Skip to content

Instantly share code, notes, and snippets.

View samchaaa's full-sized avatar
🥑
hi

Sam Chakerian samchaaa

🥑
hi
View GitHub Profile
import pandas as pd
oc = pd.DataFrame([line.strip('\n').split(',') for line in open('../../Downloads/quotedata.dat')])
oc.head()
oc.columns = oc.loc[2, :]
oc = oc.loc[3:]
oc['Calls K'] = oc.apply(lambda x: float(x['Calls'][-6:-2])/10, axis=1)
oc['Puts K'] = oc.apply(lambda x: float(x['Puts'][-6:-2])/10, axis=1)
import alpaca_trade_api as tradeapi
import time
import datetime
from datetime import timedelta
from pytz import timezone
tz = timezone('EST')
import numpy as np
import pandas as pd
@samchaaa
samchaaa / gist:91dfe2bb3c030321536f9799bb369b26
Created January 31, 2019 19:31
Alpaca Sample Algo - 5 Minute EMA Crossover
import alpaca_trade_api as tradeapi
import time
import datetime
from datetime import timedelta
from pytz import timezone
tz = timezone('EST')
api = tradeapi.REST('your key',
'your secret',
'https://paper-api.alpaca.markets')
from sklearn.qda import QDA
#from sklearn.ensemble import RandomForestRegressor
from sklearn import preprocessing
import numpy as np
import pandas as pd
def initialize(context):
context.assets = sid(8554) # Trade SPY
context.model = QDA()
context.lookback = 5 # Look back