This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
from tensorflow.keras import layers, models | |
# Definir a arquitetura da CNN | |
def criar_modelo_cnn(): | |
modelo = models.Sequential() | |
# Primeira camada convolucional | |
modelo.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3))) # Exemplo de imagem de 224x224x3 | |
modelo.add(layers.MaxPooling2D((2, 2))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def contar_veiculos(imagem): | |
# Chama a função pré-treinada para detectar os veículos | |
veiculos_detectados = detectar_veiculos(imagem) | |
# Retorna o número de veículos detectados | |
return len(veiculos_detectados) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
from tensorflow.keras.preprocessing.image import load_img, img_to_array | |
from sklearn.model_selection import train_test_split | |
from tensorflow.keras.utils import to_categorical | |
import matplotlib.pyplot as plt | |
# Definir o caminho do diretório onde as imagens estão armazenadas | |
image_dir = 'caminho/para/imagens' |
NewerOlder