mongo admin
you should get a mongo shell like
import random | |
import torchvision | |
import torch | |
import torch.nn as nn | |
import skimage | |
from torch.utils.data import Dataset | |
from typing import Callable | |
from collections import OrderedDict | |
from functools import partial | |
import torchvision.transforms as transforms |
HEADER 01-JUN-22 | |
TITLE ALPHAFOLD MONOMER V2.0 PREDICTION FOR D(1C) DOPAMINE RECEPTOR | |
TITLE 2 (P42291) | |
COMPND MOL_ID: 1; | |
COMPND 2 MOLECULE: D(1C) DOPAMINE RECEPTOR; | |
COMPND 3 CHAIN: A | |
SOURCE MOL_ID: 1; | |
SOURCE 2 ORGANISM_SCIENTIFIC: XENOPUS LAEVIS; | |
SOURCE 3 ORGANISM_TAXID: 8355 | |
REMARK 1 |
atom_index | color | |
---|---|---|
1 | 22.96100353908328 | |
2 | 3.3231057511876716 | |
3 | 16.622375590042605 | |
4 | 93.3939981948933 | |
5 | 25.316478839814806 | |
6 | 78.86077758685197 | |
7 | 37.4916379822561 | |
8 | 64.38356710739292 | |
9 | 33.67297273730202 |
from tensorflow.keras.applications.vgg16 import VGG16 | |
from tensorflow.keras.layers import Dense | |
from tensorflow.keras.models import Model | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
def add_prefix(model, prefix: str, custom_objects=None): | |
config = model.get_config() | |
old_to_new = {} |
import pyvista | |
from PIL import Image | |
import shutil | |
import os | |
import numpy as np | |
import random | |
OUTPUT_DIR = 'extruded_polygons' | |
NUM_IMAGES = 10000 |
function fibonacci(num){ | |
var a = 1, b = 0, temp; | |
while (num >= 0){ | |
temp = a; | |
a = a + b; | |
b = temp; | |
num--; | |
} |
""" | |
Downloaded from: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118189 | |
""" | |
with open('GSE118189_ATAC_counts.txt', 'r') as f: | |
cell_files = None | |
for line in f.readlines(): | |
line = line.rstrip() | |
if not cell_files: | |
cell_types = line.split('\t') | |
cell_files = [open('./ImmuneAtlasBed/' + cell + '.bed' , 'w') for cell in cell_types] |
class Pathway: | |
def __init__(self, api): | |
self.api = api | |
def datasets(self): | |
""" Returns the list of all pathway datasets available""" | |
pass | |
def getPathways(self, datasets=[Dataset.KEGG]): |