Last active
March 16, 2023 15:29
-
-
Save samuelcolvin/1f52e597428106a863030679ca778d5a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import TypeVar | |
import pytest | |
from pydantic import BaseModel, ValidationError | |
try: | |
import email_validator | |
except ImportError: | |
email_validator = None | |
T = TypeVar('T') | |
def test_generic_recursive_models_triple(create_module): | |
@create_module | |
def module(): | |
from typing import Generic, TypeVar, Union | |
from pydantic import BaseModel | |
T1 = TypeVar('T1') | |
T2 = TypeVar('T2') | |
T3 = TypeVar('T3') | |
class A1(BaseModel, Generic[T1]): | |
a1: 'A2[T1]' | |
model_config = dict(undefined_types_warning=False) | |
class A2(BaseModel, Generic[T2]): | |
a2: 'A3[T2]' | |
model_config = dict(undefined_types_warning=False) | |
class A3(BaseModel, Generic[T3]): | |
a3: Union['A1[T3]', T3] | |
model_config = dict(undefined_types_warning=False) | |
A1.model_rebuild() | |
A1 = module.A1 | |
with pytest.raises(ValidationError) as exc_info: | |
A1[str].model_validate({'a1': {'a2': {'a3': 1}}}) | |
assert exc_info.value.errors() == [ | |
{ | |
'input': 1, | |
'loc': ('a1', 'a2', 'a3', 'A1[str]'), | |
'msg': 'Input should be a valid dictionary', | |
'type': 'dict_type', | |
}, | |
{'input': 1, 'loc': ('a1', 'a2', 'a3', 'str'), 'msg': 'Input should be a valid string', 'type': 'string_type'}, | |
] | |
A1[int].model_validate({'a1': {'a2': {'a3': 1}}}) | |
def test_generic_recursive_models_complicated(create_module): | |
@create_module | |
def module(): | |
from typing import Generic, TypeVar, Union | |
from pydantic import BaseModel | |
T1 = TypeVar('T1') | |
T2 = TypeVar('T2') | |
T3 = TypeVar('T3') | |
class A1(BaseModel, Generic[T1]): | |
a1: T1 # 'A2[T1]' | |
model_config = dict(undefined_types_warning=False) | |
class A2(BaseModel, Generic[T2]): | |
a2: 'A3[T2]' | |
model_config = dict(undefined_types_warning=False) | |
class A3(BaseModel, Generic[T3]): | |
a3: Union[A1[T3], T3] | |
model_config = dict(undefined_types_warning=False) | |
A1.model_rebuild() | |
S1 = TypeVar('S1') | |
S2 = TypeVar('S2') | |
class B1(BaseModel, Generic[S1]): | |
a1: 'B2[S1]' | |
model_config = dict(undefined_types_warning=False) | |
class B2(BaseModel, Generic[S2]): | |
a2: 'B1[S2]' | |
model_config = dict(undefined_types_warning=False) | |
B1.model_rebuild() | |
V1 = TypeVar('V1') | |
V2 = TypeVar('V2') | |
V3 = TypeVar('V3') | |
class M1(BaseModel, Generic[V1, V2]): | |
a: int | |
b: B1[V2] | |
m: 'M2[V1]' | |
model_config = dict(undefined_types_warning=False) | |
class M2(BaseModel, Generic[V3]): | |
m: Union[M1[V3, int], V3] | |
model_config = dict(undefined_types_warning=False) | |
M1.model_rebuild() | |
M1 = module.M1 | |
assert collect_invalid_schemas(M1.__pydantic_core_schema__) == [] | |
def test_key(): | |
class ApplePie(BaseModel): | |
""" | |
This is a test. | |
""" | |
a: float | |
b: int = 10 | |
s = { | |
'type': 'object', | |
'properties': {'a': {'type': 'number', 'title': 'A'}, 'b': {'type': 'integer', 'title': 'B', 'default': 10}}, | |
'required': ['a'], | |
'title': 'ApplePie', | |
'description': 'This is a test.', | |
} | |
assert ApplePie.__schema_cache__.keys() == set() | |
assert ApplePie.model_json_schema() == s | |
assert ApplePie.__schema_cache__.keys() == {(True, '#/$defs/{model}')} | |
assert ApplePie.model_json_schema() == s |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment