Skip to content

Instantly share code, notes, and snippets.

View santhalakshminarayana's full-sized avatar

Santha Lakshmi Narayana santhalakshminarayana

View GitHub Profile
@santhalakshminarayana
santhalakshminarayana / Indian_Name_Generator_sequence_generation.py
Created December 13, 2019 06:03
Indian Name Genarator - Sequence Generation - Medium
sequences, next_chars = [], []
window = 5
for name in names:
if len(name) < window:
sequences.append(name+'.'*(window-len(name)))
next_chars.append('.')
seq_lengths.append(len(name))
else:
for i in range(0,len(name) - window + 1):
sequences.append(name[i:i+window])
@santhalakshminarayana
santhalakshminarayana / Indian_Name_Generator_group_names.py
Last active December 13, 2019 05:55
Indian Name Generator - Group names and unique chars - Medium
group_names = []
for name in names:
name_list = name.split(' ')
group_names.extend(name_list)
group_names = set(group_names)
unique_chars=set()
names = []
for name in group_names:
@santhalakshminarayana
santhalakshminarayana / Indian_Name_Generator_reading.py
Created December 13, 2019 05:22
Indian Name Generator - Reading - Medium
import pandas as pd
import numpy as np
names_df = pd.read_csv('Indian Names.txt',error_bad_lines=False)
names_df = names_df.drop_duplicates(keep='first').reset_index(drop=True)
names_df = np.squeeze(names_df).values.tolist()
@santhalakshminarayana
santhalakshminarayana / pspnet_architecture.py
Created November 18, 2019 10:15
PSPNet architecture for semantic segmentation Medium
def conv_block(X,filters,block):
# resiudal block with dilated convolutions
# add skip connection at last after doing convoluion operation to input X
b = 'block_'+str(block)+'_'
f1,f2,f3 = filters
X_skip = X
# block_a
X = Convolution2D(filters=f1,kernel_size=(1,1),dilation_rate=(1,1),
padding='same',kernel_initializer='he_normal',name=b+'a')(X)
@santhalakshminarayana
santhalakshminarayana / pspnet_load_dataset.py
Created November 18, 2019 10:02
Pspnet load dataset for Medium
train_folder="/kaggle/input/cityscapes-image-pairs/cityscapes_data/cityscapes_data/train/"
valid_folder="/kaggle/input/cityscapes-image-pairs/cityscapes_data/cityscapes_data/val/"
def get_images_masks(path):
names=os.listdir(path)
img_g,img_m=[],[]
for name in names:
img=cv2.imread(path+name)
img=cv2.normalize(img,None,0,1,cv2.NORM_MINMAX,cv2.CV_32F)
img=img[:,:,::-1]
@santhalakshminarayana
santhalakshminarayana / pspnet_imports.py
Created November 18, 2019 09:51
Pspnet imports for Medium
import numpy as np
import os
import matplotlib.pyplot as plt
import cv2
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import Convolution2D,BatchNormalization,ReLU,LeakyReLU,Add,Activation
from tensorflow.keras.layers import GlobalAveragePooling2D,AveragePooling2D,UpSampling2D
@santhalakshminarayana
santhalakshminarayana / face_recognition_test.py
Created October 16, 2019 16:37
Face recogniton test file
# Label names for class numbers
person_rep={0:'Lakshmi Narayana',
1: 'Vladimir Putin',
2: 'Angela Merkel',
3: 'Narendra Modi',
4: 'Donald Trump',
5: 'Xi Jinping'}
if __name__ == '__main__':
file_path=input("Path to image with file size < 100 kb ? ")
@santhalakshminarayana
santhalakshminarayana / face_recognition_softmax_classifier.py
Created October 16, 2019 16:28
Face recognition softmax classifier
# Softmax regressor to classify images based on encoding
classifier_model=Sequential()
classifier_model.add(Dense(units=100,input_dim=x_train.shape[1],kernel_initializer='glorot_uniform'))
classifier_model.add(BatchNormalization())
classifier_model.add(Activation('tanh'))
classifier_model.add(Dropout(0.3))
classifier_model.add(Dense(units=10,kernel_initializer='glorot_uniform'))
classifier_model.add(BatchNormalization())
classifier_model.add(Activation('tanh'))
classifier_model.add(Dropout(0.2))
@santhalakshminarayana
santhalakshminarayana / face_recognition_train_test_data.py
Last active July 7, 2020 12:11
Face recognition train and test data preparation
# Prepare Train Data
x_train=[]
y_train=[]
person_rep=dict()
person_folders=os.listdir(path+'/Images_crop/')
for i,person in enumerate(person_folders):
person_rep[i]=person
image_names=os.listdir('Images_crop/'+person+'/')
for image_name in image_names:
img=load_img(path+'/Images_crop/'+person+'/'+image_name,target_size=(224,224))
@santhalakshminarayana
santhalakshminarayana / face_recognition_vgg_face.py
Created October 16, 2019 16:08
Face recognition vgg face build
# Tensorflow version == 2.0.0
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential,Model
from tensorflow.keras.layers import ZeroPadding2D,Convolution2D,MaxPooling2D
from tensorflow.keras.layers import Dense,Dropout,Softmax,Flatten,Activation,BatchNormalization
from tensorflow.keras.preprocessing.image import load_img,img_to_array
from tensorflow.keras.applications.imagenet_utils import preprocess_input
import tensorflow.keras.backend as K