Last active
July 8, 2025 12:24
-
-
Save rwcitek/fbfdc7fa357f432dec4e1e8500c82018 to your computer and use it in GitHub Desktop.
ddds-schedule-FT.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/rwcitek/fbfdc7fa357f432dec4e1e8500c82018/ddds-schedule-ft.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# A Week in the Life of the Full-Time Data Science Boot Camp" | |
| ], | |
| "metadata": { | |
| "id": "-PiCN-LePwmu" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "id": "lIYdn1woOS1n" | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "import matplotlib.pyplot as plt\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df = pd.DataFrame()\n", | |
| "df.index = \"Sunday Monday Tuesday Wednesday Thursday Friday Saturday\".split()\n", | |
| "df[\"Sleep\"] = 8\n", | |
| "df[\"Hygiene\"] = 1\n", | |
| "df[\"Meals\"] = 2\n", | |
| "df[\"Commute\"] = 2\n", | |
| "df[\"Exercise\"] = 1\n", | |
| "df[\"Lecture (32hrs)\"] = [0, 8, 8, 8, 8, 0, 0]\n", | |
| "df[\"Practice (32hrs)\"] = [ 8, 2, 2, 2, 2, 8, 8]\n", | |
| "df[\"Free\"] = 24 - df.sum(axis=1)\n", | |
| "df[\"Total\"] = df.sum(axis=1)\n", | |
| "\n", | |
| "df\n" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 269 | |
| }, | |
| "id": "weXnsCEl7JJ5", | |
| "outputId": "f58d76ec-0197-4cc6-bc15-aa5fe9320ee5" | |
| }, | |
| "execution_count": 2, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| " Sleep Hygiene Meals Commute Exercise Lecture (32hrs) \\\n", | |
| "Sunday 8 1 2 2 1 0 \n", | |
| "Monday 8 1 2 2 1 8 \n", | |
| "Tuesday 8 1 2 2 1 8 \n", | |
| "Wednesday 8 1 2 2 1 8 \n", | |
| "Thursday 8 1 2 2 1 8 \n", | |
| "Friday 8 1 2 2 1 0 \n", | |
| "Saturday 8 1 2 2 1 0 \n", | |
| "\n", | |
| " Practice (32hrs) Free Total \n", | |
| "Sunday 8 2 24 \n", | |
| "Monday 2 0 24 \n", | |
| "Tuesday 2 0 24 \n", | |
| "Wednesday 2 0 24 \n", | |
| "Thursday 2 0 24 \n", | |
| "Friday 8 2 24 \n", | |
| "Saturday 8 2 24 " | |
| ], | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-ff06830c-cc6e-414b-98e4-9fd9943c78d2\" class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Sleep</th>\n", | |
| " <th>Hygiene</th>\n", | |
| " <th>Meals</th>\n", | |
| " <th>Commute</th>\n", | |
| " <th>Exercise</th>\n", | |
| " <th>Lecture (32hrs)</th>\n", | |
| " <th>Practice (32hrs)</th>\n", | |
| " <th>Free</th>\n", | |
| " <th>Total</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Sunday</th>\n", | |
| " <td>8</td>\n", | |
| " <td>1</td>\n", | |
| " <td>2</td>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>0</td>\n", | |
| " <td>8</td>\n", | |
| " <td>2</td>\n", | |
| " <td>24</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Monday</th>\n", | |
| " <td>8</td>\n", | |
| " <td>1</td>\n", | |
| " <td>2</td>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>8</td>\n", | |
| " <td>2</td>\n", | |
| " <td>0</td>\n", | |
| " <td>24</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Tuesday</th>\n", | |
| " <td>8</td>\n", | |
| " <td>1</td>\n", | |
| " <td>2</td>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>8</td>\n", | |
| " <td>2</td>\n", | |
| " <td>0</td>\n", | |
| " <td>24</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Wednesday</th>\n", | |
| " <td>8</td>\n", | |
| " <td>1</td>\n", | |
| " <td>2</td>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>8</td>\n", | |
| " <td>2</td>\n", | |
| " <td>0</td>\n", | |
| " <td>24</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Thursday</th>\n", | |
| " <td>8</td>\n", | |
| " <td>1</td>\n", | |
| " <td>2</td>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>8</td>\n", | |
| " <td>2</td>\n", | |
| " <td>0</td>\n", | |
| " <td>24</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Friday</th>\n", | |
| " <td>8</td>\n", | |
| " <td>1</td>\n", | |
| " <td>2</td>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>0</td>\n", | |
| " <td>8</td>\n", | |
| " <td>2</td>\n", | |
| " <td>24</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Saturday</th>\n", | |
| " <td>8</td>\n", | |
| " <td>1</td>\n", | |
| " <td>2</td>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>0</td>\n", | |
| " <td>8</td>\n", | |
| " <td>2</td>\n", | |
| " <td>24</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <div class=\"colab-df-buttons\">\n", | |
| "\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ff06830c-cc6e-414b-98e4-9fd9943c78d2')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", | |
| " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| "\n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-buttons div {\n", | |
| " margin-bottom: 4px;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-ff06830c-cc6e-414b-98e4-9fd9943c78d2 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-ff06830c-cc6e-414b-98e4-9fd9943c78d2');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| "\n", | |
| "\n", | |
| " <div id=\"df-3ff7c680-11eb-4bfa-9f63-e91d9af33e35\">\n", | |
| " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-3ff7c680-11eb-4bfa-9f63-e91d9af33e35')\"\n", | |
| " title=\"Suggest charts\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <g>\n", | |
| " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", | |
| " </g>\n", | |
| "</svg>\n", | |
| " </button>\n", | |
| "\n", | |
| "<style>\n", | |
| " .colab-df-quickchart {\n", | |
| " --bg-color: #E8F0FE;\n", | |
| " --fill-color: #1967D2;\n", | |
| " --hover-bg-color: #E2EBFA;\n", | |
| " --hover-fill-color: #174EA6;\n", | |
| " --disabled-fill-color: #AAA;\n", | |
| " --disabled-bg-color: #DDD;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-quickchart {\n", | |
| " --bg-color: #3B4455;\n", | |
| " --fill-color: #D2E3FC;\n", | |
| " --hover-bg-color: #434B5C;\n", | |
| " --hover-fill-color: #FFFFFF;\n", | |
| " --disabled-bg-color: #3B4455;\n", | |
| " --disabled-fill-color: #666;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart {\n", | |
| " background-color: var(--bg-color);\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: var(--fill-color);\n", | |
| " height: 32px;\n", | |
| " padding: 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart:hover {\n", | |
| " background-color: var(--hover-bg-color);\n", | |
| " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: var(--button-hover-fill-color);\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-quickchart-complete:disabled,\n", | |
| " .colab-df-quickchart-complete:disabled:hover {\n", | |
| " background-color: var(--disabled-bg-color);\n", | |
| " fill: var(--disabled-fill-color);\n", | |
| " box-shadow: none;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-spinner {\n", | |
| " border: 2px solid var(--fill-color);\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " animation:\n", | |
| " spin 1s steps(1) infinite;\n", | |
| " }\n", | |
| "\n", | |
| " @keyframes spin {\n", | |
| " 0% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " }\n", | |
| " 20% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 30% {\n", | |
| " border-color: transparent;\n", | |
| " border-left-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 40% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-top-color: var(--fill-color);\n", | |
| " }\n", | |
| " 60% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " }\n", | |
| " 80% {\n", | |
| " border-color: transparent;\n", | |
| " border-right-color: var(--fill-color);\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " 90% {\n", | |
| " border-color: transparent;\n", | |
| " border-bottom-color: var(--fill-color);\n", | |
| " }\n", | |
| " }\n", | |
| "</style>\n", | |
| "\n", | |
| " <script>\n", | |
| " async function quickchart(key) {\n", | |
| " const quickchartButtonEl =\n", | |
| " document.querySelector('#' + key + ' button');\n", | |
| " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", | |
| " quickchartButtonEl.classList.add('colab-df-spinner');\n", | |
