Skip to content

Instantly share code, notes, and snippets.

View sam-thecoder's full-sized avatar

Samuel M. sam-thecoder

View GitHub Profile
$ node
> const models = require('../models');
sequelize deprecated String based operators are now deprecated. Please use Symbo
l based operators for better security, read more at http://docs.sequelizejs.com/
manual/tutorial/querying.html#operators node_modules\sequelize\lib\sequelize.js:
242:13
undefined
> Executing (default): CREATE TABLE IF NOT EXISTS `users` (`id` INTEGER PRIMARY
KEY AUTOINCREMENT, `username` VARCHAR(255), `loggedIn` TINYINT(1), `createdAt` D
ATETIME NOT NULL, `updatedAt` DATETIME NOT NULL);
$ node
> const models = require('./../models');
sequelize deprecated String based operators are now deprecated. Please use Symbo
l based operators for better security, read more at http://docs.sequelizejs.com/
manual/tutorial/querying.html#operators node_modules\sequelize\lib\sequelize.js:
242:13
undefined
> Executing (default): CREATE TABLE IF NOT EXISTS `users` (`id` INTEGER PRIMARY
KEY AUTOINCREMENT, `username` VARCHAR(255), `loggedIn` TINYINT(1), `createdAt` D
ATETIME NOT NULL, `updatedAt` DATETIME NOT NULL);
@sam-thecoder
sam-thecoder / vgg-train.py
Created March 21, 2018 08:16
vgg network
from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
from keras.layers import Input, Flatten, Dense
from keras.models import Model
import numpy as np
from keras import backend as K
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
@sam-thecoder
sam-thecoder / train.py
Created March 21, 2018 08:04
training model
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
# dimensions of our images.
@sam-thecoder
sam-thecoder / distributor.py
Created March 21, 2018 08:01
distribute images to right sub folder for training
import pandas as pd
import os
train = pd.read_csv('train.csv')
landmarks = list(set(train['landmark_id'].tolist())) #use set to have only unique id's and turn it back to a list type again
#creates sub folders of landmark id in train and validation folder
train_folder = 'training_images'
validation_folder = 'validation_images'