df_mean_ratings = df_merged.pivot_table('rating', index='title', columns='gender', aggfunc='mean') ratings_by_title = df_merged.groupby('title').size() active_titles = ratings_by_title.index[ratings_by_title >= 200] df_mean_ratings = df_mean_ratings.loc[active_titles] top_female_ratings = df_mean_ratings.sort_values(by='F', ascending=False) top_male_ratings = df_mean_ratings.sort_values(by='M', ascending=False) df_mean_ratings['diff'] = df_mean_ratings['M'] - df_mean_ratings['F'] sorted_by_diff = df_mean_ratings.sort_values(by='diff') sorted_by_diff[::-1].head() rating_std_by_title = df_merged.groupby('title')['rating'].std() rating_std_by_title = rating_std_by_title.loc[active_titles] rating_std_by_title.sort_values(ascending=False).head(10) # title # Plan 9 from Outer Space (1958) 1.455998 # Texas Chainsaw Massacre, The (1974) 1.332448 # Dumb & Dumber (1994) 1.321333 # Blair Witch Project, The (1999) 1.316368 # Natural Born Killers (1994) 1.307198 # Idle Hands (1999) 1.298439 # Transformers: The Movie, The (1986) 1.292917 # Very Bad Things (1998) 1.280074 # Tank Girl (1995) 1.277695 # Hellraiser: Bloodline (1996) 1.271939 # Name: rating, dtype: float64