| " try {\n", | |
| " const charts = await google.colab.kernel.invokeFunction(\n", | |
| " 'suggestCharts', [key], {});\n", | |
| " } catch (error) {\n", | |
| " console.error('Error during call to suggestCharts:', error);\n", | |
| " }\n", | |
| " quickchartButtonEl.classList.remove('colab-df-spinner');\n", | |
| " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", | |
| " }\n", | |
| " (() => {\n", | |
| " let quickchartButtonEl =\n", | |
| " document.querySelector('#df-3ff7c680-11eb-4bfa-9f63-e91d9af33e35 button');\n", | |
| " quickchartButtonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| " })();\n", | |
| " </script>\n", | |
| " </div>\n", | |
| "\n", | |
| " <div id=\"id_1008af37-fd24-4d84-835a-b82134a18b70\">\n", | |
| " <style>\n", | |
| " .colab-df-generate {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-generate:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-generate {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-generate:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| " <button class=\"colab-df-generate\" onclick=\"generateWithVariable('df')\"\n", | |
| " title=\"Generate code using this dataframe.\"\n", | |
| " style=\"display:none;\">\n", | |
| "\n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " <script>\n", | |
| " (() => {\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#id_1008af37-fd24-4d84-835a-b82134a18b70 button.colab-df-generate');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " buttonEl.onclick = () => {\n", | |
| " google.colab.notebook.generateWithVariable('df');\n", | |
| " }\n", | |
| " })();\n", | |
| " </script>\n", | |
| " </div>\n", | |
| "\n", | |
| " </div>\n", | |
| " </div>\n" | |
| ], | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "dataframe", | |
| "variable_name": "df", | |
| "summary": "{\n \"name\": \"df\",\n \"rows\": 7,\n \"fields\": [\n {\n \"column\": \"Sleep\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 8,\n \"max\": 8,\n \"num_unique_values\": 1,\n \"samples\": [\n 8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Hygiene\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Meals\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2,\n \"max\": 2,\n \"num_unique_values\": 1,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Commute\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2,\n \"max\": 2,\n \"num_unique_values\": 1,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Exercise\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Lecture (32hrs)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4,\n \"min\": 0,\n \"max\": 8,\n \"num_unique_values\": 2,\n \"samples\": [\n 8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Practice (32hrs)\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 2,\n \"max\": 8,\n \"num_unique_values\": 2,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Free\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 2,\n \"num_unique_values\": 2,\n \"samples\": [\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Total\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 24,\n \"max\": 24,\n \"num_unique_values\": 1,\n \"samples\": [\n 24\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" | |
| } | |
| }, | |
| "metadata": {}, | |
| "execution_count": 2 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "- [matplotlib colors]( https://matplotlib.org/stable/gallery/color/named_colors.html )" | |
| ], | |
| "metadata": { | |
| "id": "AeOGPCmB_d3f" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "colors = dict(zip(\n", | |
| " df.iloc[:,:-1].columns,\n", | |
| " '''\n", | |
| " gold\n", | |
| " darkslategrey\n", | |
| " orange\n", | |
| " silver\n", | |
| " blue\n", | |
| " lime\n", | |
| " purple\n", | |
| " red\n", | |
| " '''.split() )\n", | |
| ")\n", | |
| "colors" | |
| ], | |
| "metadata": { | |
| "id": "dGk5Xd0v6w1L", | |
| "outputId": "e170a9ee-3490-44fc-d9ec-47d084e77c1d", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "execution_count": 3, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "{'Sleep': 'gold',\n", | |
| " 'Hygiene': 'darkslategrey',\n", | |
| " 'Meals': 'orange',\n", | |
| " 'Commute': 'silver',\n", | |
| " 'Exercise': 'blue',\n", | |
| " 'Lecture (32hrs)': 'lime',\n", | |
| " 'Practice (32hrs)': 'purple',\n", | |
| " 'Free': 'red'}" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 3 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "sp = df.iloc[:,:-1].plot(\n", | |
| " figsize=(12, 8),\n", | |
| " kind='bar',\n", | |
| " stacked=True,\n", | |
| " # colormap='tab20c',\n", | |
| " color=colors,\n", | |
| " ylim=(0,25),\n", | |
| ")\n", | |
| "plt.xticks(rotation=0, ha='center', fontsize=12)\n", | |
| "plt.yticks(fontsize=12)\n", | |
| "plt.title(\"Week in the Life of the Full-Time Data Science Boot Camp\", fontsize=18)\n", | |
| "plt.ylabel(\"Hours\", fontsize = 14)\n", | |
| "plt.xlabel('')\n", | |
| "\n", | |
| "plt.legend(\n", | |
| " *(zip(*(list(zip(*sp.get_legend_handles_labels()))[::-1]))), # reverse legend order\n", | |
| " bbox_to_anchor=(1.2, .5),\n", | |
| " loc='center right'\n", | |
| ")\n", | |
| "\n", | |
| "plt.show()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 670 | |
| }, | |
| "id": "NabYF1286y1E", | |
| "outputId": "0fc63a17-d0ff-4b92-cf86-3a57edd92247" | |
| }, | |
| "execution_count": 4, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": [ | |
| "<Figure size 1200x800 with 1 Axes>" | |
| ], | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABKAAAAKzCAYAAAApy3WzAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmp9JREFUeJzs3XmcTuXj//H3PcYsZjVmzIxlLNlFxpYlhpSliE+KRJYSn+JjLaJskSWtvkpKoRAqRYiQkaWEUEIY+77OjMGMMXN+f8zvPuY2i2HmuGd4PR+P+8F9znXOdZ0z133mvt9zneu2GYZhCAAAAAAAALCIi7MbAAAAAAAAgLsbARQAAAAAAAAsRQAFAAAAAAAASxFAAQAAAAAAwFIEUAAAAAAAALAUARQAAAAAAAAsRQAFAAAAAAAASxFAAQAAAAAAwFIEUAAAAAAAALAUARSQCzRq1Eg2m00jR47M0f0ePHhQNptNNptNBw8ezNF955SuXbvKZrOpa9euzm5KjomMjDTPe0bWrl2rxx9/XEFBQcqXL59sNpvatGlz5xqZDZcvX9awYcNUsWJFeXp6mse6bdu2HKsjK+fwXlOyZEnZbDbNmDHjltZZYcaMGbLZbCpZsuQdqQ/3FvoXAAB3JwIo5AkxMTFydXWVzWbTO++8k2G53bt3mx9ab/bGtXnz5rLZbKpbt24OtxaStG3bNo0cOVIffPCBs5ty21IHeDn5wf7333/Xww8/rKVLl+rcuXMKCAhQcHCwChYsmGN1WKl9+/YaM2aM+XoLDg5WcHCw8ufPn6XtR44cqZEjR+baUDQr7KHxzR6NGjVydlPTsH+4v93H3W7kyJFpjtnFxUW+vr4qVqyY6tWrp169eunbb7/V1atXLWtHdHS0+VqJjo62rJ6sOHPmjN566y099NBDCgwMVP78+RUYGKjKlSurVatWmjBhgjZs2ODUNt7L7AH0jY98+fKpYMGCql27tkaMGKGzZ886u6lpWPVe4aefflKPHj1UuXJlBQQEKH/+/CpUqJBq166tfv36aePGjTlaHwAga1yd3QAgK/z8/BQeHq7NmzcrMjJSr7zySrrlVq9ebf7/0KFDOnjwYLpB1LVr17Ru3TpJ0sMPP2xJm3OD/Pnzq3z58ub/76Rt27Zp1KhRKlGihPr163dH63a2AgUKmOc9PR988IGuXbum+vXra9GiRQoICLiDrcue3bt3a/HixZKkefPmqV27dre8j1GjRklKCXHy+giH/PnzZ/rzy40/W09PTwUHB6e77syZM0pOTpaHh4f8/Pwy3Iefn5/Kly+vokWLWtXMXCH1ebpy5YqOHz+uY8eO6bffftPHH3+sQoUKacyYMfrvf/+b43VHR0ebr5WuXbvK398/x+vIilWrVqldu3Y6f/68uczLy0uJiYnauXOndu7caV4TDMPIkTrvlf6V02583cbHxys6OlqbNm3Spk2b9NFHH2n58uWqUaOGE1vpKKffK+zZs0cdO3bU5s2bzWX58uWTn5+fYmJizHPx4YcfqnHjxpo/f74CAwOzXS8AIGsYAYU8o3HjxpJSbl1KSkpKt0xkZKQkKSQkxOH5jTZt2qRLly457PduVLRoUe3evVu7d+/mjfwdVLt2bfO8p+fvv/+WJD3zzDO5MqDIjL3thQoVuq3w6W5Tr149nTx5MsPHggULnN3ENNq3b59he4sXL37TMpL0n//8R7t379aqVauceSiWS33cMTExSkxM1F9//aV3331XpUqV0rlz5/TSSy+pY8eOORa+5CaHDx9WmzZtdP78eZUsWVJffPGFLly4oLi4OMXExCg6OlrLly9Xr169cnQE573Sv3Laja/b6OhoxcbGaurUqfLw8NC5c+fUsWNHZzfTMps2bdKDDz6ozZs3y8vLS0OGDNH27duVmJioc+fO6erVq/rnn3/01ltvKTg4WKtXr9bRo0ed3WwAuKcQQCHPsAdFsbGx+vPPP9Mts2bNGknSq6++KslxRFRq9uVubm6qX79+TjcVyNTly5clSd7e3k5uya3Ly20HsitfvnyqUqWKBgwYoB07duiZZ56RJM2ZM0fjx493cuty3tSpUxUXFyc3NzetWbNG3bp1cxiJ5efnp6ZNm2ry5Mk6duyY8xqKDPn4+KhHjx56/fXXJUn//vuvdu3a5eRW5bxz587pySefVHR0tIoUKaKNGzdq7Nixqlq1qnnrsIuLiypVqqShQ4dq//796tGjxz1xWzEA5CYEUMgzGjRoIFfXlLtG0xvZtGvXLp06dUrly5c3PxTYA6kb2bd/8MEH5enp6bDu4sWLGj9+vOrWrauAgAC5u7urePHieuaZZ/Tbb7/dtJ1LlixR27ZtVbRoUbm7u6tgwYJq2LChpkyZctvzhcycOVP58+eXzWYz30RmRWaTkN84yfO+ffv0/PPPq3jx4nJ3d1exYsX04osv3taHCpvNpm7duklKuRXyxnkpMpts/dtvv1WjRo0UEBCgAgUKqFq1avrwww+VnJx802Pt16+fKleuLG9vbxUoUEAVKlRQ3759dfjw4Vs+huzIaALtG38W3bp1czgvN/6MstsXMxMfH68PPvhA9erVU8GCBeXh4aESJUqoc+fO6U4mbp8Xxz5Z/I0/16xMIm+fcN6ucePGDvvI7Ha82+2fV69e1ccff6zGjRsrMDBQbm5uCgkJUevWrfXTTz/dtM05yX6cGY3MlKz7QoKcltkk0fa+Yp//atGiRWrSpIkKFSokX19f1atXTz/88IPDNl999ZXq16+vggULytvbWw0bNszS6BcrrrdZVaBAAc2cOVPh4eGSpPHjxzvcpiZJycnJWrVqlfr06aM6deqoWLFicnNzU6FChRQREaFPPvlEiYmJafbdqFEjlSpVynxeqlSpDOcWu906ssJ+LahWrZrCwsIyLXvj79LUkpOTNX/+fLVp08b8WQUFBalGjRoaPHiwduzY4VA+K5OQ38718cbfiadOnVLfvn1VqlQpeXh4KDg4WM8880yGo1dv93iy0+acUq1aNfP/cXFxGZZbsGCBWrZsqeDgYLm5uSk4OFgtW7bU999/f9M6tm7dqs6dO6tEiRLy8PBQwYIFVa9ePX3wwQdKSEhIUz477xVu9Pbbb5ujmb7++mtVrlw50/IFChTQ1KlTVaVKFYflv//+uwYPHqwGDRqYx+Hv7686depowoQJmZ671Nf4c+fOacCAAbrvvvvk6empEiVKqHfv3jpz5oxZ/tChQ3rppZfM/hcWFqaBAwfq4sWL6e4/9Ze2GIahTz75RLVr15avr698fX310EMPac6cOVk9ZQDgHAaQh9SpU8eQZDz22GNp1n388ceGJKNHjx6GYRhGmTJlDEnG/v37HcpdvXrV8PLyMiQZw4cPd1i3detWo1ixYoYkQ5KRL18+w8fHx3xus9mMsWPHptu2y5cvG0899ZRZVpLh6+tr2Gw283mdOnWM8+fPp9k2IiLCkGSMGDEizbpx48YZkgwXFxdj8uTJWT1VhmEYxoEDB8y6Dxw44LBu9erV5rpffvnF8Pb2NiQZPj4+hqurq7muSJEixtGjR2+p3uDgYMPX19dsd3BwsMNj4sSJZtkuXboYkowuXboYvXr1Mrfx9/d3OJedO3fOsL5Zs2YZ7u7uZll3d3fD09PTfO7j42MsX778lo7BMBzP3/Tp07O8Xepze+N5CQ4ONlxcXMz+kfq8HD582Cybnb54M0ePHjXuv/9+c1/58+c3/Pz8zOcuLi7GpEmTHLaZOHFipj/XPn363LTePn36GMHBwWY9BQsWdNhHzZo10z2Ht9s/Dx48aFSuXNnhnKU+TknGf//739s6h/bXbERERJa3sde5evXqm+43vWtBiRIlMuyLma27Ffb9dOnSJdNy06dPNyQZJUqUSLNuxIgR5rkZPny42V9uPPeffPKJkZycbF4DXF1dHfp4vnz5jMWLF6dbf3autzdjb39W3yJ98803ZvnPP//cYV3qa4gkw9vbO815aNCggXH58mWH7f7zn/8YgYGBZpnAwECH18p//vOfbNeRFY899pghyShWrJiRnJx8y9sbhmGcOXPGaNiwoUN7/P39zde0JKN169YO22TWvwzj9q+Pqc/V4sWLjcKFCxuSjAIFCjj8DvH19TW2bduWY8eTnTZnRVZet2PGjDHrPXfuXJr1CQkJRvv27R1+DxQsWND8fSXJ6NChg3H16tV09//ee+85vP78/PyM/Pnzm8+rVq1qHD9+3GGbW3mvkJnExESzzzdp0iRL22Qk9c+1QIECRsGCBR2WVapUyTh16lSm286cOdP8WXt5eRlubm7muooVKxoXLlww/vjjD6NQoUJmf0v9e61+/frGtWvX0uw/9fsl+8/K/nNKfe67det2269XALAaARTylCFDhpgfQm/85dyuXTtDkjFnzhzDMAzjhRdeSPcDwbp169L9IHj8+HHzzeiTTz5pbN682XyjderUKWPYsGHmG4Tvv/8+Tds6depkSDJKly5tzJ4924iJiTEMwzCuXLliLFy40ChdurQhyWjTpk2abdP70JmcnGz06dPHkFIClW+++eaWz1dWA6iCBQsaTzzxhLFr1y7DMFLeiM6bN898c/zcc8/dct03+wBhZ39DVbBgQcPNzc147733zHN39uxZo3v37mY7V61alWb7n3/+2XBxcTFcXV2NQYMGGQcOHDCSk5ON5ORkY/fu3cbTTz9tvsE7dOjQLR1DTgdQdjcLC7LbFzNz7do148EHHzQ/IMyaNctISEgwDMMwoqKijJYtW5ofhpYuXZpm+6z+XDOTlSAmu/0zLi7OqFChgiHJaNSokREZGWnEx8cbhmEY0dHRxnvvvWd+YPzggw9u+RgIoG4eQPn5+Rn58uUz3nrrLSM6OtowjJTws1mzZuZ1fPjw4Yanp6fxySefGJcuXTIMwzD27Nlj1KxZ05BkhIWFGUlJSWnqyM719mZuNYC6ePGikS9fPkNKG5QfOXLE6Nixo7Fo0SKHD/0XL140pk+fbhQpUsSQZPTv3z/NfjO7fudUHTczcuRIsw0DBgww4uLibmn7xMREo379+ubvsQkTJhinT5821x87dsyYOnWqMWTIEIftMutf2bk+pj6nBQsWNOrXr29s2rTJbOuKFSuM0NBQM7TLqeOx8ppuGJm/bi9evGhMmzbN/KOM/Y90Nxo4cKB57R82bJhx4cIFwzAM4/z588bQoUPN8zZ48OA02/74448O4Zv9D38JCQnGl19+aV6r69Wrl+a9W078Tvntt9/M+m/1D3U3atWqlTFv3jzjxIkT5rLLly8bCxYsMMqXL29IcgiAU0sdSFarVs34/fffDcNI+cPn119/bRQoUMCQZPTu3dsoUaKE8fDDDxs7duwwDCPl2vV///d/5rXks88+S7N/+/slPz8/w2azGaNHjzavfadPnzZ69+5ttuHDDz/M1nkAAKsQQCFP+fnnn81frhs3bnRYZx9ZcezYMcMwDOPLL79M98Op/a+AHh4e5gdSwzCM559/3pBkPPvssxnW/9577xmSjAceeMBh+a+//mpIMgoXLuwwiiW1I0eOmCOvtm7d6rDuxg+dCQkJZqDm5+eX6QfWzGQ1gGrcuHG6H/ImTZpkSDI8PT2NxMTEW6r7VgOozD4816hRw5BkdO/e3WF5UlKSUbZsWUOSMXXq1AzreOKJJwxJRt++fW/pGJwVQGWnL97M3LlzzbalNyosMTHRDKjuv//+NOudEUDdTv988803zYAoo7/YL1iwwJBSRpfcav+2v2bz58+f5q/29ke5cuVu+bjvpgBKkjFmzJg062NiYsxroSRj1qxZacrs27fPXL927VqHddm93t7MrQZQhmGY16H69evfUl2bNm0ypJRREleuXHFYl9UAKjt13MyZM2fMAMu+j+bNmxvDhg0zfvjhhwxHgthNmzbNDDWWLFmS5Xoz61/ZuT6mPqcVKlRId1TYokWLzDJHjhzJkeOx8ppuGNdftx4eHg7XoNQjicuXL2+MHTs23ZE1R48eNQOwG8MzuwEDBpjXvBtHMlWsWNEM7dLbf+pzeuMf03Lid4r95yLJWL9+/W3v52aOHj1quLu7GzabLd0/aNnbEBwcbJw9ezbN+mHDhpllKleu7PAe1O65554zpPRHcqV+vzRs2LB022gP5wMCAm759Q4AdwJzQCFPqV+/vtzc3CQ5TjC+c+dOnTp1SmXLllWRIkUkSREREZLSzhdl365u3bpyd3eXlDIfjv2++cGDB2dYf+fOnSVJ27dv16lTp8zln3/+uSSpY8eO5rdI3ahYsWLmROrLly/PsI7Y2Fg1b95c8+fPV2hoqH799VeH+T6sMHToULm4pL0ctG7dWlLK14/v3bvX0jYUL15cXbp0SXfdE088IUn666+/HJb/+uuv2rt3rwIDA9W9e/cM923/uWV23nOL7PbFm5k3b56klP7ftGnTNOtdXV01YsQISdKOHTvMb71zptvpn/bX5IABA5Q/f/5099umTRv5+vrq7Nmz2rJly221LTExUadOncrwcS/z8PBI92vVfX19VbduXUlSWFiYnn322TRl7rvvPpUpU0ZS2td9Tl5vc4r92yxvnAPqZmrWrKnChQvr0qVL6c69lhOyU0dgYKDWrVunRx99VJJ06dIlLVu2TKNHj1abNm0UHBysmjVrasaMGenO0/fFF19Ikh577DE99thj2T6WnLw+Dhw4MN15q1q0aGG+z7jx+nc7x2P1Nf3GulJff6Kjo81158+f15kzZ8wvkkjtu+++07Vr1+Th4aHXXnst3X2/8cYbcnd3V2Jior799ltz+V9//WVOav7GG28oX758abZt1aqVateuLSllfqacdu7cOfP/Vn6zbNGiRfXAAw/IMAxt2LAhw3IvvviiChUqlGZ5s2bNzP8PGDDAfA+aXpkbr3upeXp66pVXXkl33fDhwyWl/LxXrFiR4T4AwFlcnd0A4FYUKFBAtWrV0vr16xUZGWm+mbOHTPbQSUr5YFOyZEkdPHhQUVFRuu+++3T16lVzok/7hxNJ2rJli+Lj4yUp3Q/l6Tl06JCCg4MlSevXr5eU8sEoswkgY2JizG3Tc+LECUVERGjbtm0qV66cli9fnukkrDnlwQcfTHe5PcyTbv2D1a2qVatWht9GY2/HjW2wn/eYmBiHtt7IPhlxRuc9N8luX7yZzZs3S5IeeeSRDMs0btxY+fLlU1JSkjZv3pxmktY77Vb757Fjx8yf9QsvvJDuByI7+4Syhw4dyrCezERERGQ6qfi9rFKlSvLy8kp3nb2/1qxZM8PXfXBwsPbt26cLFy44LM+p6+2dcvXqVX3xxRdasGCBduzYYX4d/I2y83XwVtZRqlQp/fzzz9q1a5cWLVqk3377TVu3bjW/3GHLli3q1q2bvv76ay1cuFAeHh6SpGvXrmnTpk2SUgKInJCT18eMXu+urq4KCgrSsWPHHK4rt3s8Vl/TU+vSpYtmzJhhPjcMQxcuXND69es1ZMgQvf/++1q5cqVWrVqloKAgs5z990KtWrXk6+ub7r4LFiyomjVrav369Wb51Nu6uro6vAe70aOPPqo//vjDYdvcKDk5WXPnztXcuXO1bds2nTlzxvz5pZbZa8kett0o9c+0Vq1amZa58bqXWs2aNTP8OZUtW1bFihXT0aNHtXnz5hx77QFATiGAQp7TuHFjrV+/XuvWrdO1a9fk6upqfgC8caRQRESEDh48qMjISN133336448/zL/+Pfzww2a548ePm//P6l8eU/8V0b59bGysYmNjb2nb1D799FNJKSMHVq5cmeFf93Oaj49Pusvt3zoo6ba/RSm7bUjdjhvbYD/v9lEoN3PlypVstPDOyG5fvJnTp09LSvlLbkY8PDwUGBioU6dOmeWd6Vb7Z+pzePbs2SzVcSvnMC8JCQlJd3n79u314YcfWlp3Vl7T2XndZ/d6m5PsQcWNox5Onz6tRx55xGEkjf31ZQ9Gz5w5o+TkZF26dOm26r4TdUhSxYoVVbFiRfP5yZMntXDhQo0bN06HDh3Szz//rDfeeEPvvPOOpJRRKfafXYkSJW673tRy8vp4q33vdo/H6mt6Zmw2mwICAtSqVSuFh4ercuXK+vvvvzV48GBzNJeUtd8LUsrIwtTlU/8/MDAw3RE9mW2bU1K/7rLzx7LLly+rZcuWDiPs3dzcFBAQYI6kPX/+vBITEzN9LWXld9bNyly7di3D/d/s51S0aFEdPXo0V/z+BoAbcQse8hz7yKW4uDjzL2lr1qyRpDR/fbM/t7+ZsP/r5eXl8BeqpKQk8/9XrlyRkTI/WqaP1GGXffspU6ZkadvUf6FMrWXLlvLz81N8fLy6det2134ozin28/7ggw9m6bwbhuHkFt9cdvsiHM/hrl27snQOu3bt6rwGWyijWwPto4Pyopy63uaUuLg47d+/X1LKrYOp9e/fX3///bcKFSqkL774QidOnNCVK1d05swZnTx5UidPnjRH8t3u9elO1JGekJAQ9ezZUxs3blThwoUlpdyiZr8VL6ORbdnhzOvj7R5PbrmmFytWTM2bN5ckzZ8/P9OAI6+pXLmy+f+tW7fe9n7eeustrV69Wp6ennr//fd16NAhxcfH69y5c+ZryT5yLi+8nwCA3IgACnlOvXr1zL+yRUZGaufOnTp9+rTuu+8+8y9sdjfOA2X/t379+g7zwqQeJXA7t2vYt8/urR41atTQypUrVbBgQa1atUqPP/54tv5ifbfLqfOem2S3L96M/YNiZrcP2N9wpy6fl1h9Dm+XfTRKerdz2OV0MOSsUMZKue11v2zZMjNkSB0cJCYmasGCBZKkyZMnq1u3bmlGpCUlJWV5lF567kQdNxMcHGzOx3bhwgWdOXNGkhxGjeTUz8qZr+3bPZ7cdD2yj9y6dOmS+XOSsvZ7IfX61L8X7P8/e/asEhISbmnbnFKzZk35+flJkr7//vvb3s/cuXMlpcyj1K9fP4WFhaUJHk+ePHn7Dc0hx44dy9L6vPj7G8DdjwAKeY6Hh4fq1KkjKWVEU3rzP9mVLl1axYoV07Fjx7Rjx45053+SUu7Ft086+uOPP95ym+rXry9JWrx48S1ve6OaNWtq1apVCggIUGRkpFq0aGHOU5OX2CeNtvKvhPbzfvLkyVw/r0RWZbcv3kzNmjUlSatWrcqwTGRkpPnX8YzmqcgO+xt6q/pGyZIlzVsUrDiHt6tgwYKSpCNHjqS7/uLFi+ZkvshYTl5vs+vq1asaO3asJMnPz09t2rQx16WeOyY8PDzd7detW5dhIJl64v2MXivZrSOneHt7m/+3/4HI1dXVHGmcU69Dq6+Pmbnd43Fmm2+UOmBKPT+b/ffC5s2bMwzBo6OjHeaKunHba9eumaPR07Ny5co020o5817B1dVVPXr0kJTyu+3XX3/N8rapJ8+3X5szei0dPHhQ+/btu+125pTNmzdn+L5w37595s/Z/rMBgNyEAAp5kj1AWr9+vfmmJqMh6/ZgasKECeYcQDcGUF5eXuY3MU2YMMGcXDUjN84xYH/js2PHDk2ZMiXTbS9dupTu5LCphYeH65dfflFgYKDWrl2r5s2b6+LFi5luk9vYJ8hM/S08Oa1x48bmN2X179//pufV6onUc0J2++LNPPPMM5Kk3377TT///HOa9deuXdObb74pSbr//vt1//3339L+s+JO9I0XX3xRUspE1Te7JeNO9YsHHnhAUso3TqXnnXfeyXQEAVLk9PX2dl25ckVdu3Y1+9eQIUPk7+9vrvf19TXD1u3bt6fZ/tq1a3r99dcz3H/qSYYzeq1kt46bWbt27U1vBY+LizNHYZUqVcrhHLzwwguSpKVLl2rp0qW33Q47q6+PN3M7x+PsNtudPXvW/Fa0smXLOvSvtm3bytXVVfHx8ZowYUK6248dO1YJCQnKnz+/2rZtay6vWrWqKlWqJEkaM2aMwy2HdkuXLtXGjRslSR06dHBYl1O/DwYNGmTeatqhQwf9888/mZa/cuWKXn75ZYe50+yjqNJ7LUnK8BsC77QrV66Yc63daMyYMZJSRuzZv70SAHITAijkSfYA6dKlS1q0aJGk9EdApV5u/+pfHx8f1ahRI025sWPHqkiRIjp79qzq1q2rr776yiH0OXPmjL777jv95z//SfMGKiIiQt26dZMk9erVS/379zfnBJGkhIQE/f777xo0aJBKlCiRpYkhH3jgAf3yyy8KCgrS+vXr1axZsyxNuJtb2IOL2NhYzZ8/35I6XF1d9cknn8jV1VXr1q1Tw4YNtWrVKoeJY/fv369PPvlEtWrV0scff3zbdcXFxens2bOZPtJ74307stMXb6Zt27bmHBbt2rXTnDlzzPN14MABtW3b1hwp+Pbbb+fI8dzI3jdmz55t2TxnAwcOVJUqVRQfH6/GjRtr8uTJDl/VHR0drZ9++kmdO3dWgwYNLGnDjew/q+XLl2vEiBHm6/ns2bMaOnSoxowZ4/DhHemz4nqbVcnJydqxY4fee+89Va5c2fy98txzz2nQoEEOZb29vc3RWgMGDNAvv/xijrbYsWOHHnvsMW3evDnDbwr09/c3R/JNnz493Tl7slvHzXz44YcKCwvT//73P61cudLhd5D92l6vXj3z1rKBAwc6bP/cc8/poYcekmEYatu2rSZOnOhwO+Dx48f1/vvvm99omxVWXh9v5naPx5ltTk5O1qZNm9SmTRuzrQMGDHAoU7RoUfXt21eSNH78eI0YMcIMhKKjozVs2DBNnDjR3DY0NNRhe3totXbtWj311FM6cOCApJRbRGfPnm0eU7169RxGCUo5914hMDBQ3333nXx9fXX8+HE9+OCDGjp0qHbs2GGOrjIMQ7t379bbb7+t++67z5xHzs4+R9aYMWO0YMEC8zV34MABPfvss5o/f745ktWZ/Pz8NHr0aI0bN87sR2fPnlXfvn01c+ZMSdKwYcPMb6QEgFzFAPKghIQEw9PT05BkSDJKlSqVYdl///3XLCfJeOyxxzIsu3PnTqNcuXJmWRcXFyMgIMDw8vJy2McjjzySbpu6d+/uUM7b29soWLCg4eLi4rD86NGjDttGREQYkowRI0ak2e8///xjBAcHG5KM2rVrGxcuXMjyeTpw4IBZ54EDBxzWrV692lyXGXuZ1atXZ7leuyZNmpjb+/j4GCVKlDBKlChhvP/++2aZLl26GJKMLl26ZLif6dOnG5KMEiVKpLv++++/N3x8fMy68ufPbxQqVMhwd3d3OO9jxoy5pfanPn9ZeWzdutUwjJuf2xIlShiSjOnTp2dYd3b64s0cPXrUqFy5srkPNzc3w9/f36GuDz/8MN1tb/azyIqvvvrK4WdVtGhRo0SJEkb9+vXNMjnRP48dO2bUqVPHLGOz2Qx/f3/D19fX4RyWKVPmlo/B/pqNiIjI8jbXrl0zGjdu7NCeggULGjabzbDZbMbEiRMzvRZk1m+y0qeywr6fzF6PhpF5PxgxYsRNz01WXveZnYvsXG9vxt5+SUZwcLD58Pf3T7PvwMBA45NPPslwX5s3b3Z4zbq7u5vXKldXV+PLL7/M9Gc3evRoh22LFy9ulChRwmjfvn2O1ZGZZ555Js11zsfHx/D29nZY5uLiYgwePDjdfZw5c8Zo0KBBmtdh6n20bt3aYZubXWdu9/qY2e/E1DI7X7dzPNlpc1bY2+vh4eHQZwsXLmx4eHg47H/AgAHp7iMhIcFo166dQ/tufD116NDBuHr1arrbv/fee4bNZjPL+vv7G25ububzKlWqGMeOHUt326y8V8iqnTt3GtWrV3c4ZldXVyMgIMBwdXV1WN6sWTPj7Nmz5rYHDx4032/Zt/Pz8zOfjx07NtPrUma/jwwja/0vs999qa+b7du3NyQZ+fLlM3+P2Lfr3LmzkZSUdMvnDgDuBEZAIU9yc3NTvXr1zOcZjX6SpHLlyjlMAnrj7XepVaxYUX/99ZemTp2qpk2bKjAwULGxsTIMQ2XKlNHTTz+tTz/9NN2/0rm5uemzzz7Thg0b1LVrV913331KSkpSXFycChcurEaNGmn48OH666+/bvoVuqlVqlRJkZGRCg0N1R9//KFHHnlEFy5cyPL2zvTtt9+qf//+KleunBITE3Xo0CEdOnQox2+9atOmjfbt26cRI0aodu3a8vb2VnR0tNzd3fXAAw+oe/fu+v777/Xqq6/maL1Wyk5fvJmiRYtq8+bNeu+991SnTh15enrq8uXLKl68uJ577jlt2bJFffr0seCoUnTq1ElfffWVHnroIRUoUEAnTpzQoUOHbjoB7q0qUqSI1q1bp6+//lpPPPGEQkNDdfnyZV29elUlS5ZUq1at9MEHH9zSfCHZkS9fPi1ZskSjRo1ShQoV5ObmJpvNpqZNm2rFihV65ZVX7kg77gZWXW9vZP/WwNOnT+vatWsKCQlRnTp19NJLL+nbb7/VsWPH1LNnzwy3r1Gjhv744w+1a9dOgYGBSk5Olo+Pj9q1a6cNGzboueeey7T+oUOH6sMPP1TNmjWVP39+HT16VIcOHXKYCDm7dWTmq6++0i+//KIhQ4aoSZMmKlasmK5evar4+HgVLFhQtWrVUv/+/bV161aNHz8+3X0EBgYqMjJSs2bNUosWLRQUFKRLly6pQIECqlGjhl577TVzHq2ssvL6eDO3ezx3os3x8fEO33Z5+vRpubi4qFy5cnr++ee1YcMGvfvuu+lu6+bmpnnz5unbb79VixYtVKhQIV28eFGFChVSixYttGDBAs2ZM8fhC1xS69+/vzZv3qxOnTqpePHiunz5sjw9PVWnTh29//772rRpk3mL3I1y8r1CxYoVtWXLFi1evFgvvPCCKlSoIG9vb8XGxsrX19fss1u2bNGyZctUqFAhc9sSJUpo8+bNeuGFF8y2enh4qGXLllq+fLmGDBlyy+2xytdff62PP/5Y4eHhunbtmry8vFS3bl19+eWXmjlzpsMccgCQm9gMg+8RBQAAAIDcqmvXrpo5c6a6dOmSp7/JFMC9jXgcAAAAAAAAlsp1AdSmTZvUu3dvVa5cWV5eXgoLC1O7du20Z88eh3Jdu3aVzWZL86hQoYKTWg4AAAAAAID0uDq7ATeaMGGC1q9fr6efflpVq1bVyZMnNXnyZFWvXl2///67w1eCu7u7a9q0aQ7b279CFQAAAAAAALlDrgugBgwYoDlz5sjNzc1c1r59e1WpUkXjx4/XrFmzzOWurq7q1KmTM5oJAAAAAACALMozk5DXqFFDkrRlyxZJKbfgffvtt4qJidGlS5fk6+vrzOYBAAAAAAAgA7luDqj0GIahU6dOKTAw0GH55cuX5evrKz8/PwUEBKhXr16Ki4tzUisBAAAAAACQnlx3C156Zs+erWPHjunNN980l4WGhmrQoEGqXr26kpOTtWzZMn388cfavn27IiMj5eqa/qElJCQoISHBfJ6cnKzz58+rUKFCstlslh8LAAAAAODeZhiGLl68qCJFisjFJU+MCwGyLdffgrd79249+OCDqly5stauXat8+fJlWHbs2LF6/fXX9fXXX+uZZ55Jt8zIkSM1atQoq5oLAAAAAECWHDlyRMWKFXN2M4A7IlcHUCdPnlT9+vWVmJio33//XUWKFMm0/JUrV+Tt7a1u3bql+XY8uxtHQMXExCgsLExHjhxhHikAAAAAgOViY2NVvHhxRUdH803uuGfk2lvwYmJi1KJFC0VHR2vt2rU3DZ8kydPTU4UKFdL58+czLOPu7i53d/c0y319fQmgAAAAAAB3DNPA4F6SKwOo+Ph4tWrVSnv27NHKlStVqVKlLG138eJFnT17VkFBQRa3EAAAAAAAAFmV6wKopKQktW/fXr/99psWLlyounXrpikTHx+vxMRE+fj4OCwfPXq0DMNQ8+bN71RzAQAAAAAAcBO5LoAaOHCgFi1apFatWun8+fOaNWuWw/pOnTrp5MmTCg8PV4cOHVShQgVJ0vLly7V06VI1b95crVu3dkbTAQAAAAAAkI5cNwl5o0aNtGbNmgzXG4ah6Oho/e9//9Pvv/+u48ePKykpSWXKlFHHjh31yiuvKH/+/FmuLzY2Vn5+foqJiWEOKAAAAACA5fgcintRrgug7jRe+AAAAACAO4nPobgXuTi7AQAAAAAAALi7EUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLuTq7AUjFZnN2C3IHw3B2C3KFUbZRzm5CrjHCGOHsJuQK9Inr6BMp6BPX0SdS0CdS0B9S4f1lCt5fXkefSEGfAO44RkABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABL2QzDMJzdCGeKjY2Vn5+fYmJi5Ovr69S2jLKNcmr9ucUIY4Szm5Ar2GRzdhNyDUP39GXKRJ+4jj6Rgj5xHX0iBX0iBf3hOt5fpuD95XX0iRTO7hO56XMocKcwAgoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYCkCKAAAAAAAAFiKAAoAAAAAAACWIoACAAAAAACApQigAAAAAAAAYKlcF0Bt2rRJvXv3VuXKleXl5aWwsDC1a9dOe/bsSVN2165dat68uby9vRUQEKDnnntOZ86ccUKrAQAAAAAAkBFXZzfgRhMmTND69ev19NNPq2rVqjp58qQmT56s6tWr6/fff9f9998vSTp69KgaNmwoPz8/jR07VnFxcXrnnXf0999/648//pCbm5uTjwQAAAAAAABSLgygBgwYoDlz5jgESO3bt1eVKlU0fvx4zZo1S5I0duxYXbp0SVu2bFFYWJgkqXbt2nr00Uc1Y8YM9ejRwyntBwAAAAAAgKNcdwtevXr10oxeKlu2rCpXrqxdu3aZy7777ju1bNnSDJ8k6ZFHHlG5cuU0f/78O9ZeAAAAAAAAZC7XBVDpMQxDp06dUmBgoCTp2LFjOn36tGrWrJmmbO3atbV169YM95WQkKDY2FiHBwAAAAAAAKyTJwKo2bNn69ixY2rfvr0k6cSJE5Kk0NDQNGVDQ0N1/vx5JSQkpLuvcePGyc/Pz3wUL17cuoYDAAAAAAAg9wdQu3fvVq9evVS3bl116dJFknTlyhVJkru7e5ryHh4eDmVuNGTIEMXExJiPI0eOWNRyAAAAAAAASLlwEvLUTp48qccff1x+fn769ttvlS9fPkmSp6enJKU7yik+Pt6hzI3c3d3TDa4AAAAAAABgjVwbQMXExKhFixaKjo7W2rVrVaRIEXOd/dY7+614qZ04cUIBAQGETAAAAAAAALlErgyg4uPj1apVK+3Zs0crV65UpUqVHNYXLVpUQUFB2rx5c5pt//jjD1WrVu0OtRQAAAAAAAA3k+vmgEpKSlL79u3122+/6ZtvvlHdunXTLde2bVstXrzYYQ6nVatWac+ePXr66afvVHMBAAAAAABwE7luBNTAgQO1aNEitWrVSufPn9esWbMc1nfq1EmSNHToUH3zzTdq3Lix+vbtq7i4OE2cOFFVqlRRt27dnNF0AAAAAAAApCPXBVDbtm2TJP3444/68ccf06y3B1DFixfXmjVrNGDAAL322mtyc3PT448/rnfffZf5nwAAAAAAAHKRXBdARUZGZrls5cqVtXz5cusaAwAAAAAAgGzLdXNAAQAAAAAA4O5CAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACzl6uwGAAAAAACA7EtKSlJiYqKzm4F7iJubm1xcsja2iQAKAAAAAIA8zDAMnTx5UtHR0c5uCu4xLi4uKlWqlNzc3G5algAKAAAAAIA8zB4+FS5cWAUKFJDNZnN2k3APSE5O1vHjx3XixAmFhYXdtN8RQAEAAAAAkEclJSWZ4VOhQoWc3RzcY4KCgnT8+HFdu3ZN+fPnz7Qsk5ADAAAAAJBH2ed8KlCggJNbgnuR/da7pKSkm5YlgAIAAAAAII/jtjs4w630OwIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAA4G5ks93Zxy3q2rWrbDZbmse+ffssOBlwNr4FDwAAAAAAOEXz5s01ffp0h2VBQUEOz69evWpOdo28ixFQAAAAAADAKdzd3RUSEuLwaNKkiXr37q1+/fopMDBQzZo1kyTt2LFDLVq0kLe3t4KDg/Xcc8/p7Nmz5r6Sk5M1btw4lSpVSp6ennrggQf07bffOuvQcAMCKAAAAAAAkKvMnDlTbm5uWr9+vT755BNFR0fr4YcfVnh4uDZv3qxly5bp1KlTateunbnNuHHj9OWXX+qTTz7RP//8o/79+6tTp05as2aNE48EdtyCBwAAAAAAnGLx4sXy9vY2n7do0UKSVLZsWb399tvm8jFjxig8PFxjx441l33xxRcqXry49uzZoxIlSmjs2LFauXKl6tatK0kqXbq01q1bp6lTpyoiIuIOHREyQgAFAAAAAACconHjxpoyZYr53MvLSx06dFCNGjUcym3fvl2rV692CKvsoqKilJiYqMuXL+vRRx91WHf16lWFh4db03jcEgIoAAAAAADgFF5eXipTpky6y1OLi4tTq1atNGHChDRlQ0NDtWPHDknSkiVLVLRoUYf17u7uOdhi3C4CKAAAAAAAkKtVr15d3333nUqWLClX17RRRqVKleTu7q7Dhw9zu10uxSTkAAAAAAAgV+vVq5fOnz+vDh06aNOmTYqKitLy5cvVrVs3JSUlycfHR6+88or69++vmTNnKioqSn/++af+7//+TzNnznR28yFGQAEAAAAAgFyuSJEiWr9+vQYPHqymTZsqISFBJUqUUPPmzeXikjK2ZvTo0QoKCtK4ceO0f/9++fv7q3r16ho6dKiTWw+JAAoAAAAAgLuTYTi7BZmaMWNGussjIyPTXV62bFktWLAgw/3ZbDb17dtXffv2zYHWIadxCx4AAAAAAAAslesCqLi4OI0YMULNmzdXQECAbDZbuqlo165dZbPZ0jwqVKhw5xsNAAAAAACADOW6W/DOnj2rN998U2FhYXrggQcyHHonpXyV4rRp0xyW+fn5WdxCAAAAAAAA3IpcF0CFhobqxIkTCgkJ0ebNm1WrVq0My7q6uqpTp053sHUAAAAAAAC4VbnuFjx3d3eFhIRkuXxSUpJiY2MtbBEAAAAAAACyI9cFULfi8uXL8vX1lZ+fnwICAtSrVy/FxcU5u1kAAAAAAABIJdfdgpdVoaGhGjRokKpXr67k5GQtW7ZMH3/8sbZv367IyEi5uqZ/aAkJCUpISDCfM3oKAAAAAADAWnk2gBo3bpzD82eeeUblypXT66+/rm+//VbPPPNMhtuNGjXqTjQRAAAAAAAAyuO34N2of//+cnFx0cqVKzMsM2TIEMXExJiPI0eO3MEWAgAAAAAA3HvuqgDK09NThQoV0vnz5zMs4+7uLl9fX4cHAAAAAAC4dx08eFA2m03btm2ztJ5z586pcOHCOnjwYI7ut1GjRurXr1+O7vPs2bMqXLiwjh49miP7y7O34KXn4sWLOnv2rIKCgpzdFAAAAAAAnGqU7c5OPzPCGHFL5bt27aqZM2dKkvLnz6+wsDB17txZQ4cOzXBe55zQtWtXRUdH64cffjCXFS9eXCdOnFBgYKBl9UrSW2+9pdatW6tkyZKSUgKpjh076q+//jLDqdatW2vs2LHmgJkFCxZoypQp2rZtmxISElS5cmWNHDlSzZo1s7StgYGB6ty5s0aMGKHPP/882/vLkyOg4uPjdfHixTTLR48eLcMw1Lx5cye0CgAAAAAA3IrmzZvrxIkT2rt3rwYOHKiRI0dq4sSJ6Za9evWqZe3Ily+fQkJCLA2+Ll++rM8//1wvvPCCuczFxUWtW7fWokWLtGfPHs2YMUMrV67Uf//7X7PMr7/+qkcffVRLly7Vli1b1LhxY7Vq1Upbt27NVnsSExNvWqZbt26aPXt2pneaZVWuDKAmT56sMWPG6IsvvpAk/fjjjxozZozGjBmjmJgYnTx5UmFhYXr55Zc1adIkTZo0SY8//rgmTpyo5s2bq3Xr1k4+AgAAAAAAcDPu7u4KCQlRiRIl9NJLL+mRRx7RokWLJKWMVGrTpo3eeustFSlSROXLl5ckffXVV6pZs6Z8fHwUEhKiZ599VqdPn3bY7z///KOWLVvK19dXPj4+atCggaKiojRy5EjNnDlTCxculM1mk81mU2RkZLq34GW0D7tp06apYsWK8vDwUIUKFfTxxx9neqxLly6Vu7u76tSpYy4rWLCgXnrpJdWsWVMlSpRQkyZN9PLLL2vt2rVmmQ8++ECDBg1SrVq1VLZsWY0dO1Zly5bVjz/+6LD/5ORkDRo0SAEBAQoJCdHIkSMd1ttsNk2ZMkVPPPGEvLy89NZbb+nChQvq2LGjgoKC5OnpqbJly2r69OnmNpUrV1aRIkX0/fffZ3psWZErb8F75513dOjQIfP5ggULtGDBAklSp06d5O/vr5YtW2rFihWaOXOmkpKSVKZMGY0dO1avvPKKXFxyZa4GAAAAAAAy4enpqXPnzpnPV61aJV9fX61YscJclpiYqNGjR6t8+fI6ffq0BgwYoK5du2rp0qWSpGPHjqlhw4Zq1KiRfvnlF/n6+mr9+vW6du2aXnnlFe3atUuxsbFm0BIQEKDjx487tCOzfUjS7NmzNXz4cE2ePFnh4eHaunWrXnzxRXl5ealLly7pHtvatWtVo0aNTI//+PHjWrBggSIiIjIsk5ycrIsXLyogIMBh+cyZMzVgwABt3LhRv/32m7p27ar69evr0UcfNcuMHDlS48eP1wcffCBXV1cNGzZMO3fu1E8//aTAwEDt27dPV65ccdhv7dq1tXbtWoeRW7cjVwZQWZmM66uvvrK+IQAAAAAAwHKGYWjVqlVavny5/ve//5nLvby8NG3aNLm5uZnLnn/+efP/pUuX1qRJk1SrVi3FxcXJ29tbH330kfz8/DR37lzlz59fklSuXDlzG09PTyUkJCgkJCTD9txsHyNGjNC7776rJ598UpJUqlQp7dy5U1OnTs0wgDp06JCKFCmS7roOHTpo4cKFunLlilq1aqVp06Zl2LZ33nlHcXFxateuncPyqlWrasSIlHm4ypYtq8mTJ2vVqlUOAdSzzz6rbt26mc8PHz6s8PBw1axZU5LMualSK1KkSLZv95Ny6S14AAAAAADg7rd48WJ5e3vLw8NDLVq0UPv27R1uHatSpYpD+CRJW7ZsUatWrRQWFiYfHx9ztNDhw4clSdu2bVODBg3M4Oh2ZLaPS5cuKSoqSi+88IK8vb3Nx5gxYxxu0bvRlStX5OHhke66999/X3/++acWLlyoqKgoDRgwIN1yc+bM0ahRozR//nwVLlzYYV3VqlUdnoeGhqa5NdEeNNm99NJLmjt3rqpVq6ZBgwZpw4YNaer09PTU5cuXMzyurMqVI6AAAAAAAMDdr3HjxpoyZYrc3NxUpEiRNJOAe3l5OTy/dOmSmjVrpmbNmmn27NkKCgrS4cOH1axZM3OSck9Pz2y3K7N9xMXFSZI+++wzPfjggw7r8uXLl+F2gYGBunDhQrrrQkJCFBISogoVKiggIEANGjTQsGHDFBoaapaZO3euunfvrm+++UaPPPJImn3cGJbZbDYlJyc7LLvxfLZo0UKHDh3S0qVLtWLFCjVp0kS9evXSO++8Y5Y5f/68goKCMjyurGIEFAAAAAAAcAovLy+VKVNGYWFhWfoGut27d+vcuXMaP368GjRooAoVKqQZ5VO1alWtXbs2w295c3NzU1JSUqb1ZLaP4OBgFSlSRPv371eZMmUcHqVKlcpwn+Hh4dq5c+dNj9EeGiUkJJjLvv76a3Xr1k1ff/21Hn/88Zvu41YEBQWpS5cumjVrlj744AN9+umnDut37Nih8PDwbNdDAAUAAAAAAPKEsLAwubm56f/+7/+0f/9+LVq0SKNHj3Yo07t3b8XGxuqZZ57R5s2btXfvXn311Vf6999/JaXMc/TXX3/p33//1dmzZ9MNmW62j1GjRmncuHGaNGmS9uzZo7///lvTp0/Xe++9l2HbmzVrpn/++cdhFNTSpUs1ffp07dixQwcPHtSSJUv03//+V/Xr1zfnY5ozZ446d+6sd999Vw8++KBOnjypkydPKiYmJrunU8OHD9fChQu1b98+/fPPP1q8eLEqVqxorr98+bK2bNmipk2bZrsuAigAAAAAAJAnBAUFacaMGfrmm29UqVIljR8/3uF2MUkqVKiQfvnlF8XFxSkiIkI1atTQZ599Zt6i9uKLL6p8+fKqWbOmgoKCtH79+jT13Gwf3bt317Rp0zR9+nRVqVJFERERmjFjRqYjoKpUqaLq1atr/vz55jJPT0999tlneuihh1SxYkX1799fTzzxhBYvXmyW+fTTT3Xt2jX16tVLoaGh5qNv377ZOpdSymiwIUOGqGrVqmrYsKHy5cunuXPnmusXLlyosLAwNWjQINt12QzDMLK9lzwsNjZWfn5+iomJka+vr1PbMso2yqn15xYjjBHObkKuYJPN2U3INQzd05cpE33iOvpECvrEdfSJFPSJFPSH63h/mYL3l9fRJ1I4u0/k5OfQ+Ph4HThwQKVKlcpwgmvkHkuWLNGrr76qHTt2yMUl948JqlOnjvr06aNnn3023fW30v+YhBwAAAAAAOAOePzxx7V3714dO3ZMxYsXd3ZzMnX27Fk9+eST6tChQ47sjwAKAAAAAADgDunXr5+zm5AlgYGBGjRoUI7tL/eP9wIAAAAAAECeRgAFAAAAAAAASxFAAQAAAAAAwFIEUAAAAAAAALAUARQAAAAAAAAsRQAFAAAAAAAASxFAAQAAAAAAwFIEUAAAAAAAABZp2LCh5syZk6P7HDlypKpVq5aj+5SkOnXq6Lvvvsvx/UqSqyV7xW0ZqRHObkKuwFn4/2yGs1uQe3AqUtAnruNUpKBPXMepSEGfSMFpMPH+MgVn4Tr6RIp75SzYZLuj9Rm3eAHu2rWroqOj9cMPP+R4Ww4ePKhSpUpp69atlgQ1WbVo0SKdOnVKzzzzjLmsZ8+eWrlypY4fPy5vb2/Vq1dPEyZMUIUKFSRJ27dv1/jx47Vu3TqdPXtWJUuW1H//+1/17dvX8va+8cYb6t+/v/7zn//IxSVnxywxAgoAAAAAACADV69eve1tJ02apG7dujmEOTVq1ND06dO1a9cuLV++XIZhqGnTpkpKSpIkbdmyRYULF9asWbP0zz//6PXXX9eQIUM0efJky4+jRYsWunjxon766ads1ZUeAigAAAAAAJDr7NixQy1atJC3t7eCg4P13HPP6ezZs+b65ORkvf322ypTpozc3d0VFhamt956S5JUqlQpSVJ4eLhsNpsaNWokSWrUqJH69evnUE+bNm3UtWtX83nJkiU1evRode7cWb6+vurRo4ckad26dWrQoIE8PT1VvHhx9enTR5cuXcqw/WfOnNEvv/yiVq1aOSzv0aOHGjZsqJIlS6p69eoaM2aMjhw5ooMHD0qSnn/+eX344YeKiIhQ6dKl1alTJ3Xr1k0LFixIU8dXX32lkiVLys/PT88884wuXrxormvUqJF69+6tfv36KTAwUM2aNZNhGBo5cqTCwsLk7u6uIkWKqE+fPuY2+fLl02OPPaa5c+dmeFy3iwAKAAAAAADkKtHR0Xr44YcVHh6uzZs3a9myZTp16pTatWtnlhkyZIjGjx+vYcOGaefOnZozZ46Cg4MlSX/88YckaeXKlTpx4kS64U1m3nnnHT3wwAPaunWrhg0bpqioKDVv3lxt27bVX3/9pXnz5mndunXq3bt3hvtYt26dChQooIoVK2ZY5tKlS5o+fbpKlSql4sWLZ1guJiZGAQEBDsuioqL0ww8/aPHixVq8eLHWrFmj8ePHO5SZOXOm3NzctH79en3yySf67rvv9P7772vq1Knau3evfvjhB1WpUsVhm9q1a2vt2rWZnZ7bwhxQAAAAAAAgV5k8ebLCw8M1duxYc9kXX3yh4sWLa8+ePQoNDdWHH36oyZMnq0uXLpKk++67Tw899JAkKSgoSJJUqFAhhYSE3HL9Dz/8sAYOHGg+7969uzp27GiOnipbtqwmTZqkiIgITZkyRR4eHmn2cejQIQUHB6c7l9LHH3+sQYMG6dKlSypfvrxWrFghNze3dNuyYcMGzZs3T0uWLHFYnpycrBkzZsjHx0eS9Nxzz2nVqlXmKDB7O99++23z+ZIlSxQSEqJHHnlE+fPnV1hYmGrXru2w3yJFiujIkSNKTk7O0XmgGAEFAAAAAAByle3bt2v16tXy9vY2H/ZJuqOiorRr1y4lJCSoSZMmltRfs2bNNO2ZMWOGQ3uaNWum5ORkHThwIN19XLlyJd1gSpI6duyorVu3as2aNSpXrpzatWun+Pj4NOV27Nih1q1ba8SIEWratKnDupIlS5rhkySFhobq9OnTDmVq1Kjh8Pzpp5/WlStXVLp0ab344ov6/vvvde3aNYcynp6eSk5OVkJCQrptv12MgAIAAAAAALlKXFycWrVqpQkTJqRZFxoaqv3799/Wfl1cXGQYjt/Wl5iYmKacl5dXmvb07NnTYb4ku7CwsHTrCgwM1IULF9Jd5+fnJz8/P5UtW1Z16tRRwYIF9f3336tDhw5mmZ07d6pJkybq0aOH3njjjTT7yJ8/v8Nzm82m5OTkTI+jePHi+vfff7Vy5UqtWLFCL7/8siZOnKg1a9aY+zt//ry8vLzk6emZbttvFwEUAAAAAADIVapXr67vvvtOJUuWlKtr2uiibNmy8vT01KpVq9S9e/c06+23s9m/Wc4uKChIJ06cMJ8nJSVpx44daty48U3bs3PnTpUpUybLxxAeHq6TJ0/qwoULKliwYIblDMOQYRgOI47++ecfPfzww+rSpYvDLXU5wdPTU61atVKrVq3Uq1cvVahQQX///beqV68uKWXUVXh4eI7WKXELHgAAAAAAcJKYmBht27bN4XHkyBH16tVL58+fV4cOHbRp0yZFRUVp+fLl6tatm5KSkuTh4aHBgwdr0KBB+vLLLxUVFaXff/9dn3/+uSSpcOHC8vT0NCcvj4mJkZQyt9OSJUu0ZMkS7d69Wy+99JKio6Nv2s7Bgwdrw4YN6t27t7Zt26a9e/dq4cKFmU5CHh4ersDAQK1fv95ctn//fo0bN05btmzR4cOHtWHDBj399NPy9PTUY489JklmINa0aVMNGDBAJ0+e1MmTJ3XmzJlsnOkUM2bM0Oeff64dO3Zo//79mjVrljw9PVWiRAmzzNq1a9Pc7pcTCKAAAAAAAIBTREZGKjw83OExatQoFSlSROvXr1dSUpKaNm2qKlWqqF+/fvL39zcnxh42bJgGDhyo4cOHq2LFimrfvr05B5Krq6smTZqkqVOnqkiRImrdurUk6fnnn1eXLl3UuXNnRUREqHTp0jcd/SRJVatW1Zo1a7Rnzx41aNBA4eHhGj58uIoUKZLhNvny5VO3bt00e/Zsc5mHh4fWrl2rxx57TGXKlFH79u3l4+OjDRs2qHDhwpKkb7/9VmfOnNGsWbMUGhpqPmrVqnXb59nO399fn332merXr6+qVatq5cqV+vHHH1WoUCFJ0rFjx7RhwwZ169Yt23XdyGbcePPjPSY2NlZ+fn6KiYmRr6+vU9tiszm1+lzj3u6R19EfrqNPpKBPXEefSEGfuI4+kYI+kYL+cB19IgV94jr6RApn94mc/BwaHx+vAwcOqFSpUhlOeA3nOXnypCpXrqw///zTYZRRbjV48GBduHBBn376aZbK30r/YwQUAAAAAACABUJCQvT555/r8OHDzm5KlhQuXFijR4+2ZN+WTUKekJAgFxeXNLOyAwAAAAAA3CvatGnj7CZk2cCBAy3bd7ZGQP36668aPny4w4Rd586dU4sWLeTt7S0/Pz+99tpr2W0jAAAAAAAA8rBsBVDvvPOO5syZI39/f3PZwIEDtXz5cpUqVUr+/v6aOHGi5s+fn912AgAAAAAAII/KVgC1detWPfTQQ+bz+Ph4zZ8/X02bNtWePXv077//KiwsTFOmTMl2QwEAAAAAAJA3ZSuAOnfunIoWLWo+/+233xQfH29+XZ+Pj49atmypf//9N3utBAAAAAAAQJ6VrQDK09NTFy9eNJ+vXr1aNptNERER5jJvb29duHAhO9UAAAAAAAAgD8vWt+CVKVNGy5YtU0JCgmw2m+bOnatKlSopJCTELHP48GEVLlw42w0FAAAAAABA3pStEVAvvvii9u3bpzJlyqhixYqKiooyb7+z27JliypVqpStRgIAAAAAACDvylYA9cILL+jVV1/VlStXFBMTo5deekn9+vUz1//222/as2ePmjRpkt12AgAAAAAAWGrkyJGqVq2as5txV7IZhmFYtfOrV6/qypUr8vLykqtrtu72s0xsbKz8/PwUExMjX19fp7bFZnNq9bmGdT0yb6E/XEefSEGfuI4+kYI+cR19IgV9IgX94Tr6RAr6xHX0iRTO7hM5+Tk0Pj5eBw4cUKlSpeTh4eGw7k7/vG/1vHbt2lUzZ85Ms7xZs2ZatmxZDrXq1sTFxSkhIUGFChVySv15TWb970bZSoUefvhh1a9fX6NHj053vZubm9zc3LJTBQAAAAAAuEs1b95c06dPd1jm7u5uSV1Xr169aUbh7e0tb29vS+q/12XrFryNGzcqKSkpp9oCAAAAAADuIe7u7goJCXF4FCxYUJGRkXJzc9PatWvNsm+//bYKFy6sU6dOSZKOHDmidu3ayd/fXwEBAWrdurUOHjxolu/atavatGmjt956S0WKFFH58uUlSUePHlWHDh0UEBAgLy8v1axZUxs3bpSU9ha8yMhI1a5dW15eXvL391f9+vV16NAhc/3ChQtVvXp1eXh4qHTp0ho1apSuXbtm4RnLu7I1AqpChQoOJx4AAAAAACC7GjVqpH79+um5557T9u3btX//fg0bNkzffPONgoODlZiYqGbNmqlu3bpau3atXF1dNWbMGDVv3lx//fWXOdJp1apV8vX11YoVKySl3GIXERGhokWLatGiRQoJCdGff/6p5OTkNG24du2a2rRpoxdffFFff/21rl69qj/++EO2/39v49q1a9W5c2dNmjRJDRo0UFRUlHr06CFJGjFixB06U3lHtgKo//3vf+rdu7d27tzJN93lgMjINc5uQi4R4ewG5Ar0h9ToExJ9whF9QqJPOKJPSPSJ6+gPdvQJO/qEHX3Cjj6RWyxevDjNLW9Dhw7V0KFDNWbMGK1YsUI9evTQjh071KVLFz3xxBOSpHnz5ik5OVnTpk0zA6Hp06fL399fkZGRatq0qSTJy8tL06ZNMwOpTz/9VGfOnNGmTZsUEBAgSSpTpky6bYuNjVVMTIxatmyp++67T5JUsWJFc/2oUaP02muvqUuXLpKk0qVLa/To0Ro0aBABVDqyFUCVLl1ajRo1Up06ddSzZ0/VqlVLwcHB5g8/tYYNG2anKgAAAAAAcJdp3LixpkyZ4rDMHgy5ublp9uzZqlq1qkqUKKH333/fLLN9+3bt27dPPj4+DtvGx8crKirKfF6lShWHeZ+2bdum8PBws47MBAQEqGvXrmrWrJkeffRRPfLII2rXrp1CQ0PNNqxfv15vvfWWuU1SUpLi4+N1+fJlFShQ4BbOxN0vWwFUo0aNZLPZZBiG3n333XSDJzvmigIAAAAAAKl5eXllOAJJkjZs2CBJOn/+vM6fPy8vLy9JKbfS1ahRQ7Nnz06zTVBQkMP+U/P09Lyl9k2fPl19+vTRsmXLNG/ePL3xxhtasWKF6tSpo7i4OI0aNUpPPvlkmu1u9o1w96JsBVDDhw/PNHQCAAAAAAC4HVFRUerfv78+++wzzZs3T126dNHKlSvl4uKi6tWra968eSpcuLB8fX2zvM+qVatq2rRpOn/+fJZGQUlSeHi4wsPDNWTIENWtW1dz5sxRnTp1VL16df3777+ZBmi4LlsB1MiRI3OoGQAAAAAA4F6TkJCgkydPOixzdXVVwYIF1alTJzVr1kzdunVT8+bNVaVKFb377rt69dVX1bFjR02cOFGtW7fWm2++qWLFiunQoUNasGCBBg0apGLFiqVbX4cOHTR27Fi1adNG48aNU2hoqLZu3aoiRYqobt26DmUPHDigTz/9VE888YSKFCmif//9V3v37lXnzp0lpQzKadmypcLCwvTUU0/JxcVF27dv144dOzRmzBhrTlgelq0ACgAAAAAA4HYtW7bMnFPJrnz58nr22Wd16NAhLV68WJIUGhqqTz/9VB06dFDTpk31wAMP6Ndff9XgwYP15JNP6uLFiypatKiaNGmS6YgoNzc3/fzzzxo4cKAee+wxXbt2TZUqVdJHH32UpmyBAgW0e/duzZw5U+fOnVNoaKh69eqlnj17SpKaNWumxYsX680339SECROUP39+VahQQd27d8/BM3T3sBmGYTi7Ec4UGxsrPz8/xcTE3NKwPSusWcM3UkhSRATfSCHRH1KjT6SgT1xHn0hBn7iOPpGCPpGC/nAdfSIFfeI6+kQKZ/eJnPwcGh8frwMHDqhUqVLMO4Q77lb6X7ZGQLm4uGRpDiibzaZr165lpyoAAAAAAADkUdkKoBo2bJhuABUTE6O9e/fq0qVLeuCBB+Tv75+dagAAAAAAAJCHZSuAioyMzHDd5cuX9dprr2nZsmVasWJFdqoBAAAAAABAHuZi1Y4LFCigSZMmyc/PT6+++qpV1QAAAAAAACCXsyyAsmvQoIGWLFlidTUAAAAAAADIpSwPoM6cOaO4uDirqwEAAAAAAEAuZVkAlZycrK+++krz5s1TtWrVrKoGAAAAAAAAuVy2JiEvXbp0usuvXbum06dPKzExUfnz59e4ceOyUw0AAAAAAADysGwFUMnJybLZbGmW58+fX/fff79q1aql3r17q3LlytmpBgAAAAAAAHlYtgKogwcP5lAzAAAAAAAAcLfKVgAFAAAAAABypzVr1tzR+iIiIm5ru5MnT+qtt97SkiVLdOzYMRUuXFjVqlVTv3791KRJkxxupfUaNWqkatWq6YMPPnB2U3KVHAugjh07pm3btik2Nla+vr6qVq2aihYtmlO7BwAAAAAAd5mDBw+qfv368vf318SJE1WlShUlJiZq+fLl6tWrl3bv3u3sJiKHZPtb8Pbt26dHH31UYWFheuKJJ9SpUyc98cQTCgsLU9OmTbVv376caCcAAAAAALjLvPzyy7LZbPrjjz/Utm1blStXTpUrV9aAAQP0+++/S5IOHz6s1q1by9vbW76+vmrXrp1OnTpl7mPkyJGqVq2avvjiC4WFhcnb21svv/yykpKS9PbbbyskJESFCxfWW2+95VC3zWbT1KlT1bJlSxUoUEAVK1bUb7/9pn379qlRo0by8vJSvXr1FBUVZW7TtWtXtWnTxmE//fr1U6NGjcz1a9as0YcffiibzSabzWZOX7Rjxw61aNFC3t7eCg4O1nPPPaezZ8/m/EnNpbIVQB05ckQPPfSQVq1apfLly+vFF1/U8OHD1aNHD1WoUEErV65UgwYNdOTIkZxqLwAAAAAAuAucP39ey5YtU69eveTl5ZVmvb+/v5KTk9W6dWudP39ea9as0YoVK7R//361b9/eoWxUVJR++uknLVu2TF9//bU+//xzPf744zp69KjWrFmjCRMm6I033tDGjRsdths9erQ6d+6sbdu2qUKFCnr22WfVs2dPDRkyRJs3b5ZhGOrdu3eWj+nDDz9U3bp19eKLL+rEiRM6ceKEihcvrujoaD388MMKDw/X5s2btWzZMp06dUrt2rW7vZOXB2XrFrxRo0bp9OnT+vjjj9WzZ88034g3depUvfTSS3rzzTf12WefZauhAAAAAADg7rFv3z4ZhqEKFSpkWGbVqlX6+++/deDAARUvXlyS9OWXX6py5cratGmTatWqJUlKTk7WF198IR8fH1WqVEmNGzfWv//+q6VLl8rFxUXly5fXhAkTtHr1aj344IPm/rt162aGQIMHD1bdunU1bNgwNWvWTJLUt29fdevWLcvH5OfnJzc3NxUoUEAhISHm8smTJys8PFxjx441l33xxRcqXry49uzZo3LlymW5jrwqWwHU8uXL1apVK/33v/9Nd33Pnj21dOlS/fTTT9mpBgAAAAAA3GUMw7hpmV27dql48eJm+CRJlSpVkr+/v3bt2mUGUCVLlpSPj49ZJjg4WPny5ZOLi4vDstOnTzvsv2rVqg7rJalKlSoOy+Lj4835rm/X9u3btXr1anl7e6dZFxUVRQB1M6dPn9b999+faZn7779fy5Yty041AAAAAADgLlO2bFnZbLYcmWg8f/78Ds9tNlu6y5KTkzPczn5XV3rL7Nu5uLikCc4SExNv2r64uDi1atVKEyZMSLMuNDT0ptvfDbI1B1RQUJB27tyZaZmdO3cqKCgoO9UAAAAAAIC7TEBAgJo1a6aPPvpIly5dSrM+OjpaFStW1JEjRxzmlt65c6eio6NVqVKlO9lcSSk5yIkTJxyWbdu2zeG5m5ubkpKSHJZVr15d//zzj0qWLKkyZco4PNKb/+pulK0AqlmzZlq0aJE+//zzdNd/8cUX+vHHH9W8efPsVAMAAAAAAO5CH330kZKSklS7dm1999132rt3r3bt2qVJkyapbt26euSRR1SlShV17NhRf/75p/744w917txZERERqlmz5h1v78MPP6zNmzfryy+/1N69ezVixAjt2LHDoUzJkiW1ceNGHTx4UGfPnlVycrJ69eql8+fPq0OHDtq0aZOioqK0fPlydevWLU1YdbfKVgA1YsQIFSpUSD169FCVKlXUu3dvjR49Wr1791bVqlX14osvqlChQhoxYkROtRcAAAAAANwlSpcurT///FONGzfWwIEDdf/99+vRRx/VqlWrNGXKFNlsNi1cuFAFCxZUw4YN9cgjj6h06dKaN2+eU9rbrFkzDRs2TIMGDVKtWrV08eJFde7c2aHMK6+8onz58qlSpUoKCgrS4cOHVaRIEa1fv15JSUlq2rSpqlSpon79+snf399hnqq7mc3Iyqxfmdi7d6969uypyMjINOsaN26sKVOm5OrJtGJjY+Xn56eYmJhsTSiWE9asWePU+nOLiIgIZzchV6A/XEefSEGfuI4+kYI+cR19IgV9IgX94Tr6RAr6xHX0iRTO7hM5+Tk0Pj5eBw4cUKlSpeTh4ZFDLQSy5lb6X7YmIZdSJg375ZdfdOTIEW3bts2cGb5atWoOs9QDAAAAAADg3pTtAMruxq9FBAAAAAAAAKTbCKBefvnlW67EZrPpo48+uuXtAAAAAAAAkPfdcgD1ySefpLvcZrMpo+mkCKAAAAAAAADuXbccQK1evTrNshkzZujLL79Mdx0AAAAAAADubbccQKX3bQH2b8Bz9jcJAAAAAAAAIPdxcXYDAAAAAAAAcHcjgAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAABw1+vatavatGnj7Gbcs255EnIAAAAAAJAHzLHd2fqeNW6peNeuXTVz5kz17NlTn3zyicO6Xr166eOPP1aXLl00Y8aMHGwknOWWA6jHHnsszbJ9+/ZluE6SbDablixZcqtVAQAAAACAu1jx4sU1d+5cvf/++/L09JQkxcfHa86cOQoLC3Ny65CTbjmAWrZs2S2vs9nucOoKAAAAAAByverVqysqKkoLFixQx44dJUkLFixQWFiYSpUqZZZLTk7WhAkT9Omnn+rkyZMqV66chg0bpqeeekqSlJSUpB49euiXX37RyZMnFRYWppdffll9+/bNsO5vv/1Wo0aN0r59+1SgQAGFh4dr4cKF8vLysvag71G3HEAdOHDAinYAAAAAAIB70PPPP6/p06ebAdQXX3yhbt26KTIy0iwzbtw4zZo1S5988onKli2rX3/9VZ06dVJQUJAiIiKUnJysYsWK6ZtvvlGhQoW0YcMG9ejRQ6GhoWrXrl2aOk+cOKEOHTro7bff1n/+8x9dvHhRa9eulWHc2m2EyLpbDqBKlChhRTsAAAAAAMA9qFOnThoyZIgOHTokSVq/fr3mzp1rBlAJCQkaO3asVq5cqbp160qSSpcurXXr1mnq1KmKiIhQ/vz5NWrUKHOfpUqV0m+//ab58+dnGEBdu3ZNTz75pJlzVKlSxeIjvbcxCTkAAAAAAHCaoKAgPf7445oxY4YMw9Djjz+uwMBAc/2+fft0+fJlPfroow7bXb16VeHh4ebzjz76SF988YUOHz6sK1eu6OrVq6pWrVq6dT7wwANq0qSJqlSpombNmqlp06Z66qmnVLBgQUuOEQRQAAAAAADAyZ5//nn17t1bUkqQlFpcXJwkacmSJSpatKjDOnd3d0nS3Llz9corr+jdd99V3bp15ePjo4kTJ2rjxo3p1pcvXz6tWLFCGzZs0M8//6z/+7//0+uvv66NGzc6zD2FnEMABQAAAAAAnKp58+a6evWqbDabmjVr5rCuUqVKcnd31+HDhxUREZHu9uvXr1e9evX08ssvm8uioqIyrdNms6l+/fqqX7++hg8frhIlSuj777/XgAEDsn9ASIMACgAAAAAAOFW+fPm0a9cu8/+p+fj46JVXXlH//v2VnJyshx56SDExMVq/fr18fX3VpUsXlS1bVl9++aWWL1+uUqVK6auvvtKmTZsyHM20ceNGrVq1Sk2bNlXhwoW1ceNGnTlzRhUrVrT8WO9VBFAAAAAAAMDpfH19M1w3evRoBQUFady4cdq/f7/8/f1VvXp1DR06VJLUs2dPbd26Ve3bt5fNZlOHDh308ssv66effsqwrl9//VUffPCBYmNjVaJECb377rtq0aKFJccGAigAAAAAAO5OzxrObkGmZsyYken6H374wfy/zWZT37591bdv33TLuru7a/r06Zo+fbrD8nHjxqVbX8WKFbVs2bJbbjNuHwFULhJxrJGzm5BL5O6L5J1Cf0iNPiHRJxzRJyT6hCP6hESfuI7+YEefsKNP2NEn7OgTwJ3m4uwGAAAAAAAA4O5GAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAuGtFRkbKZrMpOjra2U25p7k6uwEAAAAAACDnVWvT5o7Wt+2HH26pfNeuXRUdHa0fbtguMjJSjRs31oULF+Tv75/tdtWrV08nTpyQn59ftveF20cABQAAAAAA7lpubm4KCQlxdjPuedyCBwAAAAAAcp1Lly7J19dX3377rcPyH374QV5eXrp48aIkacOGDapWrZo8PDxUs2ZN/fDDD7LZbNq2bZuk9G/BW7dunRo0aCBPT08VL15cffr00aVLl8z1JUuW1NixY/X888/Lx8dHYWFh+vTTTx3aceTIEbVr107+/v4KCAhQ69atdfDgQUvOxd2AAAoAAAAAAOQ6Xl5eeuaZZzR9+nSH5dOnT9dTTz0lHx8fxcbGqlWrVqpSpYr+/PNPjR49WoMHD850v1FRUWrevLnatm2rv/76S/PmzdO6devUu3dvh3Lvvvuuatasqa1bt+rll1/WSy+9pH///VeSlJiYqGbNmsnHx0dr167V+vXr5e3trebNm+vq1as5eyLuEtyCBwAAAAAAnGLx4sXy9vZ2WJaUlGT+v3v37uYcTqGhoTp9+rSWLl2qlStXSpLmzJkjm82mzz77TB4eHqpUqZKOHTumF198McM6x40bp44dO6pfv36SpLJly2rSpEmKiIjQlClT5OHhIUl67LHH9PLLL0uSBg8erPfff1+rV69W+fLlNW/ePCUnJ2vatGmy2WySUoIxf39/RUZGqmnTpjl2ju4WjIACAAAAAABO0bhxY23bts3hMW3aNHN97dq1VblyZc2cOVOSNGvWLJUoUUINGzaUJP3777+qWrWqGRrZt8nM9u3bNWPGDHl7e5uPZs2aKTk5WQcOHDDLVa1a1fy/zWZTSEiITp8+be5j37598vHxMfcREBCg+Ph4RUVFZf/E3IUYAQUAAAAAAJzCy8tLZcqUcVh29OhRh+fdu3fXRx99pNdee03Tp09Xt27dzFFHtyMuLk49e/ZUnz590qwLCwsz/58/f36HdTabTcnJyeY+atSoodmzZ6fZR1BQ0G237W5GAAUAAAAAAHKtTp06adCgQZo0aZJ27typLl26mOvKly+vWbNmKSEhQe7u7pKkTZs2Zbq/6tWra+fOnWmCr1tRvXp1zZs3T4ULF5avr+9t7+dewi14AAAAAAAg1ypYsKCefPJJvfrqq2ratKmKFStmrnv22WeVnJysHj16aNeuXVq+fLneeecdScpwlNTgwYO1YcMG9e7dW9u2bdPevXu1cOHCNJOQZ6Zjx44KDAxU69attXbtWh04cECRkZHq06dPmhFcSJHrAqi4uDiNGDFCzZs3V0BAgGw2m2bMmJFu2V27dql58+bmvZbPPfeczpw5c2cbDAAAAAAALPXCCy/o6tWrev755x2W+/r66scff9S2bdtUrVo1vf766xo+fLgkOcwLlVrVqlW1Zs0a7dmzRw0aNFB4eLiGDx+uIkWKZLk9BQoU0K+//qqwsDA9+eSTqlixol544QXFx8czIioDue4WvLNnz+rNN99UWFiYHnjgAUVGRqZb7ujRo2rYsKH8/Pw0duxYxcXF6Z133tHff/+tP/74Q25ubne24QAAAAAA5CLbfvjB2U3IVEaDTRo1aiTDMByWHTt2TIUKFVLr1q3TlK9Xr562b99uPp89e7by589vzueU3v5q1aqln3/+OcO2HTx4MM2ybdu2OTwPCQkxJ0fHzeW6ACo0NFQnTpxQSEiINm/erFq1aqVbbuzYsbp06ZK2bNlidqratWvr0Ucf1YwZM9SjR4872WwAAAAAAJDDLl++rBMnTmj8+PHq2bNnuoNNvvzyS5UuXVpFixbV9u3bNXjwYLVr106enp5OaDEykutuwXN3d1dISMhNy3333Xdq2bKlwwz1jzzyiMqVK6f58+db2UQAAAAAAHAHvP3226pQoYJCQkI0ZMiQdMucPHlSnTp1UsWKFdW/f389/fTT+vTTT+9wS3EzuW4EVFYcO3ZMp0+fVs2aNdOsq127tpYuXeqEVgEAAAAAgJw0cuRIjRw5MtMygwYN0qBBg+5Mg3Db8mQAdeLECUkpt+vdKDQ0VOfPn3f4CsbUEhISlJCQYD6PjY21rqEAAAAAAADIfbfgZcWVK1ckKd2AyT7Lvb3MjcaNGyc/Pz/zUbx4cesaCgAAAAAAgLwZQNknEks9kskuPj7eocyNhgwZopiYGPNx5MgR6xoKAAAAAACAvHkLnv3WO/uteKmdOHFCAQEB6Y6OklJGTWW0DgAAAAAAADkvT46AKlq0qIKCgrR58+Y06/744w9Vq1btzjcKAAAAAAAA6cqTAZQktW3bVosXL3a4hW7VqlXas2ePnn76aSe2DAAAAAAAAKnlylvwJk+erOjoaB0/flyS9OOPP+ro0aOSpP/973/y8/PT0KFD9c0336hx48bq27ev4uLiNHHiRFWpUkXdunVzZvMBAAAAAEAOsNls+v7779WmTRtnNwXZlCsDqHfeeUeHDh0yny9YsEALFiyQJHXq1Mn89ro1a9ZowIABeu211+Tm5qbHH39c7777LnM8AQAAAACw23Zn66tg3PImZ86c0fDhw7VkyRKdOnVKBQsW1AMPPKDhw4erfv36FjQSzpIrA6iDBw9mqVzlypW1fPlyaxsDAAAAAAAs0bZtW129elUzZ85U6dKlderUKa1atUrnzp1zdtOQw/LsHFAAAAAAACDvio6O1tq1azVhwgQ1btxYJUqUUO3atTVkyBA98cQT6W5z5MgRtWvXTv7+/goICFDr1q3TDGKZNm2aKlasKA8PD1WoUEEff/yxue7gwYOy2WyaO3eu6tWrJw8PD91///1as2aNlYcKEUABAAAAAAAn8Pb2lre3t3744QclJCTctHxiYqKaNWsmHx8frV27VuvXr5e3t7eaN2+uq1evSpJmz56t4cOH66233tKuXbs0duxYDRs2TDNnznTY16uvvqqBAwdq69atqlu3rlq1asWoK4sRQAEAAAAAgDvO1dVVM2bM0MyZM+Xv76/69etr6NCh+uuvv9ItP2/ePCUnJ2vatGmqUqWKKlasqOnTp+vw4cOKjIyUJI0YMULvvvuunnzySZUqVUpPPvmk+vfvr6lTpzrsq3fv3mrbtq0qVqyoKVOmyM/PT59//rnVh3xPI4ACAAAAAABO0bZtWx0/flyLFi1S8+bNFRkZqerVq2vGjBlpym7fvl379u2Tj4+POXoqICBA8fHxioqK0qVLlxQVFaUXXnjBXO/t7a0xY8YoKirKYV9169Y1/+/q6qqaNWtq165dVh/uPS1XTkIOAAAAAADuDR4eHnr00Uf16KOPatiwYerevbtGjBihrl27OpSLi4tTjRo1NHv27DT7CAoKUlxcnCTps88+04MPPuiwPl++fJa1H1nDCCgAAAAAAJBrVKpUSZcuXUqzvHr16tq7d68KFy6sMmXKODz8/PwUHBysIkWKaP/+/WnWlypVymFfv//+u/n/a9euacuWLapYsaLlx3YvI4ACAAAAAAB33Llz5/Twww9r1qxZ+uuvv3TgwAF98803evvtt9W6des05Tt27KjAwEC1bt1aa9eu1YEDBxQZGak+ffro6NGjkqRRo0Zp3LhxmjRpkvbs2aO///5b06dP13vvveewr48++kjff/+9du/erV69eunChQt6/vnn78hx36u4BQ8AAAAAANxx3t7eevDBB/X+++8rKipKiYmJKl68uF588UUNHTo0TfkCBQro119/1eDBg/Xkk0/q4sWLKlq0qJo0aSJfX19JUvfu3VWgQAFNnDhRr776qry8vFSlShX169fPYV/jx4/X+PHjtW3bNpUpU0aLFi1SYGDgnTjsexYBFAAAAAAAd6MKhrNbkCl3d3eNGzdO48aNy7CMYTgeQ0hIiGbOnJnpfp999lk9++yzmZapWLGiNm7cmPXGItu4BQ8AAAAAAACWIoACAAAAAACApbgFDwAAAAAA3BNKliyZ5rY+3BmMgAIAAAAAAIClCKAAAAAAAMjjGNUDZ7iVfkcABQAAAABAHpU/f35J0uXLl53cEtyLrl69KknKly/fTcsyBxQAAAAAAHlUvnz55O/vr9OnT0uSChQoIJvN5uRW4V6QnJysM2fOqECBAnJ1vXm8RAAFAAAAAEAeFhISIklmCAXcKS4uLgoLC8tS6EkAlYtUm9/a2U3IFbY96+wW5A70h+voEynoE9fRJ1LQJ66jT6SgT6SgP1xHn0hBn7iOPpHibusTNptNoaGhKly4sBITE53dHNxD3Nzc5OKStdmdCKAAAAAAALgL5MuXL0tz8QDOwCTkAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxFAAUAAAAAAABLEUABAAAAAADAUgRQAAAAAAAAsBQBFAAAAAAAACxlMwzDcHYjnCk2NlZ+fn6KiYmRr6+vcxuz2+bc+nOLCvd0l7yO/nAdfSIFfeI6+kQK+sR19IkU9IkU9Ifr6BMp6BPX0SdSOLlP5KrPocAdwggoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAICl8mwAFRkZKZvNlu7j999/d3bzAAAAAAAA8P+5OrsB2dWnTx/VqlXLYVmZMmWc1BoAAAAAAADcKM8HUA0aNNBTTz3l7GYAAAAAAAAgA3n2FrzULl68qGvXrjm7GQAAAAAAAEhHng+gunXrJl9fX3l4eKhx48bavHmzs5sEAAAAAACAVPLsLXhubm5q27atHnvsMQUGBmrnzp1655131KBBA23YsEHh4eHpbpeQkKCEhATzeWxs7J1qMgAAAAAAwD3JZhiG4exG5JR9+/apatWqatiwoZYtW5ZumZEjR2rUqFFplsfExMjX19fqJmZut8259ecWFe6aLpk99Ifr6BMp6BPX0SdS0Ceuo0+koE+koD9cR59IQZ+4jj6Rwsl9IjY2Vn5+frnjcyhwh+T5W/BSK1OmjFq3bq3Vq1crKSkp3TJDhgxRTEyM+Thy5MgdbiUAAAAAAMC9Jc/egpeR4sWL6+rVq7p06VK6SbK7u7vc3d2d0DIAAAAAAIB70101AkqS9u/fLw8PD3l7ezu7KQAAAAAAAFAeDqDOnDmTZtn27du1aNEiNW3aVC4uefbQAAAAAAAA7ip59ha89u3by9PTU/Xq1VPhwoW1c+dOffrppypQoIDGjx/v7OYBAAAAAADg/8uzAVSbNm00e/Zsvffee4qNjVVQUJCefPJJjRgxQmXKlHF28wAAAAAAAPD/5dkAqk+fPurTp4+zmwEAAAAAAICbYKIkAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAAAAAABgKQIoAAAAAAAAWIoACgAAAAAAAJYigAIAAAAAAIClCKAAAMD/a+/ew2rK/j+Av0+Hzkmlppspl1JRyrjV8J1kXJNEGEQZYRS+GYYZZr7m5jIug8HQiDFMjMJUjDsJzSC5X8Zt3JJLzESoJEWt3x9+Z0+7c6KQivfreXp6ztrr7PM5Z62999pr770WEREREVGZYgcUERERERERERGVKXZAERERERERERFRmWIHFBERERERERERlSl2QBERERERERERUZliBxQREREREREREZUpdkAREREREREREVGZYgcUERERERERERGVKXZAERERERERERFRmWIHFBERERERERERlSl2QBERERERERERUZliBxQREREREREREZUpdkAREREREREREVGZYgcUERERERERERGVKXZAERERERERERFRmWIHFBERERERERERlSl2QBERERERERERUZliBxQREREREREREZUpdkAREREREREREVGZYgcUERERERERERGVKXZAERERERERERFRmWIHFBERERERERERlSl2QBERERERERERUZliBxQREREREREREZUpdkAREREREREREVGZYgcUERERERERERGVqUrdAZWbm4vPPvsMNjY2MDAwQIsWLRAfH1/eYRERERERERERUSGVugNq4MCBmD17Nvr164e5c+dCqVSic+fO2LNnT3mHRkRERERERERE/69KeQfwrA4cOIBVq1Zh5syZGDNmDAAgKCgIDRs2xKeffoq9e/eWc4RERERERERERARU4jugYmNjoVQqMWTIEClNrVZj8ODBSEpKwtWrV8sxOiIiIiIiIiIi0qi0HVBHjx5F/fr1Ub16dVl68+bNAQDHjh0rh6iIiIiIiIiIiKioSvsI3o0bN2Btba2Vrkm7fv26zvfl5uYiNzdXep2RkQEAyMzMLIMoS+leeQdQQVSEsqgIWB/+xTrxGOvEv1gnHmOd+BfrxGOsE4+xPvyLdeIx1ol/sU48Vs51QnP+KYQo1ziIXqZK2wGVk5MDlUqlla5Wq6XlukybNg0TJ07USq9du/aLDZCeg0l5B0AVDusEFcU6QUWxTlBhrA9UFOsEFVUx6kRWVhZMTCpGLERlrdJ2QBkYGMjuZNJ48OCBtFyXcePG4eOPP5ZeFxQU4Pbt2zA3N4dCoSibYCuJzMxM1K5dG1evXtV6tJFeT6wTVBTrBBXG+kBFsU5QUawTVBTrxGNCCGRlZcHGxqa8QyF6aSptB5S1tTVSU1O10m/cuAEAxW7IKpVK684pU1PTFx5fZVa9evXX+mBA2lgnqCjWCSqM9YGKYp2golgnqCjWCfDOJ3rtVNpByJs0aYJz585pjd20f/9+aTkREREREREREZW/StsB1atXL+Tn52PRokVSWm5uLiIiItCiRQuO6UREREREREREVEFU2kfwWrRogd69e2PcuHFIS0uDo6Mjli1bhpSUFCxZsqS8w6uUVCoVxo8fr3Nwd3o9sU5QUawTVBjrAxXFOkFFsU5QUawTRK8vhajE8z4+ePAAX331FSIjI3Hnzh00atQI33zzDby9vcs7NCIiIiIiIiIi+n+VugOKiIiIiIiIiIgqvko7BhQREREREREREVUO7IAiIiIiIiIiIqIyxQ4oKjGFQoEJEyaUdxhUAU2YMAEKhaK8w6AK5vfff4dCocDvv/9e3qHQU7Rp0wZt2rQp7zCKVdHjqww022NsbGx5h/JUAwcOhJ2dXXmHQSVUmn09t2V6HmxXEFV+7ICqwE6cOIFevXrB1tYWarUaNWvWhJeXF8LCwso7NHrJli5dCoVCAYVCgT179mgtF0Kgdu3aUCgU6NKlSzlESC+Dpg487Y8Ns8onOjoaCoUCv/32m9ayxo0bQ6FQICEhQWtZnTp14OHh8TJCpAqI+wR6kQq3NYr+/e9//yvv8OgFeJHnFuHh4Vi6dOmLD5KIXmlVyjsA0m3v3r1o27Yt6tSpg5CQELz55pu4evUq9u3bh7lz52LEiBHlHSKVA7VajRUrVsDT01OW/scff+DatWuczvYVt3z5ctnrX375BfHx8VrpDRo0eJlh0Qug2ab37NmDHj16SOmZmZk4efIkqlSpgsTERLRt21ZadvXqVVy9ehV9+/Z96fFSxVCafcKZM2deZmhUiU2aNAl169aVpTVs2LDY/O+++y5ycnKgr69f1qHRc3jR5xbh4eGwsLDAwIEDyyZgInolsQOqgpoyZQpMTExw8OBBmJqaypalpaWVT1BU7jp37oyYmBjMmzcPVar8u/muWLECbm5uuHXrVjlGR2Xt/fffl73et28f4uPjtdKp8rGxsUHdunW17nBMSkqCEAK9e/fWWqZ5XbRDml4fpdknvKwOqAcPHkBfXx96erzJvrLy8fGBu7v7U/MVLmu1Wv0SIqPnURnOLYQQePDgAQwMDMo7FCIqI2wdVFAXL16Eq6ur1gECAKysrAAAKSkpUCgUOm9/LTpek2aMngsXLmDgwIEwNTWFiYkJBg0ahPv378vem5ubi9GjR8PS0hLGxsbw8/PDtWvXtD7j8uXLCA0NhZOTEwwMDGBubo7evXsjJSVFypOcnAyFQoE5c+ZovX/v3r1QKBRYuXJlyX4UQkBAANLT0xEfHy+l5eXlITY2FoGBgVr5s7Oz8cknn6B27dpQqVRwcnLCd999ByGELJ9CocCHH36ItWvXomHDhlCpVHB1dcXWrVu11rlnzx68/fbbUKvVcHBwwI8//qgz1oiICLRr1w5WVlZQqVRwcXHBggULZHkGDBgACwsLPHz4UOv9HTt2hJOTU4l+F/qXnZ2dzquRusbdyM3Nxfjx4+Ho6AiVSoXatWvj008/RW5urixffHw8PD09YWpqCiMjIzg5OeHzzz+X5bl27Rq6d+8OQ0NDWFlZYfTo0VrrAYDdu3ejd+/eqFOnjvSZo0ePRk5OjpQnIiICCoUCR48e1Xr/1KlToVQqkZqaWopfpXLw9PTE0aNHZb9FYmIiXF1d4ePjg3379qGgoEC2TKFQoGXLlgCAyMhIuLm5wcDAAGZmZujbty+uXr2q9TmLFi2Cg4MDDAwM0Lx5c+zevVsrj2acjejoaEyZMgW1atWCWq1G+/btceHCBa38+/fvR6dOnWBiYoJq1aqhdevWSExMlOXJysrCqFGjYGdnB5VKBSsrK3h5eeHIkSOlji8vLw9ff/013NzcYGJiAkNDQ7Rq1Ur2mKIQAnZ2dujWrZvW+x88eAATExMMHTpUa9mrrqCg4KllWtL9iKaerFq1Cl9++SVq1qyJatWqITMzEw8fPsTEiRNRr149qNVqmJubw9PTU3b8AiAdd9RqNRo2bKjzMVQA+O677+Dh4QFzc3MYGBjAzc1Nazyr1q1bo3Hjxjrf7+TkBG9v7xL8QqTLk8q6uHF5uC1XLCU5twBK1n6zs7PDqVOn8Mcff0iPaWr2DcWNC6p5xLPweYKdnR26dOmCuLg4uLu7w8DAQGpXsl1B9GriHVAVlK2tLZKSknDy5Mkn3vZcWv7+/qhbty6mTZuGI0eOYPHixbCyssL06dOlPMHBwYiMjERgYCA8PDywc+dO+Pr6aq3r4MGD2Lt3L/r27YtatWohJSUFCxYsQJs2bXD69GlUq1YN9vb2aNmyJaKiojB69GjZ+6OiomBsbKyzQUG62dnZ4Z133sHKlSvh4+MDANiyZQsyMjLQt29fzJs3T8orhICfnx8SEhIwePBgNGnSBHFxcRg7dixSU1O1OgX37NmDNWvWIDQ0FMbGxpg3bx569uyJK1euwNzcHMDjsQM6duwIS0tLTJgwAY8ePcL48eNRo0YNrVgXLFgAV1dX+Pn5oUqVKtiwYQNCQ0NRUFCA4cOHAwD69++PX375BXFxcbKxq/7++2/s3LkT48ePf+G/IT1WUFAAPz8/7NmzB0OGDEGDBg1w4sQJzJkzB+fOncPatWsBAKdOnUKXLl3QqFEjTJo0CSqVChcuXJB1LuTk5KB9+/a4cuUKRo4cCRsbGyxfvhw7d+7U+tyYmBjcv38f//3vf2Fubo4DBw4gLCwM165dQ0xMDACgV69eGD58OKKiotC0aVPZ+6OiotCmTRvUrFmz7H6ccuLp6Ynly5dj//79UkM+MTERHh4e8PDwQEZGBk6ePIlGjRpJy5ydnWFubo4pU6bgq6++gr+/P4KDg3Hz5k2EhYXh3XffxdGjR6UTjiVLlmDo0KHw8PDAqFGjkJycDD8/P5iZmaF27dpaMX377bfQ09PDmDFjkJGRgRkzZqBfv37Yv3+/lGfnzp3w8fGBm5sbxo8fDz09PekEZvfu3WjevDkAYNiwYYiNjcWHH34IFxcXpKenY8+ePThz5gyaNWtWqvgyMzOxePFiBAQEICQkBFlZWViyZAm8vb1x4MABNGnSBAqFAu+//z5mzJiB27dvw8zMTHr/hg0bkJmZ+VrePViSMi2tb775Bvr6+hgzZgxyc3Ohr6+PCRMmYNq0aQgODkbz5s2RmZmJQ4cO4ciRI/Dy8gIAbNu2DT179oSLiwumTZuG9PR0DBo0CLVq1dL6jLlz58LPzw/9+vVDXl4eVq1ahd69e2Pjxo1SG6V///4ICQnRajsdPHgQ586dw5dffvnM3/F1kpGRUewd1brKWhduyxVPSc8tStJ++/777zFixAgYGRnhiy++AACdbcGSOHv2LAICAjB06FCEhITAycmJ7QqiV5mgCmnbtm1CqVQKpVIp3nnnHfHpp5+KuLg4kZeXJ+W5dOmSACAiIiK03g9AjB8/Xno9fvx4AUB88MEHsnw9evQQ5ubm0utjx44JACI0NFSWLzAwUGud9+/f1/rcpKQkAUD88ssvUtqPP/4oAIgzZ85IaXl5ecLCwkIMGDDgaT8FCSEiIiIEAHHw4EHxww8/CGNjY+n37927t2jbtq0QQghbW1vh6+srhBBi7dq1AoCYPHmybF29evUSCoVCXLhwQUoDIPT19WVpx48fFwBEWFiYlNa9e3ehVqvF5cuXpbTTp08LpVIpiu5OdNUPb29vYW9vL73Oz88XtWrVEn369JHlmz17tlAoFCI5OblkP9Bravjw4Vq/u62trc7tqnXr1qJ169bS6+XLlws9PT2xe/duWb6FCxcKACIxMVEIIcScOXMEAHHz5s1i4/j+++8FABEdHS2lZWdnC0dHRwFAJCQkSOm66sW0adOEQqGQ1auAgABhY2Mj8vPzpbQjR44Uu897FZw6dUoAEN98840QQoiHDx8KQ0NDsWzZMiGEEDVq1BDz588XQgiRmZkplEqlCAkJESkpKUKpVIopU6bI1nfixAlRpUoVKT0vL09YWVmJJk2aiNzcXCnfokWLBABZ/UhISBAARIMGDWR5586dKwCIEydOCCGEKCgoEPXq1RPe3t6ioKBAynf//n1Rt25d4eXlJaWZmJiI4cOHF/v9SxPfo0ePZHmEEOLOnTuiRo0asuPc2bNnBQCxYMECWV4/Pz9hZ2cni/lVoGufoFHSMhWi5PsRzTrt7e21tu3GjRtLx6PiNGnSRFhbW4u7d+9Kadu2bRMAhK2trSxv0fXn5eWJhg0binbt2klpd+/eFWq1Wnz22WeyvCNHjhSGhobi3r17T4zndadpa+j6e1JZa5Zp9vXcliumkpxbCFGy9psQQri6usrKUkNzzlGUpn5dunRJSrO1tRUAxNatW2V52a4genXxEbwKysvLC0lJSfDz88Px48cxY8YMeHt7o2bNmli/fv0zr3fYsGGy161atUJ6ejoyMzMBAJs3bwYAjBw5UpZv1KhRWusq/Hz2w4cPkZ6eDkdHR5iamsoeqfD394darUZUVJSUFhcXh1u3bvGK1TPw9/dHTk4ONm7ciKysLGzcuFHn43ebN2+GUqnUKstPPvkEQghs2bJFlt6hQwc4ODhIrxs1aoTq1asjOTkZAJCfn4+4uDh0794dderUkfI1aNBA52MNheuH5mpq69atkZycjIyMDACAnp4e+vXrh/Xr1yMrK0vKHxUVBQ8PD61BUOnFiYmJQYMGDeDs7Ixbt25Jf+3atQMA6fEHzZ0z69atkz3+VdjmzZthbW2NXr16SWnVqlXDkCFDtPIWrhfZ2dm4desWPDw8IISQ3RofFBSE69evyx7DiIqKgoGBAXr27PnsX7wCa9CgAczNzaWxnY4fP47s7GxpljsPDw/pzrOkpCTk5+fD09MTa9asQUFBAfz9/WVl+eabb6JevXrSb3jo0CGkpaVh2LBhsrsWBg4cCBMTE50xDRo0SJa3VatWACDtF44dO4bz588jMDAQ6enp0mdnZ2ejffv22LVrl1RvTE1NsX//fly/fl3nZ5UmPqVSKeUpKCjA7du38ejRI7i7u8uOP/Xr10eLFi1kx5/bt29jy5Yt6Nevn87HRF51TyvTZzFgwACtMVtMTU1x6tQpnD9/Xud7bty4gWPHjmHAgAGy8vXy8oKLi4tW/sLrv3PnDjIyMtCqVStZeZuYmKBbt25YuXKl9Kh5fn4+fv31V+lRHnq6+fPnIz4+Xvanoausi+K2XDGV9NyiJO23F6lu3bpa7Ui2K4heXeyAqsDefvttrFmzBnfu3MGBAwcwbtw4ZGVloVevXjh9+vQzrbNwxwEAvPHGGwAeN+aAx+M66enpyToiAOgciycnJwdff/21NL6QhYUFLC0tcffuXdkBytTUFF27dsWKFSuktKioKNSsWVM62aWSs7S0RIcOHbBixQqsWbMG+fn5sgO0xuXLl2FjYwNjY2NZumaGtMuXL8vSi9YN4HH90NSNmzdvIicnB/Xq1dPKp6t+JCYmokOHDjA0NISpqSksLS2lcYMK14+goCDk5ORI436cPXsWhw8fRv/+/Z/4O9DzOX/+PE6dOgVLS0vZX/369QH8OyBpnz590LJlSwQHB6NGjRro27cvoqOjZZ1Rly9fhqOjo9YJgK56ceXKFQwcOBBmZmYwMjKCpaUlWrduDUBeL7y8vGBtbS2dbBQUFGDlypXo1q2bVp1+VSgUCnh4eEhjPSUmJsLKygqOjo4A5B1Qmv+enp44f/48hBCoV6+eVnmeOXNGKkvNNl90G65atSrs7e11xvS0Y4amc2HAgAFan7148WLk5uZK5TpjxgycPHkStWvXRvPmzTFhwgRZp0dp41u2bBkaNWokjS9kaWmJTZs2aZ0gBQUFITExUVp/TEwMHj58+NruY55Wps9C18WCSZMm4e7du6hfvz7eeustjB07Fn/++ae0vLjyBnTvOzZu3Ij//Oc/UKvVMDMzg6WlJRYsWKCzvK9cuSKNN7R9+3b8888/r215P4vmzZujQ4cOsj+NklwY4rZccZXk3KKk7bcXRVedYruC6NXFDqhKQF9fH2+//TamTp2KBQsW4OHDh4iJiSn2ak9+fn6x61IqlTrTRZFBqUtixIgRmDJlCvz9/REdHY1t27YhPj4e5ubmWndKBAUFITk5GXv37kVWVhbWr1+PgIAAzpLzjAIDA7FlyxYsXLgQPj4+OgeULK0XWTcuXryI9u3b49atW5g9ezY2bdqE+Ph4aRywwvXDxcUFbm5uiIyMBPB4IGV9fX34+/s/w7egku4XCgoK8NZbb2ld5db8hYaGAnh8ZXHXrl3Yvn07+vfvjz///BN9+vSBl5fXE/c1xcXg5eWFTZs24bPPPsPatWsRHx8vTaRQuF4olUoEBgZi9erVePDgARISEnD9+vVX/q5JT09PZGRk4MSJE9L4TxoeHh64fPkyUlNTsWfPHtjY2MDe3h4FBQVQKBTYunWrzrIsbqKAknjafkFTZjNnziy2LhkZGQF4fPdmcnIywsLCYGNjg5kzZ8LV1VXrbsySiIyMxMCBA+Hg4IAlS5ZI371du3Zax5++ffuiatWq0klHZGQk3N3dX9tJDkqyry9t+0LXHTHvvvsuLl68iJ9//hkNGzbE4sWL0axZMyxevLjUMe/evRt+fn5Qq9UIDw/H5s2bER8fj8DAQK1jlLe3N2rUqCE7prz55puyThR6di96djJuy+WjuHOL0rTfivMi9h8lxXYFUeXDQcgrGc20uDdu3JCuWt69e1eWp+idLaVha2uLgoICXLx4UXZAP3v2rFbe2NhYDBgwALNmzZLSHjx4oBUPAHTq1AmWlpaIiopCixYtcP/+fV6xeg49evTA0KFDsW/fPvz6668689ja2mL79u3IysqSXdn566+/pOWlYWlpCQMDA52PUxStHxs2bEBubi7Wr18vu9pe+LbnwoKCgvDxxx/jxo0bWLFiBXx9faX6TaXzxhtv6NwGL1++LLvy7ODggOPHj6N9+/ZPfXRBT08P7du3R/v27TF79mxMnToVX3zxBRISEtChQwfY2tri5MmTEELI1lW0Xpw4cQLnzp3DsmXLEBQUJKUXnRVLIygoCLNmzcKGDRuwZcsWWFpavvKzWHl6egJ4PClAYmKi7PFnNzc3qFQq/P7779i/fz86d+4M4HFZCiFQt25d6Q42XTTb/Pnz52V3nz58+BCXLl0qdvawJ9HcLVu9evUSneBbW1sjNDQUoaGhSEtLQ7NmzTBlyhT4+PiUKr7Y2FjY29tjzZo1sjqna+ICMzMz+Pr6IioqCv369UNiYiK+//77Un/X10lJ9yNPY2ZmhkGDBmHQoEG4d+8e3n33XUyYMAHBwcGy8i6q6L5j9erVUKvViIuLg0qlktIjIiK03qs5yVy6dCmmT5+OtWvXIiQkpNiON3rxuC1XLoXPLUrTfiuu7VD4/KTwBdLSnJ+wXUH06uLtJxVUQkKCzjtPNGM0OTk5oXr16rCwsMCuXbtkecLDw5/5czUzqxWeTQ2AzgO8UqnUijEsLEznFY4qVaogICAA0dHRWLp0Kd566y1pJicqPSMjIyxYsAATJkxA165ddebp3Lkz8vPz8cMPP8jS58yZA4VCIZV1SSmVSnh7e2Pt2rW4cuWKlH7mzBnExcVp5QXkV9QzMjJ0niwAQEBAABQKBT766CMkJyfzatRzcHBwwL59+5CXlyelbdy4EVevXpXl8/f3R2pqKn766SetdeTk5CA7OxvA4zE2imrSpAkASNMhd+7cGdevX5dNiX7//n0sWrRI9j5d9UIIgblz5+r8Lo0aNUKjRo2wePFirF69Gn379kWVKq/2dRN3d3dpzLzU1FTZHVAqlQrNmjXD/PnzkZ2dLXVWvffee1AqlZg4caLWPlkIgfT0dGndlpaWWLhwoax+LF26VGdnQ0m4ubnBwcEB3333He7du6e1/ObNmwAeX6Uu+uiGlZUVbGxspHpUmvh01aX9+/cjKSlJZ5z9+/fH6dOnMXbsWCiVSvTt27f0X/Y1UtL9yJNo6p2GkZERHB0dpfK2trZGkyZNsGzZMlndiI+P1xpmQKlUQqFQyNoXKSkp0mydRfXv3x937tzB0KFDce/ePR5TXjJuyxVTSc4tStN+MzQ01Hns0FyYKHx+kp2djWXLlpU4VrYriF5d3OIqqBEjRuD+/fvo0aMHnJ2dkZeXh7179+LXX3+FnZ0dBg0aBAAIDg7Gt99+i+DgYLi7u2PXrl04d+7cM39ukyZNEBAQgPDwcGRkZMDDwwM7duzAhQsXtPJ26dIFy5cvh4mJCVxcXJCUlITt27fD3Nxc57qDgoIwb948JCQkYPr06c8cIz02YMCAJy7v2rUr2rZtiy+++AIpKSlo3Lgxtm3bhnXr1mHUqFFa43yVxMSJE7F161a0atUKoaGhePToEcLCwuDq6iob26Njx47Q19dH165dpROAn376CVZWVrhx44bWei0tLdGpUyfExMTA1NRUmlKbSi84OBixsbHo1KkT/P39cfHiRURGRmqVd//+/REdHY1hw4YhISEBLVu2RH5+Pv766y9ER0cjLi4O7u7umDRpEnbt2gVfX1/Y2toiLS0N4eHhqFWrltQBEhISgh9++AFBQUE4fPgwrK2tsXz5clSrVk32mc7OznBwcMCYMWOQmpqK6tWrY/Xq1U8ceyYoKAhjxowBgNfiJFLzWMTu3buhUqng5uYmW+7h4SHddar5/R0cHDB58mSMGzcOKSkp6N69O4yNjXHp0iX89ttvGDJkCMaMGYOqVati8uTJGDp0KNq1a4c+ffrg0qVLiIiIKNVdLYXp6elh8eLF8PHxgaurKwYNGoSaNWsiNTUVCQkJqF69OjZs2ICsrCzUqlULvXr1QuPGjWFkZITt27fj4MGD0vcpTXxdunTBmjVr0KNHD/j6+uLSpUtYuHAhXFxcdHaE+fr6wtzcHDExMfDx8YGVldUzfd/XRUn3I0/i4uKCNm3awM3NDWZmZjh06BBiY2Px4YcfSnmmTZsGX19feHp64oMPPsDt27elY0rhcvT19cXs2bPRqVMnBAYGIi0tDfPnz4ejo6Ps2KPRtGlTNGzYUJpsoVmzZs/3g1CpcFuumEpybvHPP/+UuP3m5uaGBQsWYPLkyXB0dISVlRXatWuHjh07ok6dOhg8eLDUUfjzzz/D0tJSdgHzSdiuIHqFvazp9qh0tmzZIj744APh7OwsjIyMhL6+vnB0dBQjRowQ//zzj5Tv/v37YvDgwcLExEQYGxsLf39/kZaWJgCI8ePHS/k0U6IWnUpd15SoOTk5YuTIkcLc3FwYGhqKrl27iqtXr2qt886dO2LQoEHCwsJCGBkZCW9vb/HXX38VO32zEI+nbNXT0xPXrl17ET/Ta0NTTgcPHnxiPltbW9m011lZWWL06NHCxsZGVK1aVdSrV0/MnDlTa7piADqnR9dVln/88Ydwc3MT+vr6wt7eXixcuFDnlLvr168XjRo1Emq1WtjZ2Ynp06eLn3/+Wau+aURHRwsAYsiQIU/5NUijuCnXZ82aJWrWrClUKpVo2bKlOHTokNb06UI8nip7+vTpwtXVVahUKvHGG28INzc3MXHiRJGRkSGEEGLHjh2iW7duwsbGRujr6wsbGxsREBAgzp07J1vX5cuXhZ+fn6hWrZqwsLAQH330kdi6davWdMmnT58WHTp0EEZGRsLCwkKEhISI48ePFzsN8o0bN4RSqRT169d/7t+rshg3bpwAIDw8PLSWrVmzRgAQxsbG4tGjR7Jlq1evFp6ensLQ0FAYGhoKZ2dnMXz4cHH27FlZvvDwcFG3bl2hUqmEu7u72LVrl1b90EyrHhMTI3vvpUuXdJbV0aNHxXvvvSfMzc2FSqUStra2wt/fX+zYsUMIIURubq4YO3asaNy4sTA2NhaGhoaicePGIjw8XOs7liS+goICMXXqVGFraytUKpVo2rSp2LhxoxgwYICwtbXV+buGhoYKAGLFihU6l78KitsnCFH6Mi3JfqS4dQohxOTJk0Xz5s2FqampMDAwEM7OzmLKlClaU76vXr1aNGjQQKhUKuHi4iLWrFmjsxyXLFki6tWrJ1QqlXB2dhYRERHFTvcuhBAzZswQAMTUqVOL+bWoqCe1NZ5U1pplhff1QnBbrmhKem5R0vbb33//LXx9fYWxsbEAICvXw4cPixYtWgh9fX1Rp04dMXv2bJ3nHEXbrYWxXUH0alII8QwjDBM9o6ZNm8LMzAw7duwo71Coglm3bh26d++OXbt2SdOCE926dQvW1tb4+uuv8dVXX5V3OFSJjR49GkuWLMHff/+tdRWdXj1z587F6NGjkZKSonOWV6q8uC3T82C7gqh8cQwoemkOHTqEY8eOyQYJJNL46aefYG9vLz1WRAQ8HjMkPz+fkxbQc3nw4AEiIyPRs2dPnrC+BoQQWLJkCVq3bs3Op1cMt2V6XmxXEJUvjgFFZe7kyZM4fPgwZs2aBWtra/Tp06e8Q6IKZNWqVfjzzz+xadMmzJ0796kzstHrYefOnTh9+jSmTJmC7t27w87OrrxDokooLS0N27dvR2xsLNLT0/HRRx+Vd0hUhrKzs7F+/XokJCTgxIkTWLduXXmHRC8It2V6XmxXEFUM7ICiMhcbG4tJkybByckJK1euhFqtLu+QqAIJCAiAkZERBg8ejNDQ0PIOhyqISZMmYe/evWjZsiXCwsLKOxyqpE6fPo1+/frBysoK8+bNk2ZwpFfTzZs3ERgYCFNTU3z++efw8/Mr75DoBeG2TM+L7QqiioFjQBERERERERERUZniGFBERERERERERFSm2AFFRERERERERERlih1QRERERERERERUptgBRUREREREREREZYodUEREREREREREVKbYAUVERERERERERGWKHVBERERERERERFSm2AFFRERERERERERlih1QRERERERERERUpv4PqnQtR8fCq10AAAAASUVORK5CYII=\n" | |
| }, | |
| "metadata": {} | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [], | |
| "metadata": { | |
| "id": "8a90LE60NJi7" | |
| }, | |
| "execution_count": 4, | |
| "outputs": [] | |
| } | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "name": "ddds-schedule-FT.ipynb", | |
| "provenance": [], | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "name": "python3" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 0 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment