgwYN14cIFlS1bVo8//rheffVV/fTTT/blt6tvyfW+Y/Hixfqf//kfeXp6qlChQgoMDNT48eNd1veRI0fs4w2tWLFCv/7660Nb3/eiZs2aatiwocNfhqxcGGJbzr2ycm6R1f7b/eKqTdGvAB5cBKDyAHd3dz355JMaNmyYxo8fr+vXr2vOnDm3vdqTlpZ223W5ubm5TDeZBqXOij59+mjo0KGKjY3V7NmztXz5ciUkJCggIMDpTon4+HgdOHBAa9euVUpKihYuXKi4uDhmyblH7du315IlSzRhwgQ1bdrU5YCS2XU/28b+/fvVoEEDnTlzRqNGjdJXX32lhIQE+zhgt7aPihUrKiIiQtOnT5d0cyBld3d3xcbG3sO3QFb3C+np6Xr88cedrnJn/PXq1UvSzSuLq1at0ooVK9SxY0f99NNPatu2rRo1anTHfc3tytCoUSN99dVXev3117VgwQIlJCTYJ1K4tV24ubmpffv2mjdvnq5evarExESdOHHigb9rMioqSsnJydq2bZt9/KcMkZGROnz4sI4fP641a9YoJCREpUqVUnp6umw2m5YuXeqyLm83UUBW3G2/kFFn77zzzm3bko+Pj6Sbd28eOHBAY8eOVUhIiN555x1VqlTJ6W7MrJg+fbo6d+6s0qVLa9KkSfbvXr9+fafjT7t27fTII4/YTzqmT5+uGjVqPLSTHGRlX5/d/oWrO2Keeuop7d+/X59++qkqV66siRMnqnr16po4cWK2y7x69WrFxMTI09NT48aN09dff62EhAS1b9/e6RjVuHFjFSlSxOGY8thjjzkEUXDv7vfsZGzLOeN25xbZ6b/dzv3Yf2QV/Qog72EQ8jwmY1rckydP2q9aXrhwwSFP5jtbsiM0NFTp6enav3+/wwF99+7dTnnnzp2rTp066b333rOnXb161ak8ktSkSRMFBgZqxowZqlWrli5fvswVqz+gVatW6tmzp9avX68vvvjCZZ7Q0FCtWLFCKSkpDld2fv75Z/vy7AgMDJSXl5fLxykyt49FixYpNTVVCxcudLjafuttz7eKj4/X3//+d508eVIzZ85UdHS0vX0jex599FGX2+Dhw4cdrjyXLl1aW7duVYMGDe766EK+fPnUoEEDNWjQQKNGjdKwYcP0xhtvKDExUQ0bNlRoaKi2b98uY4zDujK3i23btmnPnj2aOnWq4uPj7emZZ8XKEB8fr/fee0+LFi3SkiVLFBgY+MDPYhUVFSXp5qQASUlJDo8/R0REyMPDQ99++602bNigZs2aSbpZl8YYlSxZ0n4HmysZ2/zevXsd7j69fv26Dh48eNvZw+4k427ZggULZukEPzg4WL169VKvXr106tQpVa9eXUOHDlXTpk2zVb65c+eqVKlSmj9/vkObczVxQaFChRQdHa0ZM2aoQ4cOSkpK0gcffJDt7/owyep+5G4KFSqkLl26qEuXLvrtt9/01FNPaeDAgerWrZtDfWeWed8xb948eXp6atmyZfLw8LCnT5482em9GSeZU6ZM0YgRI7RgwQJ17979toE33H9sy3nLrecW2em/3a7vcOv5ya0XSLNzfkK/AnhwcftJLpWYmOjyzpOMMZrKlSunggULqnDhwlq1apVDnnHjxt3z52bMrHbrbGqSXB7g3dzcnMo4duxYl1c48ufPr7i4OM2ePVtTpkzR448/bp/JCdnn4+Oj8ePHa+DAgWrRooXLPM2aNVNaWpo+/PBDh/T3339fNpvNXtdZ5ebmpsaNG2vBggU6cuSIPX3Xrl1atmyZU17J8Yp6cnKyy5MFSYqLi5PNZtPLL7+sAwcOcDXqDyhdurTWr1+va9eu2dMWL16so0ePOuSLjY3V8ePH9cknnzit48qVK7p06ZKkm2NsZFatWjVJsk+H3KxZM504ccJhSvTLly/r448/dnifq3ZhjNHo0aNdfpcqVaqoSpUqmjhxoubNm6d27dopf/4H+7pJjRo17GPmHT9+3OEOKA8PD1WvXl0fffSRLl26ZA9W/fWvf5Wbm5sGDRrktE82xujs2bP2dQcGBmrChAkO7WPKlCkugw1ZERERodKlS+vdd9/Vb7/95rT89OnTkm5epc786EZQUJBCQkLs7Sg75XPVljZs2KB169a5LGfHjh21c+dOvfrqq3Jzc1O7du2y/2UfIlndj9xJRrvL4OPjo/DwcHt9BwcHq1q1apo6dapD20hISHAaZsDNzU02m82hf3Ho0CH7bJ2ZdezYUefPn1fPnj3122+/cUz5k7Et505ZObfITv/N29vb5bEj48LErecnly5d0tSpU7NcVvoVwIOLLS6X6tOnjy5fvqxWrVqpfPnyunbtmtauXasvvvhCYWFh6tKliySpW7du+ve//61u3bqpRo0aWrVqlfbs2XPPn1utWjXFxcVp3LhxSk5OVmRkpL755hvt27fPKW/z5s01bdo0+fn5qWLFilq3bp1WrFihgIAAl+uOj4/XmDFjlJiYqBEjRtxzGXFTp06d7ri8RYsWevrpp/XGG2/o0KFDqlq1qpYvX64vv/xSr7zyitM4X1kxaNAgLV26VHXq1FGvXr1048YNjR07VpUqVXIY2+OZZ56Ru7u7WrRoYT8B+OSTTxQUFKSTJ086rTcwMFBNmjTRnDlz5O/vb59SG9nXrVs3zZ07V02aNFFsbKz279+v6dOnO9V3x44dNXv2bL3wwgtKTExU7dq1lZaWpp9//lmzZ8/WsmXLVKNGDQ0ePFirVq1SdHS0QkNDderUKY0bN07FihWzB0C6d++uDz/8UPHx8frhhx8UHBysadOmqUCBAg6fWb58eZUuXVr9+vXT8ePHVbBgQc2bN++OY8/Ex8erX79+kvRQnERmPBaxevVqeXh4KCIiwmF5ZGSk/a7TjN+/dOnSGjJkiPr3769Dhw6pZcuW8vX11cGDB/Xf//5XPXr0UL9+/fTII49oyJAh6tmzp+rXr6+2bdvq4MGDmjx5crbuarlVvnz5NHHiRDVt2lSVKlVSly5dVLRoUR0/flyJiYkqWLCgFi1apJSUFBUrVkytW7dW1apV5ePjoxUrVmjjxo3275Od8jVv3lzz589Xq1atFB0drYMHD2rChAmqWLGiy0BYdHS0AgICNGfOHDVt2lRBQUH39H0fFlndj9xJxYoVVa9ePUVERKhQoULatGmT5s6dqxdffNGeZ/jw4YqOjlZUVJSef/55nTt3zn5MubUeo6OjNWrUKDVp0kTt27fXqVOn9NFHHyk8PNzh2JPhiSeeUOXKle2TLVSvXv2P/SDIFrbl3Ckr5xa//vprlvtvERERGj9+vIYMGaLw8HAFBQWpfv36euaZZ1SiRAl17drVHij89NNPFRgY6HAB807oVwAPsD9ruj1kz5IlS8zzzz9vypcvb3x8fIy7u7sJDw83ffr0Mb/++qs93+XLl03Xrl2Nn5+f8fX1NbGxsebUqVNGkhkwYIA9X8aUqJmnUnc1JeqVK1fMSy+9ZAICAoy3t7dp0aKFOXr0qNM6z58/b7p06WIKFy5sfHx8TOPGjc3PP/982+mbjbk5ZWu+fPnMsWPH7sfP9NDIqKeNGzfeMV9oaKjDtNcpKSmmb9++JiQkxDzyyCOmTJky5p133nGarliSy+nRXdXld999ZyIiIoy7u7spVaqUmTBhgsspdxcuXGiqVKliPD09TVhYmBkxYoT59NNPndpbhtmzZxtJpkePHnf5NZDhdlOuv/fee6Zo0aLGw8PD1K5d22zatMlp+nRjbk6VPWLECFOpUiXj4eFhHn30URMREWEGDRpkkpOTjTHGfPPNN+bZZ581ISEhxt3d3YSEhJi4uDizZ88eh3UdPnzYxMTEmAIFCpjChQubl19+2SxdutRpuuSdO3eahg0bGh8fH1O4cGHTvXt3s3Xr1ttOg3zy5Enj5uZmypYt+4d/r7yif//+RpKJjIx0WjZ//nwjyfj6+pobN244LJs3b56Jiooy3t7extvb25QvX9707t3b7N692yHfuHHjTMmSJY2Hh4epUaOGWbVqlVP7yJhWfc6cOQ7vPXjwoMu62rx5s/nrX/9qAgICjIeHhwkNDTWxsbHmm2++McYYk5qaal599VVTtWpV4+vra7y9vU3VqlXNuHHjnL5jVsqXnp5uhg0bZkJDQ42Hh4d54oknzOLFi02nTp1MaGioy9+1V69eRpKZOXOmy+UPgtvtE4zJfp1mZT9yu3UaY8yQIUNMzZo1jb+/v/Hy8jLly5c3Q4cOdZryfd68eaZChQrGw8PDVKxY0cyfP99lPU6aNMmUKVPGeHh4mPLly5vJkyffdrp3Y4wZOXKkkWSGDRt2m18Lmd2pr3Gnus5Yduu+3hi25dwmq+cWWe2//fLLLyY6Otr4+voaSQ71+sMPP5hatWoZd3d3U6JECTNq1CiX5xyZ+623ol8BPJhsxtzDCMPAPXriiSdUqFAhffPNNzldFOQyX375pVq2bKlVq1bZpwUHzpw5o+DgYL311lt68803c7o4yMP69u2rSZMm6ZdffnG6io4Hz+jRo9W3b18dOnTI5SyvyLvYlvFH0K8AchZjQOFPs2nTJm3ZssVhkEAgwyeffKJSpUrZHysCpJtjhqSlpTFpAf6Qq1evavr06Xruuec4YX0IGGM0adIk1a1bl+DTA4ZtGX8U/QogZzEGFCy3fft2/fDDD3rvvfcUHBystm3b5nSRkIt8/vnn+umnn/TVV19p9OjRd52RDQ+HlStXaufOnRo6dKhatmypsLCwnC4S8qBTp05pxYoVmjt3rs6ePauXX345p4sEC126dEkLFy5UYmKitm3bpi+//DKni4T7hG0ZfxT9CiB3IAAFy82dO1eDBw9WuXLlNGvWLHl6euZ0kZCLxMXFycfHR127dlWvXr1yujjIJQYPHqy1a9eqdu3aGjt2bE4XB3nUzp071aFDBwUFBWnMmDH2GRzxYDp9+rTat28vf39//fOf/1RMTExOFwn3Cdsy/ij6FUDuwBhQAAAAAAAAsBRjQAEAAAAAAMBSBKAAAAAAAABgKQJQAAAAAAAAsBQBKAAAAAAAAFiKABQAAAAAAAAsRQAKAAAAAAAAliIABQAAAAAAAEsRgAIAAAAAAIClCEABAAAAAADAUv8PiWqudeAu3KkAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "8a90LE60NJi7"
},
"execution_count": 3,
"outputs": []
}
],
"metadata": {
"colab": {
"name": "ddds-schedule-pt.ipynb",
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment