Created
July 28, 2018 17:30
-
-
Save santiago-salas-v/08ac48150671144bcd36f11423a8a0e5 to your computer and use it in GitHub Desktop.
McCabe Thiele Method, Methanol-Water
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# McCabe-Thiele Methode:\n", | |
"## Methanol(1)-Wasser(2)\n", | |
"Quellen:\n", | |
"\n", | |
"[1] Baerns, Manfred ; Behr, Arno ; Brehm, Axel ; Gmehling, Jürgen ; Hinrichsen, Kai-Olaf ; Hofmann, Hanns ; Onken, Ulfert ; Palkovits, Regina ; Renken, Albert: Technische Chemie. New York: John Wiley & Sons, 2014." | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Fall 1.\n", | |
"\n", | |
"| Spec | Symbol | Wert |\n", | |
"| - | - | - |\n", | |
"| Feed | $z_F$ | 0,30 |\n", | |
"| Destillat | $x_D$ | 0,98 |\n", | |
"| Sumpf | $x_B$ | 0,02 |\n", | |
"| Druck | $P$ | 100 kPa |\n", | |
"| Rücklaufverhätlnis | $\\nu$ | 1,4 $\\nu_{min}$ |" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"x1=0,1\tT= 87,87°C\terr: 2,28e-10%\ty1= 0,4121\ty2= 0,5879\n", | |
"\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/latex": [ | |
"$\\frac{x_D}{\\nu_{min}+1}=0,5252$$\\quad\\Rightarrow \\nu_{min}= 0,8659\\\\\\text{Verstärkungsgerade: } \\nu=1,4\\nu_{min}= 1,212$" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"execution_count": 1, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAImCAYAAADHUSmoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4lFXax/HvyaRNeu+EEEoCpE7oogKiqIBd0FUU3V1ALIira1l1sbxgX1mVtQuyu1Zsaxc0AgIC6aGXBBISEtITMmkz5/3jmQyEmj5JOJ/r4sJMeZ4zLEt+Ofc59xFSShRFURRFUZrZ2XoAiqIoiqL0LCocKIqiKIrSggoHiqIoiqK0oMKBoiiKoigtqHCgKIqiKEoLKhwoiqIoitKCCgeKoiiKorSgwoGiKIqi9BBCiGAhxAohxBEhRJ0QYrsQ4sLuHod9d99QURRFUZSTCSG8gN+A9cBU4AgQCRR391i6feZACHGBEOIrIcQhIYQUQsxuxXtihRC/CiGMlvc9LoQQ3TBcRVEURekufwUKpZS3SCk3SylzpJRrpJQ7unsgtigruAHZwALAeLYXCyE8gJ+AImAkcA/wAHBfF45RURRFUbrbVcDvQoiPhBDFQoh0IcRdtvhhWNjybAUhRA1wl5Ry+RlecwfwLBAopTRaHnsUuAMIk+pwCEVRFKUPEELUWf7zH8DHQALwCvCQlPLV7hxLb1iQOBZY1xwMLH4AQoAIm4xIURRFUTqfHZAqpXxYSpkmpXwP+CdwZ3cPpDcsSAwC8k94rOi453KOf0IIMQeYA+Dq6poUHR3d5QNUFEVR+p6CggIKCwtbPGZvb098fHyX3M/R0RF3d/exI0aMsM6IR0REcPDgQY5/rL7RjLGxidpGE8YGE02NDfjJCnxEFQCphaYSKaV/R8bSG8IBwImlA3Gax5FSvgm8CTBixAi5devWLh6aoiiK0hctWrSIDz/8kOTkZOtjOp0Of/8Ofd89rT/84Q/k5eWxbt06AExmyT33P8hXX3zBtMdXkH2oku2FVdQ2mAAY4lDBg27fcXHd99ghqI7+E26TH8TeL/JAR8fSG8LBYbQZguMFWH4vQlEURVG6iL29PUFBJ34L6nwms+TaW+Ywc9rFTLr5HhwHjyc7K4OC/72G94W3UPDp59y343u8qsto8vHBb1IwwY7JiHozJN4E5/8FT+/+nTae3hAONgLPCiGcpZTNizUuBgqAXJuNSlEURenz9u/fT2hoKI6OjowePZrFixcTGRnZoWuazJL9R2rIzK8k61AlX/3+C4fKq9B7xONz9d9I/uYVZPUy7N3cCBg7kn4RdQTt/A7v6jKMQqAvK6Xq8xJcZ0zA854XoBNDQbNuDwdCCDdgkOVLOyBcCJEAlEkpDwohlgCjpJQXWV7zX+DvwHIhxNPAEOAh4Am1U0FRFEXpKqNHj2b58uVER0dTXFzM008/zbhx49i2bRu+vr6tukZzEMg6VElmfuVJpQG9g46Sw9kcNZaw7I+3EBt2AX9+1YhAYjYaMdfU0HDwIDQ2triuNAmKfy3D8++dHwzANjMHI4Bfjvv6CcuvFcBsIBgY2PyklLJSCHEx8BqwFSgHXgRe6qbxKoqiKOegyy67rMXXY8aMITIykhUrVnDffSe32jk+CGQd0oLAtoKWQWB4iAczRvQjNtSTuDBPIv3duGjRL2By59KmAoyff83KonKM6RmYq6osV5aAIDVhAQCG9KUANJ2wWLIzdXs4kFImc2xB4amen32Kx7KAC7puVIqiKIpyZm5ubgwfPpw9e/ZgMktySixBIL+KrEMVJwWBYccFgdgwTwb6u6Gz0779NR05Qm3qRkpSU6nbth1z7VEOrvoaAMcB4XgM9UAv8nHxb+TAulCaKupOGo99cHCXfdbesOZAURRFUWzGbJbsLzlK6v4itmZkc8RtEHGLfuCoJQg4O9gxLFgLAjGWGYHjg4A0m2nYt4+q5DSMqanUpqbSmJcHgHBygiHhOAQFE3bnPFxqfkG3+xMQAgy3wPiFBKxNo/Cxx1uMSTg7E7Dw3i77zCocKIqiKIqF2SxZ8sWXfLAumZINmxk6/mbyG1w4lPMT9WnrMNdUUuBSi0fJ1wzvF8FLt81loL8rs199keStJSRvBcxmzDVHSdQ58JeaOozpGdzt4USFzg7h4ICdnxt2EaO4KDaeJ+bdhff/PQLlObin3gHCDpJuhfELwTMMAM/p2u8D3/gCU2kZ9iEhBCy8F8/p07vsz0GFA0VRFOWcZDZLDpTVkplfQbZlweC2gir27vuahvoS7I+Usemdx2k4WomDXo9ncCCR02/GLUDrczA40J2oIHeaSkpoLCikoagQc3UN5tpakGZqa+tpdPfB45KLca4uRe/ogHBythbWHbycEd/dx3e6D8DfDgy3WUJB6Elj9Zw+nTFdGAZOpMKBoiiK0udJKTlYVmtZI2DZOVBQSXVdEwCO9nYMDfbg6sRQPqt0w9XJkw0ffoa9ruUpA9JspmH/fmpTUzGmprF3yhQaDxxkESAcHXGOjcVl3AT0BgP6hATsvb0B+Or4i5TlwLoXIOMxEDoYcTucd+8pQ8HxjuRVA+Dfz72T/lROT4UDRVEUpU+RUpJfbmyxfTDrUCWVRm07oINOMDTYgyviQ6yLBYcEuuNgCQLrUp0AsNfZYa6vpy4ri9pUbb2AMS0NU2UlADpvb/QGA94zZqI3JOI8fDh2jo6nH1jZflj7ImR8AHb2MOKPMP5e8Ahp1eda//EeAK7+i6G9fzStpsKBoiiK0mtJKSmorCMrv8IaBrIOVVJRqwUBeztBdLA7l8cGERvqRWyoJ0OC3HCy153yek1lZQyzs6fpyBFyZ96Acft2a48Bx8hI3C6ejEuiAb0hEceICFp1mnLpPlj3ImR8qIWCkX/SygceXbfboKNUOFAURVF6jcOVdWQeFwSyD1VSerQBAJ2dYEigO1OGBREb5klsqCdRQe44O5w6CEgpacjJoTYlBaNlZqDhwAHuBoSDA8TG4nvrLVqJIDHRWiJoteNDgc4BRs2B8xb06FDQTIUDRVEU5ZQWL17M3/72N+68805effXVbr9/SU29dX1A1qEKMvMrKa6uB8BOwJBAdyZGBxBnCQJDgz1OGwQArUSQnW1dL2BMS8NUUQGAzssLvcGA1/XXoTcYtBKBk1P7Bl66D9a+AJkfaaFg9FwtFLh3/RkNnUWFA0VRFOUkmzZt4q233iIuLq5b7ldZ26jNBhyqIDNPKw0cqjAC2pb/SD9XzhvkR1yY1kdgWLAnesfTBwHQSgTGtDRrGKjLzkY2lwgiInCbNAmXJAP6RAOOA46VCG5e+jysW8O/FzzQtg9Rug/WPm8JBY4weh6cd0+vCgXNVDhQFEVRWqisrOSmm27inXfe4cknn+z069fUN2mLBPMryTxUSWZ+BQdKa63P9/d1ITHci9njIogN82R4iAfuzg5nvKZWIsjFmJZqDQMNOTmAViJwHj4c71tm4dJcIvDxOe218ktL2vaBSvZqoSDrY9A5wZj5MO4ecA9s23XOYsxVA8/+ok6iwoGiKIrSwpw5c7juuuuYNGlSh8OBscHE9kJLacASBvYdqaH52LxQLz2xoZ7MGNGP+DAvYkI98HI5w4p/C3NDA3XZ27QwkGLZRVBeDoDO0xO9wYDnNVfjYjDgHBPT/hLBmZTssYSCT46FgvMWgFtA598LCB7o2SXXPRUVDhRFURSrt956i71797Jy5co2v7ehycyuw9Vk5FeQma+tEdhTXIPJrCUBf3cn4sM8mR4XQlw/bZ2An1vrvmk3lZdjTEvHmJpCbXOJoEFbiOjYvz9uEyagNyTiYjDgOGAAws7uLFfsgJI98OtzkP2pFgrG3qnNFHRRKGhWuE/bQtkdIUGFA0VRFAWAXbt28cgjj7Bu3Tocz7Rfn2MnEGbka2WBjPxKdhRW0dBkBsDbxYG4MC8uHhZIbKgn8f28CPRwbtU4pJQ05OZiTE2jNs1SIti/X3vSwQH9sGF433STFgYSE7H38+vQ5261I7th7XOQvQrsnWHsXZZQ4N8tt9/0xT5A9TlQFEVRutHGjRspKSkhJibG+pjJZGLt2rW8/vrrfLJpDzuK68jI09oNNx885OqoIybUk9njIogL8yQ+zIswb33regBgKRFs29YiDJjKygCw8/TEJSEBzyuvxCXJUiJwbl3IaK+xQ6JbPtAcCrI+BQc9jLsbxt7dbaHAFlQ4UBRFUQC46qqrGDFiBKVH69l9uJrdRdW8t+RBzO5BOI+8lns/2YaTvY6hIR5cmxRGXJgX8WGeRB53AmFrmCoqqE1Ls4aBuswsa4nAITwctwsuOFYiiIzs2hLBKSy5+TbtP47sspQPVoGDi7aeYNzd4NpNMxU2pMKBoijKOazS2Ej2oUpe+/4bkjN/p6a+iQaTGS/fMbi4BNMgwWw+QqD7btzYj4udjsoiwTWXzyFhQBirM9L482sfnnTdN+beTVRoGF9t2cSLn3yAqboGc001ppoapNHIM/lHCEaweuhgPjAMQ+fmhp2bO8LRATDz6aVTcPLwZPnPP7E8efVJ1//2b0/g4uTMsu+/5uMN6056PvnJZwF44ctVfJ2yucVzekdHvnv0KQCe+uS/rMnKaPG8rwOsGnoEsj/TQsH4e7WZAlff9v4x9zoqHCiKopwj6hpN7CisIiNPWyOQkVfB/pKjABzOX0dTQymB3iG4Oel44KoY/nDeCMaveYIi2dTq9QKYzZhraylf9Rn5e/ZQsC0Lo6NlVkFnr4UAX19C73+EweeNJzN1M44/fNtFn7iNGmqh4iDUHwZdvtbieOxd51QoaCZk836SPmjEiBFy69atth5GtznvvPN48cUXGTNmDHPmzGHIkCHcf//9th6Woig2YDZL9pfUkJ5XaQkDFeworKLRpP2bH+DuRHw/rSwQF+bFIyuew15nZ/2Ju7VMlZXWEoExNRVjVhayXuti6NCvHy6GRPSWswicBg3q9hJBqxRt19YUbPsCHF21joZj7uxxoaC1pzIKIVKklCM6ci8VDvqQH3/8kVdffZXJkyeTlpbGe++9Z+shKYrSTYqq6kjPq7AGgcy8SqrrteOIXR112vqAfl4k9NN2DgR5OLdYMJieo62ETxhw+kY7Ukoa8/KOaz+cSv2evdqT9vY4Dx2qhQFDEvrEBBwCunZrX4cVbYdfn4XtX4CjuxYKxt4JLqdvkNQbqHBwFudaOAAYNWoULi4u/Pjjjzg6OmIwGBg3bhzl5eVcf/31XHXVVbYeoqIoHVRdp7UazrDMCqTnVXC4qg7QTiEcGuxBfD9t10BCP682LxhsJhsbqduxwxoGalNTMZVo3QPt3N3RJyRY2w/r42Kx0+s79XN2maJtllDwpRYKxszTGhj18FCQt0PbwdFv6JnH2RnhQK056ENSU1Ot25AcHR3Zt28fkyZN4oUXXsBsNnPJJZeocKAovUxzY6H0fMusQF4Fe4/rMBjh68LoSB/iLTMDw0POfPjQ6azOSMNUW8t5jSat42BziaBOCx0OYWG4jhtraT9swGlwDy0RnMnhbC0U7PhKCwUXPNArQkGzrd/mAmcPB51BhYM+oqCggNtvv53Vq1czc+ZM0tPT2bt3L0lJSQDY2dnh6upq41Ees2zZMp5//nkKCwsZPnw4L7/8Mueff36r3rto0SKeeOKJFo8FBgZy+PBh69dLlizhs88+Y9euXTg5OTFmzBiWLFnSYv92Z11HUTqLlJJDFUbSDlaQdrCC9LxysguONRbydXUkoZ8X0+NDiO/nRVyoJ96uZ281fLp7NebnY0xNpTY1jUczN2M21rEitxB0OpyHDsVrxvXWMOAQ2MNLBGdyOMsSCv4HTh5wwV9hzB29JhTYggoHfYDRaOT6669n6dKlREZG8sgjj/DUU08RFRXF7NmzAUhOTiYhIcG2A7X46KOPWLBgAcuWLWP8+PEsW7aMyy67jO3btxMeHt6qa0RFRZGcnGz9Wqdr+ZNScnIy8+fPZ+TIkUgpefzxx5k8eTLbt2/H57gDVzrrOorSHkfrm8jI18oCzYGgpEZbzOfsYEdsqCe3ju1vWTjYtsZCJ5KNjdTt3GkNA8bUVJqOHAHAzs0NMTAUBx8fwhctRh8Xh52LS6d9TpspzNRCwc6vtVBw4YNaKNB723pkPZ5ac9CHXX755URGRmJvb4+rqyuPPfYYzl3cWaw1Ro8eTVxcHG+99Zb1scGDB3PdddexZMmSs75/0aJFfPrpp2RnZ7f6njU1NXh6evLFF18wffr0Tr2OorSG2SzZd6RGCwF55aQdrGB3UTWWYweI9HMlIdyLxH5eJIZ7ExXkjoOu/dP2pupqjOnpxxYPZmYijdoRyA4hIegN2g4Cl6QknAYNYuITjwC0ebdCj9QiFHhqgWDMvF4fCj5/MRU4e/tkteZAOaNvv+3avcOLFy9m8eLFZ3zNd99916Jc0NDQQEpKyklbLC+55BI2bNjQ6nvv37+f0NBQHB0dGT16NIsXLyYyMvK0r6+ursZsNuPt3fIfh866jqKcqLSmnvS8Y7MCGXkV1t0DHs72JIR7M2V4EInh2qLB1pxEeDpSShoPFVhOKEzBmJpG/Z49IKVWIoiKwuu66yw7CQw4BHbuUcI9RmEGJD8Lu77RQsGEh2H0PNB72XpkvY4KB0q7zZs3jxkzZpzxNaGhoS2+LikpwWQyEXjCP06BgYGsXn1yF7RTGT16NMuXLyc6Opri4mKefvppxo0bx7Zt2/D1PfW+5AULFpCQkMDYsWM7/TqK0tBkZkdhFWkHy0mzBIIDpbUA6OwE0UHuXJEQQmK4N4nhXgzwdcWuHbsHmsmmJup27rKeUGhMTaWpuBgAO1dX9AkJuE+5RFsvEBeHXQ9ab9QlCtK1mYJd34KzJ0x4RNuW2MdCwYSborrtXiocKO3m4+PT7rr7iXVTKWWra6mXXXZZi6/HjBlDZGQkK1as4L777jvp9ffddx/r169n/fr1LdYUdNZ1lHNPUVUdqQfKSTlQTurBlosGAz2cSOznzR9GhZPQz4vYME9cHDv2T62ppkY7rjjNsl4gMxNZq4UP+5BgXEaOtJ5F4DRkCKIdfz/fmHt3h8ZoEwVp2kzB7u+0UDDxb1oocO76I41twTuo+0LeORsOGhsbKSgooLy8nOrqapuNw2AwnLSLoL0LjrraietT2lNW8PPzQ6fTtdgRAFBcXHzSbEJrubm5MXz4cPbs2XPScwsXLuTDDz/kl19+OWO5oDOvo/QtjSYzOwurSTlQRsrBClIPlHOoQqvdO9rbEWdZNNg8KxDs2bG9/lJKmgoKtBBgCQP1u3ZpJQI7O5yio/C6+mprGHAIDu6Mj0lUaFinXKdbtAgFXjDxURg9p8+GgmY5mVqPiQFxXX/w0zkVDhoaGlizZg0ff/wxX331Fa6urnh7e+Pu7m6zb8hPPvkkEydObPGYLReJXnHFFaxbt46LLrqITz/99IyvbU9ZwdHRkaSkJH766Seuv/566+M//fQT1157bbvGXFdXx86dO0/6c1ywYAEffvghycnJREdHn+bdnX8dpXcrO9pAqmVGIOVAOZn5lRgbtaOJgzycServze3jB2AI92J4iCeO9h3b6y+bmqjbtcvacbA2JZWmoiIA7Fxc0CfE4z5/vnZccVw8Oreu+enxf1t+B2D6yNFdcv1OcShFCwV7ftBCwaRHYdRccPaw9ci6RfpPBwEVDjrVp59+yty5c4mOjmbGjBk89dRThIX1oqTcSZKTk0lOTmbRokWnfH7hwoX8+c9/ZsWKFWe9VnvLCvfddx+zZs1i1KhRnHfeebz++usUFBQwb968Vr3//vvvZ/r06YSHh1NcXMxTTz3F0aNHufXWW62vufPOO1m5ciVffPEF3t7e1pkKNzc33NzcOvU6Su9lNkv2FNeQYikRpB0stx5EZG8nGB7iwcyR/Ujq701Sf29CvDreAdBUcxRjRjrGlFTtuOKMTMzNJYKgIFySktAbDLgYErUSgX33/DP94v8+A3poOMhPgV+fgT0/ajsOJj0Go+acM6HAFs6JcPDpp59y9913s3r1ahITE209nLMqKSlhxIgR5ObmYjKZSEpKIiUlpVvq3BMnTmyx778rzJw5k9LSUp5++mkKCwuJiYnh22+/pX///tbXLF++nNtuu42cnBwiIiJavD8/P58bb7yRkpIS/P39GTNmDJs2bWrx/mXLlgFw0UUXtXjv3//+d2sw6qzrKL1HVV0j6QcrrLMC6QeP7SDwcXXEEO7NdSPCSAr3Ji7MC71jx/8/11hYaO04WJtmKRGYzVqJICoKz6uusoYBh5CQDt+vT8nfCsnPwN6fVCjoZn0+HKxatYq7776b77//nvj4eFsPp1X8/PwoK9N6aOt0OoKCgsjJyWHQoEE2HlnnmT9/PvPnzz/t8zk5OQwbNuyUszsffnjy2fEnak1pprOuo/RMUkryyoxszi2zzgrsKqpGShACogLdmZ4QQlK4N4b+3kT4unS4vChNJup37bLuIKhNS6OpsBAA4eKCPj4Ov3nztB4DCfHo1OzTqeVt0WYK9q4GvQ9c9LgWCpzOfBqh0nn6dDiQUnL33Xfz5Zdf9ppg0Mzb25vS0lJ8fHzIy8vDz+/MNaZFixad8SfZiRMnUl5eTk1NDTU1NXzxxReAFp4GDjz9KWy28u233/Lqq69i301TqkrvZzJLdhRWsTW3jC255WzJLaO4Wus26O5kT2J/by6NCSKpvzfx/bzwcHbo+D1rjlKXmWENA8b09GMlgsBAbdHgbbehNxhwjo7qthJBr5W3WZsp2LfGEgr+DqP+rEKBDdjkb6oQYj7wABAMbAPulVKuO8Pr/wD8FRgCVAGrgfullIdP9x7QutkFBAQwatSoTht7dwkODqawsJCPP/6Y888/n4qKCq677jomT57Mnj17GDVqFF9//TXvvvsuR48eRQhBbm4uc+bMYcqUKezYsYO3337ber1ffvkFOPuag55iy5Ytth6C0sPVNZpIz6tgS04ZWw6Uk3qgnBpLiSDY05kxkb6MHODDiP7eRAW6d6ivQLPGw4et7YdrU1Oo32kpEQiB05AheFx5BS6GJFwMidiHhPTYnUc9Tt5mSF4C+34GF1+YvAhG/hmc1MzK8SbfNqzb7tXt4UAIMRNYCswH1lt+/04IMUxKefAUrz8PWAncD3wBBALLgP8AF534+uOVl5dzyy23dO4H6CYhISF88MEH/PLLL/z000+sXr2aGTNmMGfOHC699FLmzp1LVVUVxcXF7N27l/j4eDIyMrj22muZO3dui0V1itIXlB9tIOWANiOwJbeMrEOVNJq0ss+QQDeuTAhhZIQPIyK8CfPu+LkA0mSifs8ea8fB2rRUmgosJQK9Hn1cHH7z5mrHFSfEo3Pv3T/drrzn/rO/qLMd/F0LBft/sYSCJ2Dkn1QoOA13n+5rf2+LmYP7gOVSyubG+ncLIS4F7gAePsXrxwL5Usp/WL7OEUK8ArxyppsIIYS9vX2L7XK9SXBwMF999RU///wzrq6uZGRkMGvWLKqqqhg6dCgAe/bsYciQIaxatYpZs2axcuVKZs2ahZSy3YsXJ0+eTEZGBkePHiUsLIxPPvlEdQNUul3z6YRbmksEOWXsKa4BwEEniAvz4vbxAxgV4UNSf+8OtR5uZj56FGNm5rGzCDIyMNdo97T390eflITL7NnoEy0lAoeOlyV6kn5+/t13s4ObLKEgGVz84OInYcQfVSg4iz1btS2ug0d0ffvrbg0HQghHIAl44YSnfgTGneZtvwGLhRDTga8BX+AG4GwHB3iazWaGDBnSgRHbzmuvvdbi6+ZV++vXr7eunzCZTDg4OFifa/597969p11HMGHCBCZMmHDa+7a2hbGidCazWbKrqJqtuWVszi1na24ZhZV1gLZewNDfm6sSQxlhWS/g7NAJuwiKilqcUFi3cyeYTFqJYPBgPKZN1doPGww4hIb2+RLBR7/9CsDM8y7supsc2KiFgpxfwdUfLn4KRv4RHPt4e+dOkv3rIaB7wkG3nsoohAgBDgEXSinXHvf448BNUspTNo4WQlwLvAfo0QLNT8CVUkrjGe41wNHRcX99fX1nfgRFUTpB8+LBTftL2bS/lM05ZVTVaesFAj2cGBnhY/0VFeSOroPrBaTJRP3evS3CQOMh7R9a4eyMPi7O2nFQn5CAzuPc2yo34fEHgS46lfHABksoWKuFgvMWwIjbVShoo3PhVMYTE4k4xWPaE0IMA/4JPAX8gLaI8XngDeCkBQVCiDnAHECvtqEpSs9wYhj4PaeMaksYiPRzZWpcsDUMhHnrO/xTurm2FmNmlrXjoDE93Voi0Pn74ZJowHvWzbgkJeEcHd3nSgQ9Ru5vWijIXaeFgkv+zxIKOr4mROla3R0OSgATEHTC4wFA0Wne8zCwWUr5vOXrTCHEUWCdEOJvUsq8418spXwTeFMIEavT6TI7ceyKorTS2cLAtLgQxkT6MCbSl0CPji+yaiwqtpxDoK0XqNuxQysRAE6DB+Exdeqx44rDwvp8icDmctdrWxJz14FrAExZDEm3qVDQi3RrOJBSNgghUoCLgU+Oe+piYNVp3uaCFiiO1/y1+n+4opzgtdde44033iA3NxeA4cOH8+ijjzJ16tQuu2fLMFDG5pxSa5lggJ8r0+KCGRPpy+gBvgR5diwMSLOZ+j17W4SBxvx8AISTE/q4OHz/9CctDCQkoPPs24fx9Cg567Sjk3PXgVugCgW9mC3KCi8BK4UQm9EWG84DQoDXAYQQ7wNIKZtLBv8D3hJC3MGxssLLQOqptj4qyrkuLCyMZ599lsGDB2M2m1mxYgVXXXUVKSkpxMXFdco9zGbJjsNVbNx36jAwtRPDgNloPFYiSE3FmJ6BuaoKAJ2fHy6JiXjfdBMuhkSchw5FOHZ854LSRjnrtJmCA+u1UHDpM5A0Gxw6fhaFcsylc2O67V7duiDRelOtCdJf0b7RZwMLmxcoCiGSAaSUE457/d1oIWIAUAn8AvxVSpl/hnvEOjs7ZxqNp12zqCjnDB8fH5YsWcLcuXPb9f7mMLBpf5l1AWGlsRHQwkBziaAzwkDTkSMt2g/Xbd9kylsWAAAgAElEQVQOTVrwcBw0EJdEw7GzCMLDVYmgk5RUVQLg59HKmRYptRmC5GfgwG/gFgTjF0LSrSoU2FhnLEi0STjoDiocKIq23fWTTz7hlltuISUlhdjY2Fa/N6+slnV7Sli/9wgb9pVSUauFgQhfF8ZE+mphINKHYM/2fyOQZjMN+/ZZwkAKtalpNOZpy4iEkxPOsTG4GJK0nQQJCei8vNp9L6WTSKntOkh+Bg5u0ELB+feB4RYVCrrYjg1aE66h44LP+LrevFtBUZQulJWVxdixY6mrq8PNzY3PP//8rMGg0tjIxn2lrN97hPV7Ssgt1c4ICPZ05uKhgZw3yK/DYcBcV0ddVha1luOKjekZmCu1n1h1Pj64JBnwvvFGrUQwbJgqEXSj5T//BMDsSRef+gVSav0Jkp+BgxvBPRgue94SCrqvc9+5bOfG1oWDzqDCgaL0QVFRUaSnp1NRUcGqVau49dZbSU5OJibmWM2y0WQm7WAF6/ccYd3eEjLyKjBLcHXUMXagL7PHRTB+sD8D/V3bPXXfVFJiXTRYm5ZK3fYd0KjNQDgOHIjHJRejT7SUCPr3VyUCG1qerDVAOykcSKl1Mvz1WUsoCIHLX4DEWSoU9GEqHChKH+To6Gg94nvEiBFs2bKFl156iUee+Sfr9xxh/d4SNu4r5WiDCTsB8f28uGviIMYP9icx3AsHnV2b7ynNZhr2728RBhoPaGuGhaMjzrGx+M6+VTuLIDEBe2/vTv3MSieTUjvzIPlZyNukQsE5RoUDRenDSmvqWb+3hN2Hq8goPcjPL2ktciN8XbjaEMr4Qf6MHeiLp77tTYDM9fVaiaD5uOK0NEzNJQJvb/QGA94zZmjHFQ8fjp0qEfQO1lDwDOT9Dh6hMPVFLRTYO9l6dEo3UeFAUfqQukYTf7pzIS6DRrK7xondh45wdHsyVdu2cvkDL3PT1bGcP9iPfj5t33feVFqKMS1N6ziYmopx+/ZjJYIBA3CbfJF18aBjRIQqEfQ2Eqgrh3cugfzN4BEGU1+CxJtVKDgHqXCgKL1cbslRVu8o4tfdR/ht9wEOrPke83/ehTojOicnXPz9eXzpSzxxzz3sOpTPrJefOOkaj157A5PjE0nP2ce9770JEsx1RszVNZhrqllYWk1MzgHS9E68HOSLnasruhEx2Lm5YefmztI58xk4YCCrM9J4+r3XT7r+G3PvJio0jP9t+Z0X//fZSc+vvOd++vn589Fvv/KvH04+U+3T+x/Bz8OT5T//ZK2NH+/bvz2Bi5Mzy77/mo83rDvp+ebzAl74chVfp2xu8Zze0ZHvHn0KgKc++S9rsjJaPO/r5s6qvz4KwMP/fo+Nu3e2eD7M149/L3gAgHvffYP03P0tnh8SHMqbd9wDwJx//ZPdhYdaPJ8QEcnLt2tbTG9e+jz5pSUtnh87JJolN98GwLXPPU1pTXWL5y+Kjeex6/8AwGVPP4axoaHF89OSRnH/ldcCx85PON6MseOZP1jPBfXprC2qgeAKmPYPSLhJhYIeZtrd8d12LxUOFKWXaTSZ2Zpbzs87i1izs5j9R44CMDjAjasTw1hjmoq7s0OLw4pGnOXYbXNjI7UpKZQn/0z97t2Ya2qQlt4Cwt4e+9BwAq69jqAAP1w2/wZ2bV+ToPQwEjCWw4Z/wu+beSggnLDBV8Ftj4G9KgH1RA6OHT+NtLVUnwNF6QXKjzaQvLuYNTuK+XX3EarrmnDU2TFmoC8XRQcwKTqADTu2AK07creprEwrETSfRZCdjWwuEUREWJsM6Q0GHAcMUCWCvkRK2LtaW1NwaCt4hsMFf4H4P6hQ0MNlJWt9/2InhJ3xdarPgaL0UVJK9hTXsGZHMWt2FJF6sByzBD83Jy6PCWbS0ADGD/LD1enY/4Wbp+NPDAdSShpyco+1H05JpcFy7gIODuiHD8d71ixckgzoExOx9/Hpro+pdCcpYc9P8OszcCgFvMJh+lIVCnqRvSnFwNnDQWdQ4UBReoi6RhO/55Tx8w6tXJBfrs16xYR6cNekwUweGkBMiCd2dmf+Kd7c0EBd9jZrx0FjWhqm8nIAdJ6e6BMT8bz2GlwMBpxjYrBzUnXlPk1K2POjNlNQkKqFgitegfgbQaeOqlZOTYUDRbGh4qo6ftmllQvW7y2htsGEs4Md4wf5c+fEQUyMCjjrWQVN5eUY07S2w6bqGnaPGIm0LEpz6B+O24QJWvvh5hKBWi9wbpASdv+gzRQUpIFXfxUKlFZT4UBRupGUkm0FVazZUczPO4vIyNf6AoR4OnONIZSLogMZO9AXZ4dTLzySUtKQm2ttMmRMTaNhv7Y6vnFACHYuLnjfdJMWBhITsffz67bPpvQQUsLu77WZgsJ08I6AK16F+BtUKFBaTYUDReliTSYzv+eU8U1WIWt2FFFUVY8QkNjPiwemRDEpOoDoIPdTLvozNzRQt21bizBgKisDwM7TE5eEBDyvvBIXQyIuX34MdnYEPvjX7v6ISk8gJez6TpspKMzQQsGVr0HcTBUKlDZTuxUUpQuYzJLfc0r5JrOQ77MPU3q0ARdHHRcO8eeioYFMjPLH1+3kWr+pooLatDQtDKSmUpeVdaxEEB6OS6K2g8AlyYBjZGSLEkGbj9xV+gYpYde32kzB4UzwHgAXPABxM1QoOEep3QqK0oOYzJKtudoMwbdZhympqUfvoOOioQFMiwtmQlRAi3KBlJLGgwdbHFfcsG+f9qS9Pc7DhuF9443okwxaicDf/4z3V6HgHCMl7PxGOxCpORRc9S+InQE69U+70jHqb5CidIDZLEk5WM43mYV8m1VIcXU9zg52TIoOYGpsCJOiA9BbGpfIhgaM6ZazCNJSqU1Nw1RaCoCdhwf6xAQ8p09Hb0hEHxuLnb5tRyOf9chdpW8wm2FXcyjIAp9IuOp1iL1ehYI+Lu1H7SCzxEvCu/xe6m+SorSR2SxJy6vg68wCvss6zOGqOpzs7ZgYFcDUuGAmRQfg6mSPqbKS2g3rKG4+mCgrC1lfD4BDv364jT9PO6HQkIjToEEd3kVw2iN3lb7BbIadX8Ovz0FRFvgMhKvfgJjrVCg4R+Rmaa21VThQlB5CSkl6XoV1hqCgsg5HnR0XRvnzcFw0k6IDcCoupDZ1M1Wr0jicmkLD3uNKBEOH4n3DTGsYcAgIsO0HUnoPsxl2/s8SCrLBdxBc/SbEXKtCgdJl1N8sRTkNKSVZhyr5JrOQrzMLOVRhxEEnuHCIPw9MHsj5lCGyMzG+8z6FaWmYSrRUb+fujj4hAc+pU9EbktDHxmDn0vZTEJVznNkMO77SQkHxNi0UXPOWFgrsuq/HvnJuUuFAUY7T3Ifg68xCvskqIK/MiL2dYHI/PY/51zG8LBfz6g8x/iOLI3V1ADiEhuI6dqyl/bABp8EdLxEo5zCzGXZ8aQkF28F3MFzzNsRco0KB0m1UOFAUoLDSyMdb8vk8LZ/ckqOE1pVzpX0J44yHCDy4i6bP94GU1Oh0OA8diteM63ExaGHAIVCVCJROYDbD9i+0UHBkB/gNUaFAacHesft+6FB9DpRzVpPJzM87i/l4Uw55W9IZWpLL+Q0FDC7aj0OlpdGQmxv6hARr+2F9bCx2rq42Hvmp1dZrMxkuTmdut6z0MGaTJRQ8bwkFUXDhX2H41SoUKO2i+hwoSjscOFDEz5+toWjDZiIK93JXeR5OJkujoZAQ9OePs4YBp8GDEbre8Q+0CgW9jNkE2z6Htc/DkZ1aKLj2HRUKlB5BhQOlT5NS0niogKqtW9m75jfq0tLwLznEGCRmIWgaMAj/KdfjlmRAbzDgEBRk6yG327LvvwZg/qXTbDwS5YyaQ8Gvz0HJLvCPhuvehWFXqVCgnNGWb3IAGDl1QJffS4UDpU+RTU3U7dhpbTJUvTUFSo4A4GDvxIFQHSkxAVx/3SLCxo7ssSWC9vh4wzpAhYMey2yC7M9g7XNQshv8h8J171lCgVrAqpxd/k7t6HUVDhTlLEw1NRjT0q1hwJiZiaytBaDC3Yc0z/7sjB+P58gRTJ46ju8OPIwA/jJ5gk3HrZxDzCbIXqXNFJTugYBhcP1yGHqlCgVKj6XCgdJrSClpKiho0X64ftcurce8nR0ycjB7Ei7gWxlAins4bv1CuGFUOI8ZwvB31w45Wn7Axh9COXeYmrRQsPZ5SygYDtevgKFXqFCg9HgqHCg9lmxqom7XLssJhSkYU9NoKioCwM7FBX1CPE5z55Hq0Y/3K9zZUlyPo70dl8UE8crIcMZE+pzyGGRF6VKmJsj+1BIK9mqhYMb7ED1dhQKl11DhQOkxTDU1GNMzMKamUpuWSl1GJmZLicA+KMjaZEhvSGSXayDvpRTwVUYBtYdNDAl04PFpA7nGEIqXi+Np7+Hl5NVdH0c515iaIOsTLRSU7YPAGJixEqKnqVCgdApnt+47glv1OVBsprG5RJCaSm2apURgNoMQOEVF4WJIRG9IwsWQiENICHWNJj5Jyec/mw6w83A1egcd0+KCuWFUOIZwLzVLoNiGqQmyPraEgv0QGAsTHoSoqSoUKDah+hwovYY0majftatFGGgqLARAuLigj4/Db9489AYD+oR4dG5u1vfW1Dfx7q/7eGtdDiU19cSEevD0VTFcmRCCu3P3JWlFaaE5FPz6HJTnQFAszPwPRF2uQoHS66lwoHQJU81R6jIzrGHAmJ5+rEQQEIA+yYDLbbehNxhwjo5C2J/8V7HS2MiKDbm8+1sOFbWNjB/kx12TEhk9oP1rCV5OeRmAe5Pubf+H66Fe+HIVAPdfea2NR9LHmZog8yNtpqA5FNzwXy0UqNkrpQtt/Fw76XXs1QO7/F4qHCidovHwYW1GIEVbL1C/87gSwZAheFx5xbGzCEJDzvjNvbSmnnfW5/D+xgPU1DcxeWgAd04cRGK4d4fHmXEko8PX6Km+TtkMqHDQZUyNx4WCXAiKgxs+gKjLVChQusXh/ZXddi8VDpQ2kyYT9Xv2UJui7SCoTUulqcBSItDr0cfF4Tt3jhYGEhLQubu36rpFVXW8uXY///39IHVNJi6PCWb+xIEMD/Hsyo+jKGdmaoSMD7VQUHEAguPhxg9hyKUqFCh9lk3CgRBiPvAAEAxsA+6VUq47w+sdgUeBWUAIUAS8IKX8ZzcM95xnPnoUY2YmtampGFPTMGZkYK6pAcDe3x+9wYDL7NnoEy0lAoe2rQPIK6vl9V/38cnWfExScmVCCPMnDGJQgNvZ36woXcXUCBkfwNoXLKEgAS57DoZMUaFA6fNaHQ6EEK8A6UAmkC2lbNc2ACHETGApMB9Yb/n9OyHEMCnlwdO87QOgHzAH2AMEAvr23F85u8aiIq1EYFkvULdzJ5hMWolg0CA8pk3VZgUMBhxCQ9td/99/pIZlyfv4Iu0QQsD1I/ox74KBhPu6dPInUpQ2MDVC+n9h3QtQcRBCEuHy52HwJSoUKOeMtswcfA/EAX8BYizfELahhYVMKeX/Wnmd+4DlUsq3LF/fLYS4FLgDePjEFwshLgEmAwOllCWWh3PbMG7lDKTJRP3evcfCQEoKjQUFAAhnZ61E8Oc/HSsReHh0+J47D1fx6s97+SarECd7O2aN7c+cCyIJ9uz6vBfoGtjl97AVvePp+zsordDUABn/hXUvWkKBAS5/EQZfrEKB0iO4eTt1273a3edACOEExADxQKyUcmEr3uMI1AI3Sik/Oe7x14AYKeWFp3jPMmAIsBm4BTAC3wGPSClrznAv1efgFMy1tRgzs6wdB43p6dYSgc7fDxdLkyEXgwHnoUPbXCI4k4y8Cl79ZS8/bS/C1VHHrLER/HH8AGtrY0WxieZQsPZFqDwIoUkw4WEYNFmFAqVXskmfAyGEMzAb8Ae2AyullI2tfLsfoENbM3C8IrTZgVOJBMYD9cC1gBfwCtrag+tOMb45aOUHvclkauWw+q7GomLLOQTaeoG6HTu0EgHgNHgQHpdfroWBpCQcwsK6pJHQ5pwyXv1lL2t3H8FT78C9kwcze1zEGTsZKkqXa2qA9P9oMwWVeRA6Aqb9AwZdpEKBcs5rz4LEj9Dq/juBC4AnhBDXSyl3tOEaJ05XiFM81szO8twfpJSVAEKIu4AfhBCBUsoWQUNK+SbwphAiVqfTZbZhTL2eNJup37O3RRhozM8HQDg5oY+NxfdPf9I6DyYkoPPsul0AUkrW7y3hlZ/3sjmnDD83Rx68NJqbx4TbtHHRs5ufBeDBUQ/abAxd5alP/gvAY9f/wcYj6eGaGiD937DuJS0UhI2E6S/DQBUKlJ5t3ce7ATh/xpAuv1d7wsEAKeWVzV8IIeKAN4HzW/HeEsAEBJ3weAAnzyY0KwQONQcDi+YgEn6G9/V5ZqMRY2bWsTCQlo65uhoAna8vLgYD3jfdhIshUSsRdENNWkrJmh3FvPLLXjLyKgjycObv04dxw8hw9I66Lr//2ews22nrIXSZNVlaDwcVDk6jqR7SLKGgKh/CRsH0pTBwkgoFSq9QknfaSnqna084qBZCxEkpMwGklJlCiFb9CCqlbBBCpAAXA58c99TFwKrTvO034HohhNtxawyaY9M5dQBv05Ejx9oPp6ZqJYKmJgAcBw3E49JLtW2FhkQcwsO7/ayBvcU1PPJ5Fptzyujno2fx1bFcmxSKk73tQ4FyDmuqh7SVllBwCPqNhitfgciJKhQoymm0JxzMAT4SQvwEZAHRtG33wEvASiHEZrRv/PPQ1g+8DiCEeB9ASnmL5fX/BR4D3hNCLEJbc7AU+FRKWdyO8fcK0mymYd8+alNSLTMDaTTm5QFaicA5Ngbf227T1gskJqLzst1pg/VNJv6VvI9lv+zD2cGOxVfHMmNEGPY61V9esaGmekh9H9b/wxIKxsCVr0HkBBUKFOUs2hwOpJTbhBBJwFXAUGAv8Pc2vP8jIYQvWlOjYCAbuFxK2TwLEH7C62uEEJPRFiFuAcqBL4CH2jr2nsxcV4cxM9PacdCYlo65qgoAnY8PekMi3jfcgEuSAedhw7qlRNAav+8v5ZHPs9h35ChXxIfw2LRhaveBYluNddpMgQoFitJu7dmtkABcDZQCa4GstjZEklIuA5ad5rkJp3hsF3BJW8fakzWVlFgXDdampVK3fQc0aps+HCMjcb/kYlyajyvu37/HHUdcUdvAkm938tHWPPr56Fl+20gmRAXYelhn1d+jv62H0GV83VrXprrPaqw7NlNQXQDhY+GqZTDgQhUKlD7BK7D7GsS1uc+BEOIgsARtS2IsWmMkfynloM4fXtsJIa4E/gcMb+5zkJ+fT2FhISNHjrTJmKTZTMP+/S3CQOMBrRmkcHTEOTZW20GQaECfmIC9d8cPGOoqUkq+yijgqa+3U17byJ/OH8C9Fw3pEYsNlXNUYx2krrCEgkIIHwcTHoIBF6hQoJyTbNLnAMiXUv6rIzftYg+jbX/c2/zAvffeywUXXNBt4cBcV0dddra142BtejrmSm2zhc7bG73BgPeMGdpZBDHDseshJYKzOVhay6NfZrN29xHiwzxZcfsodSiSYjuNRkhZAb+9rIWC/ufBNW9CxPkqFChKB7Vn5uAJIE9K+XbXDKljhBDTgKeBW5ydnTN+//13pkyZwr59+3Bx6ZopmabSUoxpadriwdRUjNu3HysRDBhg7TioTzTgOCCix5UIzqbRZObtdTksXbMbnRA8MCWKWWMj0Nn1rs8BsGjDIu33cYtsOo6u8PC/3wNgyc232XgkXazRCCnLYf3LUHMY+o+3zBS0Zje1ovRev/xb24o98eboM77OVjMHicAsIcTf0BYIZtC2sxW62jfAImAiwJNPPskDDzzQacFAStmiRGBMTaXhgLaWUjg44BwTg88tsyxhIBF7H59Oua+tpOdV8NCqTHYeruaSYYE8ceXwbjkDoascqOq7u1837u67PRwALRRsfU+bKagp0mYIrn1bhQLlnFFRVNtt92rPboUrAIQQbmhnK8SgtT7uEeFASiktWx5fMJvN/Pbbb7z//vvtvp65vt5SIrCEgbQ0TBUVAOi8vNAnJuJ1/XXoDQachw/HzqlvrNSvrmvkhR928f6mAwS6O/P6zUlcGnNi7ypF6QYNtZDyHvy29FgouO5diBhv65EpSp/V3rMVLgbqgO1Syk2dPqqO+wZ4trGxsc2zBk1lZVqJIDUVY0oqddu2IZtLBP374zZpkrZ40GDAccCAXlciaI3vsw+z6KttFFXXccuY/tw/JcqmLY+Vc1RDLWx9VwsFR4u1BYbXvQcR59l6ZIrS57WnrPA5sB+YCZQKIfzQygoTO3VkHWCZPXgJeHvevHlneh0NOblakyHLeoGG3FztSQcH9MOH4z1rlmUnQSL2vr7dMn5bKaw08viX2/hpexHRQe7862YDieE9d+eE0kc1HD0uFBzRtiJOWAH9x9l6ZIpyzmhPOAiRUl4mhDhPSpkghJgLBHb2wDpKSvlOtJPT24emTSdg4b14Tp+OuaGBuuxtGFNTtJ0EaWmYyssB0Hl6ok9MxPOaa7SzCGJisHN2tvGn6B4ms2Tlxlye/2EXJil56LJo/jh+AA59sMNhtM+ZF/L0ZmG+frYeQsc0HIUt78CGf2qhIHICXPgQ9B9r65EpSo/g18+t2+7Vnt0Km6SUYyztj8dbzktIPlXzIluLcdbLTyIiQKfDISyMpsJCZEMDAA79w3FJNKBPMuDSXCKw63vfDM9me0EVD3+eRUZeBRcM8efpK2MI9+2+RhuKYg0Fvy2F2hLtzIMJD0H4GFuPTFF6JVvtVlgqhPBBOzjpdSHERk5oedzjmEw0FhTgc9NNWhhITMTer5f/lNVBtQ1NLF29h7fX5+Cld2DpDQlcER/SJ9dQKD1UfQ1seRs2vKJCgaL0MO3ZrfCB5T+fF0LcgrZb4cozvKVnaGoi8KEHbT2KHmHdniM8/FkW+eVGZo7ox8OXR+Pl0jsaMXXUQ+u0IzmeOf8ZG4+k89377hsAvHz7XBuP5Czqa2DLW5ZQUKodmXzhQxA+2tYjU5Qe7ad3twFw8e3Du/xe7Zk5sJJStn+PYDezDw629RB6hOW/5fDE19sZ4OfKR3PGMDqyby+yPFHR0SJbD6HLpOfut/UQzqy+GjZbQoGxDAZepM0U9Btl65EpSq9QU17fbffq6MFL2WgHLx3p7IF1JuHsTMDCe209DJsymyXPfr+TN9bu55JhgSy9IVGdh6B0j/pq2PwmbHhVCwWDJmszBf1sc9aJoihn156Zg684dvDSTOD/hBA95uClFgTYh4RYdyucq+qbTDzwSSZfZRQwa0x/Fl0xvFe2PlZ6mboqLRRsfBWM5TDoYm2mIKxD66QURekG7QkHeT384CUr5+HDGfzzGlsPw6aq6hqZtzKFDftKeWBKFPMnDFSLDpWuVVcFm9+Aja9poWDwJdpMQViSrUemKEortTocCCGWop2j8KsQ4o9Syne6blhKZzhcWcfs9zazt7iGl2bEc40hzNZDsrl4/3hbD6HLDAkOte0A6qrg9ze0mYK6Chg8BSY8CKEqFChKZwiK7L5TcFvd50AIMRWIA0YAQ9GCxVYgC23dwdddNcj2GjFihNy6dauth2ETe4qqufXdzVQaG3l9VhLnD/a39ZCUvqqu0hIKXtNCwZBL4cK/9uhQcPnll7Nq1Sr0+t57iJiinE639jmQUn4DfCOESJVSDrOcsTAciAcWAD0uHJyrft9fyp/f34qTg46P5o4lJrT70qZyDqmrhE2vw6bXtP8ecpklFBhsPbKz+vbbb209BEXp0dpSVrgCraeBqxAiXEp5EEgBUoQQC7pqgErbfJNZyMKP0gnz0bPitlH081HdDo+38JeFAPxj4j9sPJLON+df/wTgzTvu6dobGSu0mYLmUBB1uRYKQhK79r6d5MUXX6S4uJhnn33W1kNRlDb57o0sAC6bG9vl92rLgsQMIAjwA1YIISKAQqAAaOz0kSlt9u76HJ76ZjuGcG/evmUE3q7nRmOjtqior7D1ELrM7sJDXXsDYwX8/jpsXAb1lRA11RIKErr2vp0sOzubSZMm2XoYitJmdTXd9622LWWFA8CbQoidUsq1AEKIUKAfsL2Lxqe0gtkseeb7nby5dj9Thms9DJwdVA8DpZMYK2DTv7Rf9ZUQPU0LBcG9c3FndnY2CxaoyU5FOZP2nDS0UwjxhBDib1LKQ1LKTVLKqk4fmdIq9U0mFnyUzptr93PL2P4suylJBQOlcxjL4ZfF8HIs/PoMDDgf5q6DG/7Ta4OBlJLdu3czdOhQWw/FasKECdx1110dusbs2bOZNm1aJ42o66/blaZNm8bs2bNtPYwWWvO/cU/7s25Pn4NPgPeBhWgNkGKA2VLK+zt1ZMpZVRq1HgYb95fy4KXRzLswUvUwUDqutkybJfj9daivgqHT4cIHIajr65xdbf/+/QQHB+Pk5GTroXSqpUuX0tYTdm153dmzZ7NixQrr176+vowZM4YXXniB6Oi+e6x6b9KemQO9pcdBI4CUMhtQBbwusGTJEkaOHImHhwf+/v5Mnz6d7OxsAAorjcx4fSNbcsv4x8x47lDNjVpldPBoRgf3zQN+EiIiSYiIbP8Fasvg56fh5ThY+xxEToB5v8HMf/eJYABaSSE2tm98luN5enri5eXVa64LMHnyZAoLCyksLOTHH3/EaDRy9dVXd8m9+oqwaG/Cor275V7tCQdFQogw4Pg46dxJ41GOk5yczPz589mwYQM///wz9vb2TJ48mc07D3DNsg0cqjCy/LZRXJ2omhu11rz4ecyLn2frYXSJl2+f274TGWvLYM1TllDwPAyaZAkFKyEopvMHehrTp09n5syZ1q83b96Mi4sLR48e7bR7ZGdnExPTfZ+ptZqamliwYAHe3t54e3vzwAMPYDabrc9LKXnuuecYOHAger2e2NhY/v3vf1ufb82U9IQJE7jjjjv4y1/+gt7jz2kAACAASURBVI+PD/7+/ixdupT6+nruvPNOvLy8CA8PZ+XKlae97oQJE5g/fz6PPPIIfn5+BAQEcP/997cYa2s5OTkRFBREUFAQBoOBhQsXsnPnToxGo/U19fX13HvvvQQGBuLs7MyYMWNYv3699fna2lpmz56Nm5sbgYGBLF68+KT7nO3P7myfKzk5GSHESb8mTJhgff/333/P+eefj7e3Nz4+PkyZMoUdO3a0uIfZbO7wn9vIqQMYOXVAm97TXu0JBwuB5UCAEOJGIcR7wM5OHZUCwA8//MBtt91GTEwMsbGxrFy5kiNHjjDjieWYzJKP5o5h/GA/Ww9T6a1qy2DNk9qagnUvwKCL4I4NMOP9bg0FzUJDQzl06NiOi1GjRuHm5sbq1atbvG7x4sW4ubmd8de6detOeY9t27bxyiuvEBERQUREBFdcccVpx9OR+yxatIioqChuvPFGKioq+P7770lMTGTcuHFs2rTppNf/5z//wWw2s3HjRt544w3efPNNXn75Zevzjz76KO+88w6vvfYa27dv/3/27jsuq7IN4PjvFgFliBLukQPFAWqKuXKVmlmau/mKlrkaWo60NM1Mc1RaNtS3Vy3TXFlZapqGe4QLcOVAxS0uBGTf7x/nAVkynwFyfT+f88HnnPuc+3oOyHNxn3swduxYBg0axB9//JHpPc2oHldXV/bs2cOYMWMYPnw43bp1o1atWgQEBODn58eAAQO4ePFiptcoWrQoO3fuZM6cOcyaNYtly5blKI607ty5w7Jly/Dx8Uk1MdXo0aNZtmwZ//vf/zhw4AA+Pj506tSJS5cuATBy5Eg2btzIqlWr2LRpEwcOHGDr1q2prp3de3e/99WiRYvkFo5Lly4REBBAyZIlUyUHkZGRDB8+nL179+Lv74+bmxtdunQhNjbWovfNorTWOd4AB6AP8BHwOuCUm+tYemvcuLF+kCz6a78GdKPXv9ChNyJtHU6BNGjjID1o4yBbh2ERL82arl+aNT3rghFhWm+cqPXHFbSe4Kb1cj+tLx+2eHxZmTRpkn744YdT7atataqeP39+qn3Xr1/XJ06cyHSLiorKczy5rWfjxo160KBB+s6dO3r69Om6Xbt2un79+vrIkSM6JCREt2rVSicmJiaXb9Omja5Zs2aqfR999JGuWLGi1lrriIgIXaxYMb1169ZU9QwbNkw/9dRTWmut/fz89NNPP53p+2nTpo1u1qxZ8uvExETt4eGhu3TpkrwvNjZW29vb6xUrVmR43bTX0Frr9u3b61dffTXTutPy8/PTdnZ22tnZWTs7O2tAV65cWQcFBSWXiYiI0Pb29nrRokXJ++Lj43X16tX1+++/r+/cuaMdHBz04sWLk4/fuXNHu7m5aT8/v+RrZHXvcvK+oqKidOPGjXX37t1Tfb/SioiI0EWKFNHbtm3L9vWz8z387YsD+rcvDmRaRmutgQCdx8/PnEyCVFZrfcWUUMQCy02bsILvtofw1htv4VapJhumDuAhV5n2NTdi4q23Hrq1nb8elnmByOuw60vYMw/ioqBed2NIYpn80XO/YsWKXLx4Ea01SilOnDjB2bNnadWqVapy7u7uuLu7Wzye3NZz4MAB/Pz8cHFxYdSoUfzyyy+89dZbySMkateuTVhYGKVL35vSvFmzZqn6DDVv3pzx48cTHh7O8ePHiY6OplOnTqnKxMXFUbVq1RzFVr9+/eR/K6UoU6ZMqj4Y9vb2lCpViqtXr2brGgAVKlTItPz9tG7dmnnz5gFw48YNvv76azp27MiePXuoXLkyp06dIi4ujpYtWyafY2dnR/PmzTly5AinTp0iNjaW5s2bJx93cXFJ9X6OHDmS7XuX1fvSWtOvXz8SEhL44YcfUl3v1KlTjB8/nj179nDt2jUSExNJTEzk3Llz2b5+dsTH5vzxTW7lZLTCJaXUFeAoxnoKwUlftdYRlghOGHMYTFl7lOkfvgeXj7Fr905JDETORIbBzi9h73wjKfDuAa1HQ5n81Su8YsWKxMXFce3aNUqXLs3w4cPp0qULXl5eqcpNmTIlw2fLKa1bty5dUpFVh12dpld+buvx8vJi/fr1NG/enC1bthATE8Nnn31G586dKVGiBMeOHeOhhx7K9LopJT2XXrNmDVWqVEl1zN7ePtvXyai8UirDfZk9C89p+ftxcnLC09Mz+XXjxo1xc3Nj3rx5fPTRR8nfj4y+b0qpbI2iyMm9y+p9TZo0ia1bt/LPP//g7OycqmyXLl2oWLEic+fOpWLFihQtWpS6deumeqxgrvtmLTlJDmYBrYG/gDMYizA9C3grpbTW2jq9JAqRmPgERiw/xPefT0Kf2sHeHVup41XT1mGJgiIyDHZ+AXv/S0RkJJ+f9uT3f+PZPeG7fDmypWJFY1XJ8+fP89VXX3H48GH++eefdOUGDx5Mnz59snWtlLLzYWKOerp06cLatWupUqUKZcuWZeXKlezZs4dHH32UokWL8tlnn1GkSOruXnv27EluMQHYvXs3FSpUoESJEtStWxdHR0fOnj37QM/sqJSiSJEiREVFAeDp6YmDgwPbt2+nenVjFE5CQgK7du3ixRdfxNPTE3t7e3bv3p18PDIykuDgYGrUqAFgtnu3cuVKpk+fzt9//02lSqk7gF+/fp2jR4/y1Vdf0a5dOwD2799PfHx8ruvLD3IyQ+I7SqnywPtAR2Cy1noMgFLK1ULxFVq378Yx6IcA1s6bCqd3smf7VurWzR/NvyKfi7hmJAX//Je46Cj+e7keH605SdvHvViy4iOrJQYJCQnExMQQHR2dvDk4OKT75Zok6YN23LhxBAUFsWXLllRN70nM8VghO6sy5rYepRTffvttqn1Vq1ZNNRIjrYsXLzJ8+HCGDh1KUFAQM2bMYNy4cQC4uroycuRIRo4cidaa1q1bExERwe7duylSpAgDBw7McYyWNGfOHObMmcOxY5n3U4+JieHy5csA3Lx5kzlz5hAREUGXLl0AcHZ2ZsiQIYwZMwYPDw+qVavG559/zpUrVxg6dCguLi68+uqrvPvuu5QuXZoKFSowadIkEhISkuswx70LDg7Gz8+PKVOmUKVKleSYHRwccHd3p1SpUnh4eDB//nwqV67MhQsXGDVqFEWL5mYaofwjR9FrrS8BbyilKgPjlVLvAm9rY64DYSZXw6P5z3d72bN4OvHHt/D7b7/i7u6e/EOZ1FNa5FybSm1sHYLFNK9aBS4EwOz66Li7LA9vxLjVp6hU1ZH/LfyemjVrEh0dzb59+1J9YJtzS5kMxMfHU6xYsVRbpUqV0vUmT1KqVCmcnJw4ceIEW7dupVo1yzVG5rdVGV966SUSEhJo2rQpSileffVV3n777eTjH330EWXLlmXmzJkMGTKEEiVK0LBhQ0aPHm3DqDMWFhbG8ePHsyz3119/Ub58ecD4EK9duzYrVqxINQogaXGs/v37c+vWLR555BHWr1+ffN7MmTOJjIyke/fuODk58eabb6Yb+prXexcQEEBUVBTDhw9n+PDhyfvbtGmDv78/RYoUYdmyZbz11lt4e3vj6enJp59+Ss+ePbN1/Zyo6mO90Wkqu01tSikfwMu01QGqYYxa+ERrvcpiEeaBr6+vDggIsHUYOZKQqHlx/m42/PMzt76bmWGZCRMmcLKUc7oOaM1r1Wbqy/0B6Dl9Mtcj7qQ6/oRPA8b3fhGApyaP526K52EAzzR+lJHPGj/QbT94N129fVq0YminZ4iKiabzxxPSHe/Xtj39Hu9AWPhtes1M/6x2yJOdea5lG0LDrvGfL9K/txFdetClSVOOXzjPoLlfpjs+rufztG/wCAdDTjF8wbx0x6e86EeL2nXZeewI7y1ZlO74rP4DaVitBn8dOsDkVT+lOz530Jt4VazEmn/28Oman9Md/+GtkVT2KM2yHVv45s/0Hy4rR76HRwk3Fm7eyEL/v9IdX/v+hzg5FuPr9b+zfGf6IXD+k4xfhDN/XcXv+/amOlbcwYF14z4C4KMVS9gUdOjewYRYHoq+zCp3f4iPBu9ejP5bM+Or77Czs6NEiRIUL1483Qd1Vpujo2Py19ycb29vn68eXxw9ehQ/Pz/27r13b8PCwmjYsCFBQUGUKmWdyWWEsDSl1D6ttW9erpHTVRkDgWXAVOCY1joh81MyppQaCowCygOHgeFa64wHDKc+7zHA31R3/pvJxAy+3XKKPSE3aPywO/HjU2e2DatWT57k5uXZM2wRnshP4mMh/ALcuQRFYqFlF2g9CjxqMq2H5vFnejFjxgxOnDjBO++8w4ABAwp1i5OnpyenT59OtW/69OkMGjRIEgMh0shJy8EwoB7gA1QHznNv1EKw1np9Nq/zHLAYGApsN33tD9TVWp/L5LxSwD7gBFAxO8lBQWs5OBR6i57f7KSTdzm+fOGRfPVX14Oi/3qjZWVBpwU2jiQP7lwx9Sn4DhJiwKePKSnwzLB4QEBAcmeqwYMHM2HChAL/PDS3vLy82Lp1K2XLluXq1as0adKE4OBgXF2l25TI/1Z/uh+A7iMaZVrOHC0HWc6QqJSqDaC1nq21Hqi1bq61Lgv0BFYC9sDLOajzHWCh1nq+1vqo1vpN4BIwJIvzvgMWAbtyUFeBERkTz7CfDlDG1ZGI61sZ9G36ZnVRyN25Auvfg9n1YffXUK8bvBEAPebeNzEA8PX1Zfny5ezatQuttVmnIy5oateunfw8fPr06bzxxhuSGAiRgez8+XBAKTUPmKC1vpW0U2t9BmNI4+/ZrUwp5QA0BtI+cN4AtMjkvKFAOaA3MD679RUkH645zLkbUSx9rRnvLtxg63BEfnLnMuyYDQH/g4Q4qP8ctB4JD9XI0WU8PT2ZPHmyhYIsGGrXrs2///6Ll5cXq1evJigoyNYhCZEvZSc5eBT4HDiplPoQ+Dq3fQ0AD8AOuJJm/xWgfUYnmDpCTgCaaa0THsSm9rVBl1gecJ432nnStHr2J0cRD7g7l2H7LNi3wEgKGjwPrUbkOCkQ99SuXZujR48ybdo0hg8fjpOTk61DEiJfyjI50FoHAe2VUt2AGcAQpdQIrfW6PNSbtqODymAfSilH4CdgpNY6JDsXVkoNBAYC6WbEyo8u3rrL2J+DaFC5JMPaywRHAgi/BDtmQcACSIyHBi9A6xHgnoflmAVgJAdz587l5s2bBAYG2jocIfKtnEyC9ItSai3Gqow/KaV2AO9orXOyImMYkIDxiCClMqRvTQBjNENdYIFp9Ucw+kkopVQ80FlrnaoNXms9D5gHRofEHMRmdQmJmneWHyQuIZHZzzXE3i43i2SKnHiy6pO2DuH+wi+aWgoWGklBwxeg1Uhwl8lHzaVOnTrs2bOHefPm4ejoaOtwhMgRz8ZlrFZXTrssO2GMGFiEsRpjoFLqW2C81vp2VidrrWOVUvuADsCKFIc6ABnNlXABY3RESkNN5btj9HkosOZtPc3u0zeY3qs+VT3uzdXdsKr8hWgpz9d+3tYhpBd+EbZ/DvsWgU4wWgpajZCkwAJKliyZ42mUhcgvfNpmPLuoJWSZHCilhgNNTFsNIBY4CMw2fX0JOKKU6qG13pONOj8DflBK7QV2AIOBCsC3pvq+B9Ba99Vax2EMlUwZz1UgpqDPyhh4/hafbjjO0z7l6d049Tc8aS4DYX534+8CULxoPli86vYFIynYvwh0IjR80UgKSlW1dWRCiHwoLtbo7mfvYGfxurLTcjACY/jgN8BuYJ9pyeYk35umUf4fxjwImdJaL1NKPQSMw3hsEIzxeOCsqUj+7yiQR1Gx8Qz76SClXR2Z0t1H5jOwoqF/DQVsPM/B7fOmpOB7U1LwkikpeNh2MQkh8r3fvzRmRs1qngNzyE6HxMrZuM4CIPO1TVNf82vg6/sca5vFuROBidmtKz+atOYIZ65HsvS1Zrg5pV9yNWn2w8XDRlk7NGFJqZICDY+8BI+9I0mBECLfMdc0adeAB3ctUTNaH3yJn/4JZWjbGjS7z7DFtGsmiALu9nnY9pmRFAA88jK0egdKPvCNZEKIAsosyYE2evhsMce1HmSXb0cz5ucg6ldyY3j7WrYOR1jarVDY/hns/8F43eg/RktByew0xgkhhO0UzgnWbSDRNGwxJi6R2c8/gkNRGbb4wLp1zmgpOLDYeN2oLzz2tiQFQogCQ5IDK5m/7TQ7T11nWk8fqqUYtiis61nPZy138VvnYNuncOBHUAoa+xlJgZv1hh8JIR5ctZuXt1pdkhxYQfCF28zccJynvMvRxzfrvx6b16pthagKp26e3cx/0ZtnjaTg4I+gikDjfqakoKL56xJCFFp1Wkhy8MCIio3nrZ8O8JCzI1N7ZG/Y4tSX+1shssLpZvRNAEoVK2WGi50xJQVLjKTA9xVoOVySAiGERdyNMGYRKO7iYPG6JDmwsI9+P0pIWCQ/DmhKSSfLf0NF5t7xfwfI4zwHN0KMpODQUlB24PsqPDYcSlQwU5RCCJHe+rnG3H/5Yp4DkXt/Hr7M0r3nGNymBi1qeGT7vJ7TjWV1V40eZ6nQRG7cCIFtM+HgUihSVJICIcQDS5IDC7kSHs2YVYH4VHTjnQ45G7Z4PeKOhaISuXLjNGw1tRQUKQqPvmY8Pihhved/QghhTZIcWEBiombE8kNExyUy6/mGMmyxoLp+yvT44Cews4dHB0LLYZIUCCEeeJIcWMB320PYfjKMqT18qFHaxdbhiJy6fgq2zoTAZUZS0HSQkRS4pl1pXAghHkySHJjZ4Yu3mf7nMZ6sV5bnm8ikN/nNc17P3f9guqRgMLR8S5ICIUS+4N3GeiOhJDkwo7uxCby19ADuzg580qN+rldbfMKngZkjE0k6VeuUfmfYSdg6A4KWg50jNBsCLd4C17LWD1AIIe6jpq/1fidJcmBGk/84wumwSBa/2pRSzrkftji+94tmjEqkdDnyMgDlnMtB2AlTUrDClBQMNR4fuJSxcZRCCJHenRvRALi6F7N4XZIcmMnGI1f4cc85BrWuTkvP7A9bFNY1dttYiLvLglhXCF4pSYEQosD4a8ERQOY5KDCuhkfz7qpA6lUowYiOXnm+3lOTxwOwbtxHeb6WSOHav3DtOESFQdgdaP668fhAkgIhhEhFkoM8SkzUjFhxiKjYeLOttng3NtYMkYlk147DlukQvAoqlDMmLXppBScv32b1N4soU6YMcXFxxMbGEhsbS1xcHF5eXnTt2tXWkQshhE1IcpBH/9sRwrYTYXzc3RvPMjJsMV+5egy2Tofgn8HeyRh5EHvaGIngUprNm1czevRoPDw8aNq0KZUrV8bBwQEHBwcqVZKVFIUQhZckB3lw5GI409cfp0Pdsrz4aBVbhyOSXD1qtBQcXm1KCoZBizfB2QPW31vUauDAgZw8eZLffvuNY8eOcfPmTcaOHcvTTz+d65EmQgjxIJDkIJei4xIY9tMBSjrZM61n7octCjO6ehS2TIPDv4CDs7HuQfM3wfmh5CJ+9fxSnTJ16lQOHjxIgwYN8PX1Zdy4cbz33nuMHTuW3r17U7So/BcRQuQPDTtY749Q+c2XS1PWHuXE1Qh+ePVR3PMwbDEjzzR+1KzXe+BdOWIkBUd+NSUFb0PzN1IlBUnaVm6b6rWdnR1LlizB19eXZs2aceDAAdavX8/UqVMZN24co0ePxs/Pj2LFLD90SAghMlOtvvVGwimttdUqszZfX18dEBBg9uteCY+m+dRNvNzsYSY9623264tsunI4RVLgYkxz3PwNcHK/7ykht0MAqOZWLdX+gIAAnnrqKXbu3EnNmjUB2L59O1OnTuXAgQO8/fbbDB48GFdXV8u9HyGEyMTNy5EAlCrnnGk5pdQ+rbVvXuqSFYFyYdX+8yRqeKVltawLC/O7HAzL/gPftICTm6HVSBgeBE98kGliADBp1yQm7ZqUbr+vry+LFi0iLi4ued9jjz3GH3/8wbp169i/fz/Vq1dn/PjxhIWFmf0tCSFEVvx/PI7/j8etUpckBzmktWZFwHmaVnOnqkfm2Vtutf3gXdp+8K5Frl2gJSUF37aEU39D61EwPBCeGJ9lUpAdnTt3pm7duun2N2jQgKVLl7Jr1y6uXr1KrVq1GD58OKGhoXmuUwgh8iNJDnIo4OxNQsIi6eMriypZzeUgWPaykRSc9ofWo42k4PFxZkkKssvT05O5c+cSHBxM0aJFadCgAa+88grHj1snkxdCCGuR5CCHlv0TiotjUZ7ykZX6LO5SIPz0Enz7GJzeAm3eNSUF71s1KUirQoUKzJw5k5MnT1K1alVatWpFr1692Ldvn81iEkIIc5LkIAciYuL5I/ASXRqUx8lBBnpYzKVDRlIwtxWEbIM2Y4ykoN17ULyUraNL5u7uzgcffEBISAiPPfYY3bp148knn8Tf358HuaOvEOLBJ59wOfBH4EXuxiXQWx4pWMalQ+A/DY7/AY5u0HYsNB0MxUuarYqB9Qea7VpJnJ2dGT58OEOHDmXx4sUMGjQId3d3xo4dyzPPPEORIpKDCyHyzrdzVavVJUMZc6DnNzu5fTeOjW+3tuikR1+v/x2AoZ2esVgd+crFg8aQxONroZgbNHvdGJZoxqTAmhISEli9ejVTp04lJiaGMWPG8Pzzz8uESkIIqzDHUEZJDrLp5NUI2n+2hfc612Zg6xpmuWahd/GA0VLw7zojKWj+hpEUFHOzWJXHbhwDoLZ7bYvVkURrzcaNG5kyZQpnz55l1KhR9O/fn+LFi1u8biHEg+da6B0ASlfOfL4VmefAilbsC6VoEUX3Ryy/IE9UTDRRMdEWr8dmLuyHJc/BvLZwbhe0G2fMU9BmtEUTA4Bpe6cxbe80i9aRRClFx44d8ff3Z8mSJaxfv57q1aszbdo0wsPDrRKDEOLBsX35CbYvP2GVuiQ5yIa4hERW7bvA47XLUNrV0eL1df54Ap0/nmDxeqzuwj74sQ/Mbwehe4yhiMODoM0oiycFtta8eXN+++03NmzYQFBQENWrV+f999/n6tWrtg5NCCHSkeQgG7Ycv0ZYRIzMbZBb5/fBj71h/uNwfi88Ph6GBRqTGBUrYevorMrHx4fFixezd+9ebt68Se3atXnzzTc5e/asrUMTQohkkhxkw/KAUEq7OtLWq7StQylYzgfA4l7w38eNfz/xgdFS0HpkoUsK0qpevTpff/01R44cwcnJiUaNGuHn58eRI0dsHZoQQtgmOVBKDVVKhSilopVS+5RSrTIp20MptUEpdU0pdUcptUcp1dVasV67E8PmY1fp0agiRe0kl8qW5KTgCeNRwhMTjHkKWo0AR1m4KKVy5coxbdo0Tp06Ra1atWjXrh3du3dn7969tg5NCFGIWf3TTin1HDAbmAI8AuwE1iml7rdQdRtgM/C0qfxaYHVmCYU5rT5wnvhETe/G8kghS6H/wOKeRlJwcT+0n2i0FLR6J98kBcMaDWNYo2G2DiOdkiVL8v777xMSEsLjjz9O7969ad++PZs2bZIJlYQQADTrVoNm3awzWs7qQxmVUnuAQK31ayn2nQBWaq3HZvMae4FtWusRmZXL61BGrTUdPt+KW3F7Vg1pkevr5NTCzRsB6Pd4B6vVmSehe8H/Ezi1CZweghZvQZMB4Ohi68gKrLi4OJYsWcInn3yCq6srY8eO5dlnn5UJlYQQWSpwQxmVUg5AY2BDmkMbgJx8+roCN80V1/0cCL3FyasR9PG1/PDFlPo93qFgJAbn9sAP3eG7DnDpIHSYZHQ0fGx4vk0MDl49yMGrB20dRpbs7e3x8/Pj8OHDjB07lqlTp+Lt7Z1uWWkhROFx6dRtLp26bZW6rD1lmwdgB1xJs/8K0D47F1BKvQ5UAn64z/GBwECAKlXu96Qie1YEhFLc3o6n61fI03VyKizc+OZ7lMinw/vO7TZaCk7/DU4e0OEjaPIqOFhmCWtzmr1/NgALOi2wcSTZU6RIEbp37063bt3YtGkTU6dO5cyZM0yY8AAOdRVCZGr3L6cA6D6ikcXrstV8rmmfZagM9qWjlOoJzACe11pnOPZLaz0PmAfGY4XcBhgVG8+aQ5d4un55XByte5t6zZwCgP8k60zWk21nd8GWT4xlk51LQ8fJ4PtKgUgKCjqlFO3bt6d9+2zl0EIIkSfWTg7CgAQg7XrHZUjfmpCKKTH4Aeirtf7NMuHdsy7oMhEx8TK3AcDZnUZLQcgWU1LwsSkpcLJ1ZEIIISzAqsmB1jpWKbUP6ACsSHGoA7DqfucppfoAiwA/rfVKy0ZpWB4QSjUPZ5pUzT9LBFvdmR1GS0HIVnAuI0mBEEIUErZ4rPAZ8INpxMEOYDBQAfgWQCn1PYDWuq/p9fMYLQYjga1KqaRWh1it9Q1LBHgmLJI9ITcY3cnLoqsv5ltndoD/VDizzUgKnpwCjftLUiCEEIWE1ZMDrfUypdRDwDigPBAMdE7RhyBtL8LBGHHOMm1JtgBtLRHjin2hFFHQs5F1RynY3JntxuODM9vApSw8ORUa93ugkoJ3H33X1iEIIUSuPNanptXqskmHRK3118DX9znWNrPXlpaQqFm57zxtvcpQtkQxa1adbMiTna1bYcg2Iyk4u91ICjp9YiQF9g/e0sLWWKr5QdG5c2dWrVplliWmzXktIQqrrJZqNidbjVbIt7aeuMaV8Bg+7Gq7VoPnWraxfCVaGy0E/tNMSUE56DQNGvs9kElBkl0XdwHQvEJzG0eS/61duzZfXkuIwir0qPEkvXIdd4vXJclBGisCQnF3duDx2mVtFkNo2DUAKntYYKEnrY0OhlumwdkdRlLw1HRo1PeBTgqSzAucB0hykJVPP/2Uq1evMm3aveG0v/76K88++6xZriWEyLmAtWcA6yQHMhdrCjciY9l45ArdH6mIQ1Hb3Zr/fDGT/3wx07wX1dqYn2BBZ/i+K9w4DU/NgGGHoOmgQpEYiOwLDg7G29s7+fXhw4f5+++/LowhtAAAIABJREFUzXItIUT+J8lBCr8cuEBcgn6w5jbQGk79DQuegu+fhZtnjKTgrYPQdCDY26ZfhcjfgoOD8fHxSX69adMmXn/9dbNcSwiR/8ljBROtNcsDQmlQyQ2vcvljBcE80dqY3th/GoTuBtcK0HkmPPIfSQhEprTW/Pvvv9SpUyd5n6OjIzVr5ryndEbXEkLkf9JyYLJw1Tq2fjWKbR/2QinFwoULbR1S7mgNJzfB/540FkW6HWokBcMOwqOvSWIgsnT69GnKly+Po6Nj8r5BgwalK+ft7Z3hFhoamum1LGHr1q107dqVihUrFuz/v0LkE9JyYLLh0BmKl6nK5x++zeABr9g6nJzT2lgy2X8anN8LJSrB058aLQVFLfuLuSD5oPkHtg4h38vuY4Dg4GCzXSuvIiIi8Pb2pm/fvvTt29fi9QlhC21f8rJaXdJyAETHJRBsV4O+b42l74vPU6SIbW/LiC49GNGlR/YKaw0n/jKWTV7cE8IvwtOfwVv7ockASQzSqOZWjWpu1QCYPn06Sql02wcf5O8E4t9//6VDhw4UK1aMGjVqsG7dOhwdHdm0aZNZrm/ODoTW6ozYuXNnpkyZQq9evWz+/1cISylVzplS5YyF7lasWIGjoyNnz95bg3DYsGHUqFEDzPCHv/wvAv48fJk70fH09s0fMyJ2adKULk2aZl5IazixEf7bHn7sCXcuwzOfm5KCVyUpuA//UH/8Q/0BGDJkCJcuXUreRowYQbly5fL1X54nTpygSZMm1KtXj+DgYL744gsGDBhAbGwsDRo0SFV2ypQpuLi4ZLpt27YtXR2HDx/myy+/pGrVqlStWpWuXbvmOt6cXCu38QpRWIQEhhESGAZAr1698PHxYfLkyQDMnDmTpUuXsn79eoD4vNYljxUwFlmq7F6cZtUesnUoABy/cB4Ar4oZJCtJScGWT+DCPnCrAs/MgoYvQVEHK0da8Cw6vAiAtpXb4urqiqur0fl02rRpLF26FH9/fzw9PZk9ezYzZszAw8MDgA4dOjBjxgybxZ3kjTfeoGvXrsyaZcwk7unpSadOnfjzzz+TY00yePBg+vTpk+n1KlasmG7fkiVLzBZvTq6V23iFKCwObjwHQLX6HiilmDJlCk8//TQ1atTg448/ZvPmzckdh5VSw4DRwDVAAfuBUVrrsOzUVeiTg9AbUew4eZ13OtSiSJH8scjSoLlfAuA/KcWkMVrDiQ3GNMcX9xtJQZfZ0OBFSQryaOrUqcyZM4e///6bWrVqAUZz+KxZs+jVq5eNo7snNDSUDRs2sG/fvlT7HRwc0rUaALi7u+PubvnJUsyloMUrhK117NiRJk2aMG7cONasWUOTJk1SHvYGRmqtlypjBcEJwHyge3auXegfK6zcdx6loGfj/PFIIR2t4fh6mN8OlvSBqDDo8gW8uc9Y/0ASgzz5+OOP+frrr9myZUtyYgAQFBRE/fr1bRhZevv378fOzi7dM/zAwEAaNmyYrnxum+kz6odhqc0c8QpRWG3evJlDhw6htaZs2XSz+voAhwG01hqYCjyplMrW536hbjlINC2y9JinBxVL5rMZAjVwfJ3RUnDpIJR8GLp+CQ1eADt7W0f3QPjoo4+YP38+/v7+SZ14AGNs/vHjx+nduzdKKerVq8ePP/5ow0gNRYoUITExkbi4OBwcjKRwx44d7Ny5k+HDh6crn9tmeuP3iPXJYwUhsu/QoUP06NGDL7/8kj/++IOxY8fy559/pixSCzie4nUcxmd+cSAyq+sX6uRgzJKV7Av+k/AyLizaeIMGpctz+eYN7sbEMHHhf5mz05+ixYtTzK0EI7r0oEuTphy/cD652T+lcT2fp32DRzgYcorhC+alOz7lRT9a1K7LzmNHeG/JonTHZ/UfSMNqNfjr0H4OnjpOw+J3Yem3UKoqdJ0DDZ6XpMCMPv74Y2bPns1vv/2Gs7Mzly9fBqBkyZJcunQJT09P/vnnHxtHmVrjxo1xcHBgzJgxvP322wQFBfHuu8YS1LZ+rGCOVRfzEm9ERAQnT54EIDExkXPnznHw4EHc3d2pUiXtKvBCFGxnz56lc+fOvPPOO7zyyis8+uij1K9fH39/f9q2bQvgAFzRWsekOK0yEKa1zjIxgEKeHCzZ5k9cTBilnNw5dew4/TreWyr57JYdnN2yg7L1van9rBWWUNYajq2FP2bQ0C6WFz0S4dmvoP5zkhSY0dRWU9FaU/u52oSHh9OyZctUx//66y+ioqKoW7eujSK8vwoVKvDdd98xduxYFixYQIcOHRg6dCjvvfcenp6eNo3N1qsuBgQE0K5du+TXEyZMYMKECfj5+cmESOKB0b5/XW7cvEGnTk/wzDPPJA+79vb2pnfv3owdO5Zdu3aB0TpwKM3prwIrs1uXslUTojX4+vrqgICADI/djoqj/KChlHF15MzXc6wcWQpaw/G1xuODy4FQqhq0HgX1+0hSYCNTpkzBzs4u+a/y/GzixIls2LCBnTt32qT+/DqqQ4jCTCl1AfhOaz3B1BmxB0afg8e01lezc41C23Lw66ELJGpNaVcbzQegNRz7wxiSeDkI3KtDt2/Apw/YFdpvi8WtD1kPQKdqne5bJjg4mBdeeMFaIeVJYGBgho8UrCU/juoQ4kF1IuAKADV903U+TKs48IpS6hnuDWN8PLuJARTi5GB5QCitHunN0teaWbfixEQ4/ocxzfGVIHCvAd2+BZ/ekhRYwbLjy4DMkwNzjvO3tEOHDjF69Gib1R8UFMSoUaNsVr8QhUnwlgtAtpKDEK21b17qKpRDGQ9fvE3whXBebu6FRwk361SamAhHfoO5rWDZyxAXBd3nwut7oeELuUoMMps+88qVK+aMXuRTp06dynBRJGtIOaqjYcOGvPTSSzaJQwhhfoUyOVgRcB4HuyJEhh9l4eaNlq0sMRGO/GokBcv/A/HR0H2ekRQ0eD5PrQWZTZ+ZwZhXIczqzJkzeHp6cujQIQ4ePJgvhnsKIcyj0LVjx8Qn8MvBC3SsV5blO40m5n6PdzB/RYmJcPQ32DIdrh6Gh2pCj/ng3ROK2Jmliqymz0zZWSw8PJwnnniC+fPnm6VuIYKDg/PlqA4hRN4VupaDv45c5VZUHH18K1umgsREOLwavm0JK/wgMQ56/Bde32OMQDBTYpAk5fSZy5cvTzV9ZnBwMLNnz+bgwYMcPXqUZcuWERaWrWm1hchSUFCQJAdCPKAKXcvB8oBQKrgVo6WnR9aFcyIxEY78YrQUXDsKHl7Q8zuo193sCUFKmU2fGRQUxJgxYwBj6t3KlSsX+rnrP2v7ma1DeGAUpFEdQjwIOg2y/PLnSQpVcnDx1l22nrjGm+08sctkkaW4uDg2bdrEypUrOXbsGDdv3iQiIuL+F46Lguhwo5WgiD0UKwH2V2DGCGBEnuNeunQpLVq0SLc/s+kzkzqL9ezZk6ioKG7cuMHWrVsL/Vr3pYqVsnUID4yCNKpDiAdBcRfrraVTqJKDVfvOozX0apzxI4WQkBAmT57ML7/8gpeXF71796Zv3764u7vj4uKSeqGYxARjlcQ938L1G/BQHWg6GGp2NHtLQUbTv2Y1feaZM2eoUaMGSZNAzZw5kxkzZrBgwQKzxlbQ/HLyF97q/Bbn/j1n61CEECJHju68RNeX23Hi9DGL11VokoPERM2KfedpXv0hqjzkBMDa9z9MPn7q1CnatWtH//79OXjwIJUr36dPQmKC0adgy3QIOw6l60D3RVC3G1jpr/IbN27QqVOnTKfPDA4OxsvLK/kcHx8fNm/ebJX48rNfT/5K6IlQW4chhBA5dmzXJU6GHM+6oBkUmuRgT8gNzt2I4u0ONZP3OTkWA+4lBu+///79x4wnJwXTIOxfIynotcCqSUESd3d3jh49mm7/smXLkv8dFBSUnBwkJCSwePFinnjiCavFKIQQouAqNMnBioBQXB2L0qle+eR9X6//Ha01X414l7Fjx2acGCQmQPDPsHW6kRSUqQu9F0GdrlZPCnIiODiYbdu2sXr1apRSdOjQgWHDhtk6LCGEEAVA/v10M6Pw6DjWBl+ia8MKFHewY9y4cSQkJLB85zb+9/NKYmJi8PLyYsOGDfdOSkyAwOXwVVP4eYDR0bDP9zB4B9SzfmtBTi1ZsoTQ0FAOHDjA/v37mTZtGkWLFppcMBWtNe+//z4JCQmp9m/evJmNGy08CZYQQuTBli1bWLduXap9WmvGjRtHfHy8xerN359wZvL7oUtExyUmz23w999/s3z5cgCuHTlOr169eP31143CCfFwaBl89Sj8/BoUdYQ+P8Dg7VD32XyfFIiMbd68mZUr761WmpCQwJAhQ1J3MhVCiHzGwcGBIUOGEBsbm7xvzZo1/PHHH9jZWW6YfKH4pFseEIpXWVfqVzLWUZg4cSKTJk0iMSGBa0eP4+bmhnupUnQoc91IClYPhKLF4bnFMGgb1M3fjxBE5pRSTJw4kQ8//JAv230JwE8//USZMmWkH4YQIl9r3rw5Xl5eLFq0iGfeNFZgnThxIhMmTLDoHzcP/Cfev1fucDD0Fr19KyXfyPbt2+Pu7s6l/YeIj47hh/lfMbHhVdQvg8HBCZ77EQZthTpdJCl4QHTs2BE3Nzd+X/07AJMmTWLixInSciCEyPcmTJjAxx9/jMZ4NJqYmMizzz5r0Tof+IfQKwJCKVpE0f2Risn7lFJMHD+ers/1pohKxD3hCu19mkK72eDVGeQD44GT1Hrw6uuvAlCmTBkef/xxG0clhBBZa9GiBV5eXnw89nMAi7cagI1aDpRSQ5VSIUqpaKXUPqVUqyzKtzGVi1ZKnVZKDc5OPVrDz/sv0L5OWR5ycTR2JsTDgR9pf+xdPItFEX83hokTJqIGb4faT0ti8ADr2LEjsfbGcztpNRBCFCQTJkxg2pcTASzeagA2SA6UUs8Bs4EpwCPATmCdUir9NIBG+WrAWlO5R4CpwJdKqZ5Z1XUnOo7rkbH0aVIJEuLgwGKY4wu/DkUVd2P0iLepWrUa7V95X5KCQkApRaP+jbB3spdWAyFEgdKiRQua138Cj5LlrTINvtJaW7ySVBUqtQcI1Fq/lmLfCWCl1npsBuWnAT201jVT7PsvUE9r3Tyzujyq1dE1X/2c7U9dxW77p3DzDJRvCG3HQK1OkhAUQv3X9wdgQafCPY20EKLgWf3pfgC6j2iUaTml1D6ttW9e6rJqnwOllAPQGJiZ5tAGIP3KQobmpuMp/Qn4KaXstdZx96uvaPRN1tm9jd2ai1DhEeg0DWo9KUmBEEIIkQlrd0j0AOyAK2n2XwHa3+eccsBfGZQvarrepftVVkldo5hbLWg/y1gQSZICIYQQIku2Gq2Q9lmGymBfVuUz2o9SaiAw0PQypvjr24KhU66CFNnmAYTZOoicWMhCW4eQUwXuHhdAco8tT+6xOYzMsoRXliWyYO3kIAxIwGgNSKkM6VsTkly+T/l44HrawlrrecA8AKVUQF6fu4isyX22PLnHlif32PLkHluHUiogr9ew6mgFrXUssA/okOZQB4zRCBnZRfpHDh2AgMz6GwghhBAid2wxz8FnQD+l1AClVB2l1GygAvAtgFLqe6XU9ynKfwtUUkrNMpUfAPQjfadGIYQQQpiB1fscaK2XKaUeAsYB5YFgoLPW+qypSJU05UOUUp2Bz4EhwEXgLa31qmxUN898kYtMyH22PLnHlif32PLkHltHnu+z1ec5EEIIIUT+JqsKCSGEECIVSQ6EEEIIkUqBTg6stYBTYZaTe6yU6qGU2qCUuqaUuqOU2qOU6mrNeAuqnP4spzjvMaVUvFIq2NIxFnS5+H3hoJSaZDonRil1Tin1lrXiLYhycY9fVEodVEpFKaUuK6UWK6XSDl0XJkqp1kqp35RSF5RSWinVLxvn+Ciltiil7prO+0BlY9W5ApscWHMBp8Iqp/cYaANsBp42lV8LrM7uB11hlYv7nHReKeB7YJPFgyzgcnmPl2LMoDYQY1KZ3kCghUMtsHLxO7kl8AOwCKgHdAPqAj9aJeCCyQWjE/8w4G5WhZVSJYCNGPMINQHeAkYB72RZk9a6QG7AHmB+mn0ngKn3KT8NOJFm33+BXbZ+L/l1y+k9vs819gKf2vq95Octt/cZ+BmYAEwEgm39PvLzlovfFx2B24CHrWMvKFsu7vFI4Gyaff2BCFu/l4KwARFAvyzKDAHCgeIp9o0DLmAakHC/rUC2HKRYwCntgky5WcDJVyllb94IC75c3uOMuAI3zRXXgya391kpNRRj5tDJlovuwZDLe9wN+Ad4Ryl1Xil1Qin1hVLKxYKhFli5vMc7gPJKqS7K4AE8j9HiKMyjObBNa52yleFPjLmFqmZ2YoFMDsh8Aaf7Pa8qd5/ySQs4idRyc49TUUq9DlTCaDoUGcvxfVZK+WC0GLyktU6wbHgPhNz8LFcHHgMaAD2BNzAeMSy0TIgFXo7vsdZ6F/ACxmOEWOAaxro5fpYLs9C53+de0rH7KqjJQRKLLeAkkuX0HhuFjL4cMzA+wM5mVV5k7z4rpRyBn4CRWusQawT2AMnJz3IR07EXtdZ7tNZ/YiQIPZVSZS0YY0GX7XuslKoLfAF8hNHq0AnjA2uuJQMshHL1uWerVRnzyuILOIlc3WMgOTH4Aeirtf7NMuE9MHJ6n8tjdNpaoJRaYNpXBFBKqXiM2UbTNu0Wdrn5Wb4EXNBa306x76jpa5VMziuscnOPxwJ7tdYzTK8DlVKRwDal1Pta61DLhFqo3O9zD7L4GS6QLQdaFnCyuFzeY5RSfYDFGB1lVlouwgdDLu7zBcAHaJhi+xY4afr3fb83hVUuf5Z3ABXS9DGoZfoqLWFp5PIeO2EkFCklvc5yqJ3Ill1AK6VUsRT7OmAsQ3Am0zNt3eMyDz01n8N4TjUAqIMxhCYCeNh0/Hvg+xTlqwGRwCxT+QGm83va+r3k1y0X9/h5IA5jmE25FJu7rd9Lft5yep8zOH8iMlrBrPcYY8hYKLACY5hdS4whZCts/V7y65aLe9zP9PtiCEYfj5YYnUD32fq95NfN9HOZ9EdBFPCB6d9VTMenAptSlHfDaD34CfAGemCMXhiRZV22frN5vFFDMbKfGIystXWKY/6Af5rybYD9pvIhwGBbv4f8vuXkHpte6ww2f2vHXdC2nP4spzlXkgML3GOMuQ02mH4JXwC+Alxt/T7y85aLe/wmcNh0jy8BS4BKtn4f+XUD2t7nd+xC0/GFwJk05/gAW4Fo0z2eQBbDGLXWsvCSEEIIIVIrkH0OhBBCCGE5khwIIYQQIhVJDoQQQgiRiiQHQgghhEhFkgMhhBBCpCLJgRBCCCFSkeRACCGEEKlIciBEIaKU6q2UilFKPZxi32yl1ClZUEgIkUQmQRKiEFFKKYwpag9orV9TSo0ERgMttdYnbBudECK/kJYDIQoRbfw18B7QTyk1BmMq1aeTEgOl1DCllFZKNUg6Ryn1mWlf+cyurZSqqpR61vTvZ5RSX1runSTXMceSdQhRWElyIEQho40lnf8BJgN9tNb/pDjsDQRhrCuAUqoCxpokV7XWl7K49JOm8wHqA4fMGXcGrFGHEIWSJAdCFDJKqceBBhjL4qZd090HWIYpOQDeB1YDR1OcX1Mp9btSKkAptU0pVU4p1QZjRbh+SqmDQBOghlJqp1LqvFKqUYrzX1RK7VFKBSml/lRKOZn2r1FKTVJK7Up5jlKqnuk6waYyTqZLNQACzXx7hBBIciBEoWJ6XPAzxmp4v2B8oCcdUxhL5/4G1FZKVcFIFs5gtCaglHIEvgWGaq19gUXA61rrLRgf1B211g2B2kCI1roFMAXoniKMP7XWTbXWPsApjPXlwWh1uKC1bp50jmkd+uWmOryBfzGW+k0qH2ymWyOESKGorQMQQliHaYTCWuAzrfX/lFJ7gUClVFuttT9QFWNp4mNANWA8xqOHJ7j3IdwNqAP8ZuQSOGCsFY/p/DOmD3R7rfU803474HqKUF5VSvU2nVsZ+FUp5QoU0VrPTXNON+AvrfUB0/5jQAVTHUprHZnnGyOESEdaDoQoBJRS7sB64Het9SQArXUwsIJ7rQfeQJDWOg7jg7uGqX9CUj8EMFoSRmmtG5q2ulrrSUqpSsBlU4dHbyAgRfU+mJILpZQfUBdorbVuAIQBR0zn/JPBOXVS1J20P6n84TzeFiHEfUhyIEQhoLW+obWuo7UelGb/c6ZmfEjxIQ5MA4ab/p2y+f4y0MH0CAKllI9pf2XgounfDUj9gV4/xWtvYJfW+q5SahBQWmsdatp/KINzLnKvc2R9oD3GYw/pbyCEBUlyIIRIkpwEaK1XaK0DlVIlTK/DTWUWAG7AUVPHw/6m/UeAh5VSQcCL3OujoIAyWuukjo8/AGOUUluB8qRukQjM4JwfMPo/BAHfYIyuiMFIHiQ5EMJCZBIkIYQQQqQiLQdCCCGESEWSAyGEEEKkIsmBEEIIYUNKqdZKqd+UUhdMU5X3S3HMXik1TSkVqJSKVEpdUkotMc1DYjFWTw4yuwmZnOOjlNqilLprOu+DpN7SQgghRAHngtEZeBhwN80xJ6AR8LHp67MYo4PWK6UsNleRLSZBSroJ35u2TJl6S28EtmJMyeoFLAQigU8tFqUQQghhBVrrtRgTlKGUWpjm2G3uzSKKqcwgjHk+0s4DYjZWbznQWq/VWr+ntV4JJGbjlJcwMic/rXWw1noVxhjsd6T1QAghhK1k1RKulOphWj/kmul4WzNVXcL09aaZrpdOQehz0BzYprVO2dTyJ1ABY7pWIYQQwhYyexwA4AzsBN4xV4VKKQeMVvM1Wuvz5rpuunpsOc+BUioCeENrvTCTMhuA81rrV1LsqwKcBVporXelKT8QGAjg7OzcuHbt2pYIXQghhEh24MABKleujIeHR7pj8fHxHDp0iFq1auHq6prr62itOXX6NHfv3uWhilWJTVDcjUvAIfEuZdQtXIkiATsOXooL01qXzsv7KSgLL6XNYNR99mNa7GUegK+vrw4ICEhbRAghhDArFxcXJk6cSL9+/dIdCwsLo3Tp0sydO5e2bdtm6zp+fn5cCY8h6MJtgs7fImb972xYMAX3qChm1vRmTcNncWtQjsGsoHbkXuIcPdAt3sCh2SBUMdezeX0/BSE5uAyUS7OvjOlr2rXohRBCiAJFa52cCMQlaP677TRzzm8iLCIGgDbn9nLh91mciY5mUZUqlI6Pou7Bnyhf9AZudZ2g/YfYNxkAji5mi6kgJAe7gGlKqWJa62jTvg4YC7KcsVlUQggh8rWtW7cyc+ZM9u3bx8WLF1mwYEGqv+y11nz44YfMmzePmzdv0rRpU7766ivq1atnsZiSEoFPfvmV3//ZTkRMPBGR0agYJ1xL1CYuPoF9+9dS4vZxXEo44+Zegt82LyUh+i4LKlQE4Fp8PMRD3LGK+MzdYtakIInVkwOllAvgaXpZBKiilGoI3NBan1NKTQUe1Vo/YSqzBJgALFRKTQZqAWOAD7UsDCGEEOI+IiIi8Pb2pm/fvvTt2zfd8enTp/Ppp5+ycOFCvLy8mDRpEh06dOD48eNZ9g3IjqREYPvxqwB8su4oI7fHExYRw+XzG4mLCcPNpSzFI24StmYhEabzog/uI/rgPlS9OpSqX5dbV4zze509k+r6H0eWx8cCiQHYpuXAF/g7xesPTdsioB/GSm01kg5qrW8rpToAX2GsEX8To6fmZ1aKVwghRAHUuXNnOnfuDJCuL4DWmlmzZjFmzBh69uwJwKJFiyhTpgxLlixh0KBBaS+Xpdt34/jryBUCL9wm+MJtgi7c5tqdGBKibgNwPSKWNo1L41OxBPPXbsPZsRwbPpicfH7C7dtE7t5D5I4dRO7YQdyFC7D/MNT2Aq3Y33AYAI0OzgagaIUKOY4xu6yeHGit/bnXoTCj4/0y2BcEtLZcVEIIIQqTkJAQLl++TMeOHZP3FS9enNatW7Nz584sk4Mr4dHsPX6RLfuCOHk1grux8UxYsgWnvdEULe5C7ZrVaVLegXIVYyhbzIXBX8KgR5zxraUpV644/T7+BB0XR9T+/URuN5KBu0FBkJhIEadiOFW0w73xLVyqOxPl9hSXF29PVb8qVowybw+3yL2BgtHnQAghhDCry5cvA1C2bNlU+8uWLcuFCxdS7bsaHk3QhdsEnjdaBDYd2saN8Ks43XXjytL3ksvd3v4jt7f/SJn69WjcYgRe8Yr+/fsnH3/ttdcAqNyoAX286/Ha4X9JjIiAIkUo5uONx/OdcVb7KR4XgHItA4+Ng8b9cXBwQnmtocbcX0i4foOiFSpQ5u3huHXpYqnbI8mBEEKIwivtRLt3Y+O5GRXHrL/+JdiUEFy9E2MqC56lXUi4e4o7t0LY/Oli6i4cxcBvPuf89bB01+7Xrx//6dGD7pPGEXblCgnht9ExxrXir12jROfOOLdsiXP5ROz2z4Ez88C5DLSfCo37gYNT8rXcunShmQWTgbQkORBCCFHolCtnjJD/fc8R4v6NNs0ncJvAXUcp4lSC2ZtOUKO0C495euBd0Q2fSm7ULV8CZ8eitP1gLTXK+OBb1R2AxcNGJV9Xx8dzNzCQyO07OPP8C9wNDGRaYiJFnJxwatYM55YtcGnZEvuHH0ad2Q7+n8Cu7eBSFp5MnxSkdC30DgClK+e9s2RWJDkQQghhEXfu3GH8+PGsXr2aq1ev8sgjjzB79myaNGlik3iOXb7DV3+fJPD8LQJDb2HnXIr3vlxCyRZ9qO7hjG8lZw5dPsYb733I+JFP4uyYvY/I2HPniNyxg4gdO4javSf1o4LBg3Bu2ZLi9euj7O1BazizDRYOhbM7wKUcdPrESArsi2daz/blJwDoPqJRXm9FliQ5EEIIYREDBgwgMDCQRYsWUalSJRYvXkz79u05cuQIFStWtFi9t6PiCLpwm70nL7A1RXemAAAgAElEQVRr/2FOXI0gKiaeb//Yg9NxeLhCGZp416LCy6+x/sevmTzkaRp4P8zkyZMp5ebK+2+9lmlioOPjSQy/w6WJE4ncsZO40FAAilYoT4mnnjIeFTRril3JkilO0nB6C2yZliIpmAaN/bJMCmxBkgMhhBBmd/fuXVatWsWqVauSpwyeOHEia9as4ZtvvmHy5MmZXyCbbt+N4/CF2wSahg4Gnb/NuRtR3Lr+D1Fn/iHur7X3ypo6DHb088O5ThRhpTWlG9XnlddeIe5uNKWrVmHThg24uroy/H9zOXjmtHGi1iRGRFI1Lp5JYeGUvXYBEhMJv70Pp6ZNcffzw7llCxyqVk3XhwGtIWQL+E+DczvBtbwpKegH9sXMcg8sQZIDIYQQZhcfH09CQgLFiqX+ACxevDjbt2+/z1mZi4iJN+YPOG9KBs7f4sz1qOTjlUoVp34lN154tAr7j13iaJkoijb3Tj7+kIsrq0aPA2Ds4gUopaja5jGqtnnMOP8hD7y9jfIJd+4Qf/UqCbdvkxAeDgkJRMfGoz0qMKdrT1xatqR4gwbGo4KMaA2n/Y2WgnO7wLUCPDUDGvXN10lBEkkOhBBCmJ2rqyvNmzdn8uTJeHt7U65cOZYuXcquXbvw9PTM8vy7sQkcuWSMFkhKBk5diyBpXtwKbsWoX6kkvX0r41PRDZ+KbpRyduCpyeMJCYF14z7K9PpTX+6f6nXCnTtE7t6d/KhgaIpHBS4tW5oeFTRL/aggI1rD6b+NloLQ3UZS0HkmPPKfApEUJJHkQAghhEX88MMPvPLKK1SqVAk7OzsaNWrECy+8wP79+1OVi4lP4PjlOxw6b7QGBJ6/zYmrESQkGplAaVdHGlRyo2uDCvhUMhIBDxfHDOu8Gxubrdh0fDx3g4KI3LHTmIAoMBASEoxRBVk9KsjwghpObTZaCkL3QImKRlLQqC8UzTjWnGrWrUbWhcxEkgMhhBAWUaNGDbZs2UJkZCTh4eGUL1+e3n36ULp8ZX7ae870aOA2xy6HE5dgJALuzg74VHSjQ92y1K9UkvqV3Chbwjx/cceGhpqmJt5J5O7dJN65A0pRzNubh14bcO9RgYND9i+qNZzaZLQUnN8LJSrB058aLQVmSgqSlK/hZtbrZUaSAyGEEBaRkKg5fS2CwPO3CTx/i4ATB1n/21pKtu3/f/bOO67K8v3j74e99xBFQBw4EAegAq7MytRSczbMzHK1S7+V45dlafNblpojc5UNNetbamWppeBEcS9cgCB7b865f388BxRFZRw4gPf79fKFz/Pcz3Nfx+icz7k/13XdvPHTMWwtTAjwtGdCT18CPO0J8LSnmYNl5b6pV2b+7Gzy9u0jRycIimNiADDx8MBuwANYh4Zi1aMHJo6OVX+4EBD9N/zzPsQd0ImC/0KXJ/QuCkpJOK/u0VAXIkGKA4lEImlAaDQa5syZwzfffENCQgIeHh48/vjjzJkzBxMTw72lCyGIScvjw1/+x5bIcHILNWRdvIRGq8XI3gEXizbkhv+AQ5MmNPEDW2UHFhpjrsTAlRh4ZtoMXOysWLV9G6t2/nXT87fMfBsrcwsW//4bP0bsuun6znc+QJSUcPzCefzMLbj02OPkHzkCGg2KlRXW3brhNHYs1mFhmLWopFVQ8QtVRcHO+XDloCoKBn8KnR+vNVFQyt6fzwOyz4FEIpFIbuCDDz5g0aJFrF69mo4dO3L06FHGjRuHubk5s2fPrrM4ErMKOBKr5gccicvg2JVMMvKKyctJJTszH2tzU2yNtWRG7qM4J4diZ2eeGDmSwIceZHX4v3qLQxQWosnMJO6FF8ndu5fxZgo2WoHw9MH52WfU1YHOnatmFVQ4kYDov3SiIBLsm8Pgz3SioIbProcoojT1sxESFBQkDh48aOgwJBKJRG8MHjwYZ2dnVq9eXXZu3LhxpKam8ttvv9XKnBl5RWXWwBHdz8QsdY8AYyOFNu62dPK0L8sR8Gtii6mxUa3EosnJIW/fvrKOhMWXdVZBkyZY9wzDJiys+lZBRQgB57apoiD+ENh7Qe/XoNNjdS4KNn2iJnLeaeVAUZRIIURQTeaSKwcSiUTSgOjZsyeLFy/m9OnTtG3blpMnT7J9+3befPNNvTw/r6iE41eyygmBy9f1EvB1sSbE15kATwc6NbenvYc9lmbGZdfPXInjwtVs/Jp56iUeUVJCwfHjat5AxB7yo6KuWQXBwTg9/gTWPcMwa9FCb7kK6sQCzv2pEwWHwcELHvocOj3aKFcKbkSKA4lEImlAvP7662RnZ9O+fXuMjY0pKSlh5syZTJ06tcrPKirRcvpqlioCYktLCLPRVRDiYW9BgKc9o4Ka08nTgY6e9thb3qLpj45JS78A1ByA6lIUd0VXVRCuVhVkZalVBR064PzMM1iH6ckqqAgh4OwfaqJhqSh4+AtVFBjf/rU3JqQ4kEgkkgbEDz/8wJo1a1i3bh0dOnQgKiqKl156iRYtWjBhwoRb3qfVCi6l5nIkLoMjsZlExWZwMj6LIo0WAEcrUwI8HXigg66EsLk9brZ107TnmlWg9hwounwZUK0C2/v6q1ZBSIj+rIKKEALO/q7ukpgQBQ7e8PBC6DSm3oiCnqNa19lcUhxIJBJJA2L69OlMmzaNMWPGANCxY0cuX77M/Pnzy4mD5OxCjsRmcCQug6jYDI7EZpBVUAKApakxHT3teSrMhwBPezp5OuDpqL8SwjshNJprVkF4xDWrwNIS627dcHz8cbUBka9v7cckBJzZqq4UJBwBRx8YsggCRtcbUVBKXWzVXIoUBxKJRNKAyMvLw9jYuNw5jVDILyph6T/ny1YGrmTkA2rCoJ+7LYMCmtK5uT2dmjvQytUGk1pKGLwVRXFXyI3QNSDas+eaVdC+Pc4TJqjbGnfpjFFtWAUVIQSc2aKuFFw9Co4tYMhiCBhV70RBKbGn0gBo3s6p1ueS4kAikUgaEIMGD+bd9+ZzuciabIsm7DsYydHvP8Lavx/zt56muZMlXbwcGB/mQ6fmDvg3LZ8wWFdocnLI27+f3N3h5a0Cd3ds+/fHOiwU65AQTJxq/4OuHELA6c1qm+NSUTD0S+g4Cozr90fiwS2XACkOJBKJ5K5GCEFcej5RsRl89dfvxGcWkun+MLlNU/h49gtQWICxlRV27drQPNSTF++z4Jl7+xGbkszYzz/mmxue99pDj/BQcHfOXIkrSxy8nlnDx9C/UxeiLp7n5ZXLbro+77FxhLZtT8Tpk8xYt7r8RSF4v1c/XjCzJv/ECc72CIGSEhRLS6y6BeP4+GNqA6K6sAoqQquFM6Wi4Bg4+cLQJdBxZL0XBYZA/otIJBJJPSG7oJijcZkcjknncIyaK5Caq24klHRlD8YUMH3Um7QY+gmLfv0KCxNjuO5z1taibt/SSxsQaTKz0GRnEf/rH7QvKMKifXusx49XrYKuXerOKqgIrRZO/wb/fAiJx8CpJQxbCv4jpCi4DbIJkkQikRgAjVZwLimbwzEZHI5JJyo2g3NJ17YkbuVmQ+fmDmV/nlvyHoqi1KhEsMYx5+SqVoGuzLDo0iVAtQqsw8IMZxVURJko+AASj4NzK+j9H/Af3mBFgWyCJJFIJHrCx8eHyzq/+3oGDhzI5s2b6yyOpOwComIyOBybQVRMBkfjMsgt0gDgYGVKl+YODA5oShcvBwI8HW7qJ2CIpXih0VBw4gS5ERHk7g4nLypKtQosLFSr4NExqlXQsqVhrIKK0Grh9K/qLolJJ1RR8MhyVRQY1X3uRUNFigOJRNKoOXDgABqNpuw4ISGBwMBARo0aVWtzFhRrOBGfRVRsRplFUFo9YGKk0L6pHSMCPens5UCX5o54O1vVmw/X4vj4shLD3D170GaqOwFatG+P8/jxWIeFYtm1q2GtgorQauHU/9SVgqST4NwaHvkK/B9pNKKg7+N+dTaXFAcSiaRR4+rqWu54xYoV2NnZMXLkSL08v3Q3QlUIqCsDJ+MzKdao/kAzB0s6N1erB7p4OdChqT0WpvXnw0qTk0vegf3XGhBdvAiAiZsbtv36qXZBSA9MnJ0NHOkt0Grh1C9qTkHSSXBpA8NXQIdhjUYUlOLYxLrO5pLiQCKR3DUIIVixYgVPPPEEVlZW1XpGfpGGI3EZHIpJ59BldVWgNGnQ0tSYAE97JvT0pXNzB7p4OeBup58ug1tmvq2X5wiNhoKTJ9W8gRutguBgHEaPwiYsDLNWrerNakaFaLVw8mdVFCSfAhe/RisKSrl4NAWAFgEutT6XFAcSieSuYdu2bVy8eJFnnnmmUuOFEMRnFhB5WRUCh2LSORmfRYlu8wFfV2vuaetGF5090Ma99poLWZlXX2QUx8eTGxFBTng4eRF70OisAvP27XAe/5SuAVEXjMzN9RVu7aHVXCcKToNrWxjxNbQf2mhFQSlR29QdKKU4kEgkEj2yfPlygoOD6dy5c4XXi0q0nIjPVMVATDqHLmdwNasAUFcFOjW3Z1IfXwK9HenS3BFH67rz3Rf/rm7HPHXA4DuO1ebmkru/AqvA1RWbe+5RrYLQkPprFVSEVgMnNqmiIOWMThSs1ImCuu32eDcgxYFEIrkrSEpK4pdffmHRokXXzmUXcOiymjQYeTmdo1cyKSpRNyLydLSkWwsnAr0dCfR2pG0T2zpvOXw9P0bsAioWB6pVcKqsxDAvKgqKi8tZBdahoZi3bl2/rYKKKBMFH0DKWXBtByNXQbshUhTUIlIcSCSSu4IVK77G1Mwc0SKEl78/zKGYDGLS8gAwMzbCv5kd40K86erlSFdvR73lCtQWxQkJqhiIiCA3Yg+ajAwAzNu1w3nck7oGRF0bhlVQEVoNHP8J/v1QFQVu7WHkamj3sBQFdYAUBxKJpFGSXVDM4ZgMDlxK4+ClNH76+AvMWoYy76/LuNqaE+jlyNge3nT1dsS/mR3mJvXcr9Zo0GRnc/W9eapVcOECoLMK+va91oDIpfb96FpFq4HjG1X7IPUcuHWQosAASHEgkUgaBUlZBRy4lM6BS2kcuJTGvlN7yM+Nwb3Zg7jlRFOUFk+zB3rhruzAvMCY0+cgJ82FZ3tPB+Dlr5cSdelCuWe28WjGsikvAjDxy885m3Cl3PXOPr589vQkAJ5Y8BFxqSnlroe0acv8J8YDMPzDd0nNyS53/d6OnZg98jEAHnx3NvlFRdcuCsEDnt48iym54eH8k5tMcG4+Gf/sU62CkSOxDmugVkFFaEpUUfDvR6oocPeHUWug7UNSFOjoP759nc1lEHGgKMpUYDrgAZwAXhZC7LrN+MeA/wBtgCzgL2CaEOJqHYQrkUjqGUIILqTkcvBSGvsvpnPwchqXU1WLwNLUmC5eDjgYx5Kae4Gjcx7AxnwQb3a3Y8/Z0waO/PaIwiI0WZloMjPRZmWRtv0fklOzMG/blhAHBx69byBtxj/bcK2CitCUwPENOlEQrRMFa6HtYCkKbsDWqe6srjrfW0FRlNHAN8BUYLfu53igvRAipoLxYcC/wDTgZ8AdWAykCyHuvd1ccm8FiaRxUKzRcjI+q2xV4OCl9LLeAk7WZgR5OxLs40RwCyc6NLXD1NiIvv/3OoBB9yK4E9q8PPIOHCjrSFh0/jwAxq4u2ISGYd0zrHFYBRWhKYFj61VRkHYe3DtC39fBb5AUBbfg3MFEAFoHud92XEPdW+FVYJUQYrnu+AVFUQYAU4A3KxgfAsQJIT7VHV9UFOUL4Ob9RiV3JCwsjE8++YQePXowceJE2rRpw7Rp0wwdlkRSjtzCEqJiM9h/MY2Dl9M4HJNBnm4fAi8nK/r4udLNx4kgHydaulo3mGV1odWWryo4fFitKjA3xyooCIfhw7EOC8O8TSOxCipCUwLHftSJggvQpCOM/hb8BkpRcAeO/6PaWncSB/qgTsWBoihmQCDw8Q2X/gRCb3FbODBPUZSHgN8AZ2AMsKW24mzMvPXWW8ybN4/+/ftTXFwshYGkXpCSU8jBS2llOQMn4rPQaAWKAu2a2DEqqDlBPurqQH2vIriR4qtXy/oN5O7ZgyY9HQDztm1xenIs1qGhWAUGYmTRsF5XldGUwNEfVFGQflEVBWPWqaKgsQqhBkxdrxy4AMZA4g3nE4H+Fd0ghNijKMqjwLeAJWrM24BxFY1XFGUiMBHAy8tLP1E3Iu6//35mzZrFTz/9xJ9//glA165dCQ0NJT09nZEjRzJ06FADRympSxISEnjjjTfYsmUL2dnZ+Pr68uWXX9KnT59amzM5u5B9F1PZeyGVvRfSiE7KAcDcxIjOzR2Y0qclwS2c6OLlgJ2F6R2eVjH3duykz5ArjTYvj7yDB8kNDycnPJyiaJ1V4OKCTe9eur0KQjC5Yc+HRoumWCcKPtaJggAY8x34PShFQT3GUNUKNyY6KBWcUy8oSnvgc2Au8AdqEuNHwFLgyZseLMQyYBmoOQf6C7lxcOjQIVJSUvD398fMzIzz58/Tr18/Pv74Y7RaLffff78UB3cRGRkZhIWF0bNnTzZv3oyrqysXLlzAzc1Nr/PcSgzYmJsQ7OPIiEBPgn2c9FpSWFoFUNsIrZaCU6fKVgfyDx1CXG8VDHsE655hmLdp03itgorQFMOR72HXx5B+CTw6SVHQgKhrcZACaIAmN5x34+bVhFLeBPYLIT7SHR9VFCUX2KUoykwhRGzthNr4iI+P5+mnn+avv/5i9OjRREVFER0dTWBgIABGRkZYW9fdrl/6YPHixXz00UckJCTQoUMHPvvsM3r16lXl58ybN4+ZM2fy3HPPsXDhwiqNWbRoEUuXLuXSpUsAdOjQgVmzZjFo0KBqvaa65MMPP8TDw4M1a9aUnWvRokWNn3srMWBtZkxwCydGBHoS4utMh6Z2Bu06WF2KExOvWQUREdesAj8/HMeOxTrsLrEKKkJTDEe+U1cKMi6DR2d49HtoM0CKggZEnYoDIUSRoiiRwH3A+usu3QdsvMVtVqiC4npKj+VvWiXJz89n5MiRLFiwAF9fX2bMmMHcuXPx8/PjqaeeAmDnzp237DlfH/nhhx946aWXWLx4MT179mTx4sU8+OCDnDx5skqW0t69e1m+fDkBAQHVGuPp6ckHH3xA69at0Wq1rF69mqFDhxIZGXnbZ9YHfv75ZwYMGMDo0aPZsWMHTZs25ZlnnuG5556r0rfcyoiBHr7O+NehGHjw3dkAbJ01t8bPup1VYN2rJzZhYViFhGCq5xWXBoWmGKLWqSsFGTGqKHjwAykK9MiASf51NpehShnXopYwhgOTgQlAByHEZUVR1gAIIZ7UjX8KWA68yDVb4TPASAgReLu5ZCnjnRk4cCC+vr6YmJhgbW3N7NmzsWgg33a6d+9OQEAAy5cvLzvXunVrRowYwfz58yv1jMzMTLp27cry5ct555138Pf3v2nloDJjbsTJyYn58+czadKkqr+wOqT0v/Urr7zCqFGjiIqK4oUXXuD999/n+eefv+V9KTmF7LuQphMDqZy7QQz08HWuczFwIzUpZRRaLYWnT5eVGOZHRqpWgZkZVkFBat5AWKhqFdztGfYlRXBkHez6RBUFTbtA3zeh9f1SFBiIBlnKKIT4QVEUZ2AW6gf9cWCgEOKybojXDeNXKYpiCzwPfAJkAjtQmyJJasiWLYYt+pg3bx7z5s277ZitW7feZBUUFRURGRl5U7XF/fffT0RERKXnnzhxIiNGjKBfv36888471R5TikajYf369eTk5BAaeqsCnPqDVqslKCioTEx16dKFc+fOsWjRonLi4HZiIMjHiUe6ehLS0rBioKaUswr27EGTlgaAeZs2OD7xBNZhYVgF3aVWQUWUFEHUt7Drv5AZA027wsBPoPV9UhTUEqciEgBoF+pR63MZJCFRCLEYtZFRRdf6VnBO9jVopEyePJlRo0bddkyzZs1uOpeSkoJGo8HdvXy9r7u7O3/99Vel5l6+fDnR0dGsXbu2RmMAjh07RkhICAUFBdjY2LBp0yY6duxYqTgMiYeHB+3bl2/J2q5dOxYsWMC/Z5PZHZ3CrnMpnErIAsDKzJhgnRjo4euEfzN7TBuoGNDm56tWwe5wciPCKTwXDYCxszPWPcOkVXArSoog6hudKIiFZoEw+L/Qqr8UBbXM6T2NXBxIJKU4OTnh5ORU7ftv9MWFEJXyys+cOcOMGTPYtWsXZmZm1R5Tip+fH1FRUWRkZLBx40bGjRvHzp078fevO4+wOoSFhXHmzBm0WsHJhCx2R6ew6IcdlFg58+TX+zE1Vgj0dmT6A36EtnRu0GKg1CrIjYggJzyc/IPXWwWB2A8dqmtAJK2CCrlJFATB4M+g1b1SFDRC7mpxIIQgLy+P7OzsOw+uJdzc3DC64Y2osZc7XZ/nUl1bwcXFBWNjY65eLb+9RlJS0k2rCRWxZ8+espLOUjQaDf/++y9LliwhNze3UmPMdT3uzczMaNWqFQBBQUEcOHCATz/9lBUrVtwxFkMRn5GP/wOP8cOEYXje/zRKy1CKEi+Q8feP3D/uZaaND6Z7CyeszBrm28TgwG5osnPI2PTztaqCUqugdWscH3/8mlVgaWngaOsxJYVwWCcKsuLAMxge+gxaSlHQmGmY/9fXgHPnzrF+/Xo2bNjA8ePHMTExwdbW1mAfyKtWrWLAgAHlzgkhePjhh9m1axf33nsvGzZsuONztFot3bt3x9vbu1Lja5vKxl9dW8HMzIzAwEC2bdvGyJEjy85v27aN4cOH3zG+oUOHEhRUPl9n/PjxtG7dmhkzZmBmZlapMbdCq9VSWFh4xzjqkpzCEvaeT2V3dArf79pGeqEFllbNafrIy1z9eyWanWsxt7PDu08PclyLMBcpWJm5EXH6JDPWrb7peZ+Nn0jnFi3568hh3t34/U3Xl056Ab9mnvx6YB+f/PrTTdfXvjiN5i6u/BD+D1/+cXPuy4ZpM3Cxs2fV9m2s2nmzVbRl5ttYmVuw+Pff+DFCt2+bRosmOxtNVibfpOZSeO4cCeisAl0SoXVIKKbu0iq4IyWFcHitThRcAc9u8PDn0LKfFAV3AXeNONi7dy9Tpkzh6tWrDB8+nE8//ZTu3bvX28z8V155hWeffZbVq29+U66IL7/8kpYtW1JSUlLLkans3LmTnTt3MmfOnAqvVzb+mtgKr776KmPHjqVbt26EhYWxZMkS4uPjmTx58h3vdXBwwMHBodw5a2trnJycylYKKjMG4I033mDQoEE0b96c7Oxs1q1bx86dO9m8eXO1Xpe+KNFoORKXye5zKeyOTuZwTAYlWoGFqREZGWdwtrbgp5cfIz/Pj1dWNcxldKHVUnz1KsUJCepOhtk5ILSgGGHcxAu3IQ+rVoGfn7QKKktJIRxaA7s/VUVB8+4wZCH43iNFwV3EXSEO9uzZw5AhQ1i0aBGPPPIIxsb66cBWm9xzzz3s3LmzUmOTkpL46aefmDlzJosXq3meKSkpBAUFcenSJTQaDYGBgURGRtbZa69K/NVl9OjRpKam8u6775KQkIC/vz9btmzB29u7bMyqVasYP348Fy9exMfHp1biuHr1Kk888QRXr17F3t6egIAAtm7dygMPPFAr890KIQSXU/PYFZ3CrrPJ7LmQSnZBCYoC/k3teba3L71audDV25EBc3cC0LaJHWB323K/0Lbtb3u9f6cu9O/U5ZbXHwruzkPB3W95fXRYH0aH3bpV81P97uOpfveVHRcnJZEbEUH6rP8jLiKC+1NTuR/VKrDuc7+0CqpLccG1lYLseGjeA4YsAt++UhTUEwa/UHctwRu9OCgVBmvWrLlp+b6xMH36dObOnUtRUVHZORcXF9J0/qqxsTFNmjTh4sWLZb54Y2Hq1KlMnTr1ltcvXrxI+/bt8fT0vOOzKiNmKhqzatWqO95XWxQUa9hzIZW/TyWy80wycen5ADRzsGRQRw96tnYhtKULTta3T6isz6hVBZFleQOFZ88CYOzkhHVoqGoXhEqroNoUF+hWCv4L2QngFQLDvoQWfaQoqGeYmtXdF9tGLQ6EEDz55JMsX7680QqDf//9F0VRCA0NvemDy9HRkdTUVJycnIiNjcXlDnvCz5kz55Y2QSn33HMP6enp5OTkkJOTw88//wzAxo0badmyZU1eSq2wZcsWFi5ciIlJ4/lVT8wqYPvpJP4+lUR4dAr5xRosTY0Ja+XCxN6+9GzlQguXhrON8Y0IrZbCs2evbWt8MBJRVIRiaoplUCCur72KTVgY5m3bSqugJhQXwKHVqn2QnQBeoTBsKbToLUVBPeXYzjgAOva985edmtJ43jErID8/H61Wy8MPP2zoUGqNiIgItm3bho+PDwUFBWRnZzNhwgRWrFiBh4cHCQkJ/Pjjj/Tq1YuMjAxGjBhB//79OXfuHN26deO3337j66+/Jjc3F0VRuHTpEhMnTuSBBx7g1KlTfPXVV+Xm27FjB3DnnIP6woEDBwwdQo3RagXH4zP561QS208ncvyK2nOgmYMlI4M86dfWjR6+zliY1n+77FYUJyWRt2eP2pEwYg+alBQAzFu3wvHRR7HuGYZVUJC0CvRBcT5E6kRBzlXwDoNHloFPLykK6jnRkUmAFAc1Jj09naeeeqrBfoOqiHvvvZc1a9aUZfC/8cYbvPHGG4D6gb1w4cKy8rmmTZvy3XffsWPHDrZt28Zff/3FqFGjmDhxIgMGDGDSpElkZWWRlJREdHQ0nTp14siRIwwfPpxJkyYxblyFu2JL6oDcwhJ2R6ew/VQS288kkZxdiJECXb0c+c8AP+5t604bd5tq/24vnfSCniOuGtqCgmtWQXh4easgJKSsssC0EmWpkkpSnA+Rq3SiIBG8e8Lw5VIUSCqk0YoDRVEUc3PzcmVuDYn+/ftz5MgRcnNz8fT0ZP369fTo0YPo6OhKZ/d7eHjwv//9j+3bt2Ntbc2RI0cYO3YsWVlZtGvXDlBLO9u0acPGjWPOOKAAACAASURBVBsZO3Ysa9euZezYsQghapS8WFH8ISEh1X5efWLOnDm8/fbb5c65u7vf1HOhqsSm5bHjTBJ/nUpi7/lUijRabM1N6O3nyr1t3ejr56a33AG/ZrX/zeN6hBCqVbC71Co4eM0qCJRWQa1SnA8HV0L4Z6oo8OkFw1dAi6rvXiq5e2i04gCwLS4upkuXW2dR12cqagF86tQphg8fjuUtllb79u1L3759y44XLVpU7nppxv7u3bvp1EnNetVoNJiampZdK/0ZHR192xyCG+eqTPyNCT8/v3I5HtURUhqt4HBMOn+fTmL7qSTOJKrNuFq4WPNkiDf92rkR7ONUKx0Jfz2wD+C2VQQ1pSQ5uawb4fVWgVmrljg+OkZXVRCEkZVVrcVwV1OUB5ErIXzBNVEw4mvw6WnoyCQNgDrflbGuUBTF29TU9NL1GfwSiT6YM2dOWROtqpJVUMy/Z5P5+1QSO88kkZ5XjImRQrCPE/e2c6NfWzd8XW1qIery1GTHwluhLSggLzKybPOiwjNnADB2dLyuqiAE0yZN9DanpAKK8uDg16ooyE1SEwz7vAE+YYaOTFJDNn1yCIBhr3W97bgGuStjHWLbEPoZSBomFy5coFmzZpiZmdG9e3fmzZuHr69vhWNTcwr5/cRVthxLYN+FNEq0AkcrU+7xc6NfOzd6tXbF3tK0jl9BzSlnFUREqFZBYSGYmmLVtSuur76KdVgoFu3aSaugLijKvU4UJKuliH1Xg3f93x1UUjnuJAr0SWMWBzLDRlIrdO/enVWrVtG2bVuSkpJ49913CQ0N5cSJEzg7OwOQllvEHyeusvloAnsupKLRCnxdrHmmly/927nRxcsRY6OG9ytakpxM7p495IaHkxMRgSb5OqtgzGisQ0OxCg6WVkFdcqMo8O2rrhR4N44cH4lhaMziQCKpFR588MFyxz169MDX15cly1fQ+t5H+fVoPBHnVUHg42zFlD4tGRTgQdsmhtvDo7qUWQUREeSGR1B4+jQAxg4O16yCsFBpFRiColw4sEIVBXkpanvjvm+AVw9DRyapJQ7/GQNAl/u9an0uKQ4kkhqQmVfMn6fTMXZuzoc//oNjRge8nKyY1NuXQQEetPewa1CCQLUKzl3XgOg6q6BLF1xfeQXrsDAs2kurwGAU5cKBryD8c1UUtOynrhR41V5yqaR+cOmYulInxYFEUg/JKihm24lENh9LYNe5ZIoKC0m9coneQ0L59Pme+Der/4Jg7YvTyv5ekpKiWgW7w8mJCL9mFbRsicPoUdiUVhVYWxsqXAlAYY4qCiI+h7xUdcvkvm9A826GjkzSCJHiQCKpBNkFxbz+7QY27dtFyu7dmPr4085/EP2bGLNx2Ry0hTnkOBbzwrJ5AIS0acv8J8YDMPzDd0nNyS73vHs7dmL2yMcAePDd2eTfUFUzOLAb04aoW0+XVhZcz6jQXkwdMJi8wgIGvvfWTdef6tufp/rdR0pWJiM+nlf+olbLeN82DEjN4MJNVkHItb0KPDyq8S8l0TuFOXBgOUR8oYqCVv3VlYLmwYaOTNKIkeJAIrkFOYUl/H0qkc1HE9h5NpmYS39TUpSKeXE+Inwzx/7awFVXVyxcnOjy9BNYONgbOuSKEaDNz0OTmYU2KxNNdjapf+4gLb9IWgX1mcJs2K8TBflp0Oo+daXAs0YVahJJpWjMfQ46WlhYHM3Pzzd0KJIGRG5hCdtPJ7H5aAI7ziRRWKLF3c6cgR09+N+uFdiam7Jzrv56A9QWZVaBrudASXIyAGa+vmVJhNbBwdIqqI8UZsP+ZRCx8DpR8CZ4Bho6MomB+fWLKAAeeqHzbcfJPgcSiR4QQrD/YhrfH4hl6/EECoq1uNqa82g3LwYFeBDo5YiRkcKVOB9Dh3pLtIWF5B86pJYYhkdQeOoUAMb29liFhmBTahU0bWrgSCW3pCBLFQV7FkJ+OrR+APq8LkWBpIw7iQJ9IlcOJHctqTmFbDwUx/cHYrmQnIutuQkPdW7Kw52aEuzjVK/7EAghKIqOVlsTh0eQd+AAoqAATEyw6tJFtzqgswpkM7D6TUEW7F8KexZdEwV9X4dmUhRIqodcOZBIqohWK9gdncL3B2LYdjKRYo0g0NuRj0aovQiszOrv/xIlqankRqgNiHIjIihJUrdvNfP1xWHECKzDQrEK7oaxjbQKGgQFWbBvqbpSUJABbQaoKwXN6q4LnqRhcWDzRQCCB7Wo9bnq7zuhRHIL5s2bx8yZM3nuuedYuHBhpe65mlnA+oOx/HAwlrj0fBytTHkyxIfRwc1p425bqWdM/PJzAJZNebHasVcFbVHRdVZBOIUnpVXQKCjI1ImCRTpR8KC6UtC0YW4SJ6k74k6nA1IcSCQ3sXfvXpYvX05AQMAdx5ZotOw8k8z3B2LYfjoJrYDQls78Z0BbHujgjrlJ1ZbbzyZcqW7YleK2VkHnzri+/JLOKmgvrYKGSEEm7F0Cexepf/cbCH3+I0WBpF4ixYGkwZCZmcnjjz/OihUreOedd245LjYtjx8PxrL+YBxXswpwsTFnUp+WjA5qjo9L/VpyL0lLu2YVhIdfswpatFCtgtBQrLpJq6BBk58B+5bA3sU6UTBIJwrqLrlMIqkqUhxIGgwTJ05kxIgR9OvX7yZxUFSi5a9TiXy3P4bd0WqHvz5tXJnzcAfubeeGqXH9qN+/ZhWoJYYFJ08CYGRvj3VICNZhodiEhmLarJmBI5XUmPwM2Pul+qcwE9oOVkWBRydDRyaR3BEpDiQNguXLlxMdHc3atWvLnb+QnMMPB2LZEBlHam4RHvYWvNivNaOCm9PMwdJA0V5DCEHR+fNleQN5Bw4i8vPBxATLzp1wfelF1Sro0EFaBY2F/HSdKFhynSh4HTzubIVJJLfDwqbutnaX4kBS7zlz5gwzZsxg165dmJmZUVCsISWnkD+OX+W3T/7B2Ejh3rZuPNrNi95tXGutBLGzj2+lxpWkpZVvQJSYCICZjw8OjzyCdViYtAoaI/npsGexaiEUZklRINE7D07qWGdzSXEgqffs2bOHlJQU/P39EQK0QoDQgqJgtOtnLl1Npblr7bcu/uzpSRWeV62Cw2V5A2VWgZ1dmVVgHRqGmae0CholeWlqPsG+paooaPeQKgqa1N0buUSib6Q4kNR7Anvfz4RPN/DniUQE0LOVC1Hfzqdzh3bMnDkDTxe7Oo2nzCqIiFCtgv0HpFVwN5KXppYj7lsKRdnQ7mGdKPA3dGSSRsqeTecBCBnWstbnkuJAUm95d+Mmlm77i5ScQhQUXO3MaWZvwYqXn2bg1sXE52bx/I9rb7pv5zvq3gcf/7KR3yL3l7tmaWbG1llzAZi7fh1/HztS7rqzjS0b/zMLgDe/Wcmes+qOhaK4hH/PnuIRW0fev3jlmlXg7Y3DsGFY9yy1Cmz0+48gqX/kpamNi/Ytk6JAUqdcvZBZZ3NJcSCpd5yIz2TRjmh+DD9PdmYGTZ0c8bC3xMyk7ioORFERxfEJFMfGocnKRJubRzCCTmk5WHbuKq2Cu5HcVFUU7F8GRTnQfqhafeDewdCRSSR6R+6tIKk3HIpJZ9H2aP4+nYStuQlPhnrzdFgLnG3M9fL8zF9/JenTzyhJSMDEwwO3V17G/qGHAJ1VcOGCLm8ggtwDBxB5eWBsjGXnzmqJYVgYFv7+0iq42ygnCnKhw1Do/R9wb2/oyCR3GZs+OQTAsNdu32K7we6toCjKVGA64AGcAF4WQuy6zXgzYBYwFmgKJAIfCyE+r4NwJbWIEIK9F9JYuOMc4dGpOFiZ8tp9bXgy1Ifi4jyEtgCouTjI/PVXEmb/n9pxECiJjydh9mzyoqIQBQXkhkdQcvUqoLMKhg5Rqwq6d5dWwd1Kbirs+UK1D4rzoMMwdaXArZ2hI5NIap1KiwNFUb4AooCjwHEhRLW+kiuKMhpYAEwFdut+blUUpb0QIuYWt30HNAcmAucAd8DwReySaiOE4J+zySzcHs3By+m42JgzY2BbHu/ujbW5+mvZd/484FoOQU1I+vQzNIUFpFtb4JBXiLEQiIJCMr5dp1YV9OiB9ZQpWIeFYubpWeP5JA2Y3BSI+AL2L1dFgf8j6kqBW1tDRya5y7Fx1M8qamWoysrB70AA8BrgrygKqN/6jwJHhRC/VvI5rwKrhBDLdccvKIoyAJgCvHnjYEVR7gf6Ay2FECm605eqELekHqHVCv48mciiHdEcu5JJU3sL3hnSgVFBzbEw1e9yvRCCtPg4LG1sKUlIIM3akv0tmxJ0IQG37Dx1kKLQJiIcxUSm39z15KZAxOew/yudKBgOvadLUSCpN9z3dN3lt1T6HVEIsRnYXHqsKIo54A90AvoBdxQHOnsgEPj4hkt/AqG3uG0ocAB4VVGUJ4F8YCswQwiRU9n4JYZFoxX8djSeRTuiOZuYg7ezFR8M78iwLp56TTTMz86ipKgIW2cXctJSWfXqFPo++Qx2bm44JiUReDEBp9xri14mHh5SGNzt5CSrouDAV1CcDx1HqKLA1c/QkUkkBqPK74qKolgATwGuwElgrRCiuJK3uwDGqDkD15OIujpQEb5AT6AQGA44AF+g5h6MqCC+iaj2g6VGo6lkWJLaoqhEy8+Hr/DlP+e5mJJLazcbFozpzKCOHpjoYb8DTUkxeZmZ2Dq7oNVqWPHSs/iF9OK+Z5/H1tmFgc+/hoenN0nGxhgLgXtWXtm9ioUFbq+8XOMYJA2UnGSIWAAHVkBJAfiXioI2ho5MIqmQXT+eBaDXqNr/Ha3OV6YfUH3/00Bv4G1FUUYKIU5V4Rk3lkgoFZwrxUh37TEhRCaAoijPA38oiuIuhCgnNIQQy4BliqJ0NDY2PlqFmCR6pKBYw/qDsSz55wJXMvLxb2bHkie6cn/7JhjVoL2xEIL8rEys7B0A+PHtGRibmDDqrfkYGRlz74SpOHlcKy9s06UbMROeRpOcjNOECVz8aS126UWYNm1arlpBcheRkwThOlGgKYSOI1VR4NLa0JFJJLclJbbuFsurIw5aCCGGlB4oihIALAN6VeLeFEADNLnhvBs3ryaUkgBcKRUGOkqFiNdt7pMYgIJiDd/svczSfy+QnF1IVy8H3h3mT982rujyVCrNlAcGAlCUn4eZpRUAf6/4kuiDe5n05WoURSHo4UcwMrqWq9AurE/Z37X5+cRNmULB8RN4LvgM2/79eaPjCQBWDlhZ05cqaWhkJ+rsg1JRMEonCloZOjKJpN5RHXGQrShKgBDiKIAQ4qiiKJVqbC+EKFIUJRK4D1h/3aX7gI23uC0cGKkois11OQalayqXqx6+pLbYdS6ZmZuOE5OWR2hLZxaM6UyIr3OVRYGmpBgjI2NGh/Uh6s8tLJrwKFOWfYuFjQ2tu4fi6u2DVqPB2MSE1sEhFT5DW1RE3AsvknfwIE0/+gjb/rdyrSSNnuxEdaXg4ArQFEHAaOg1TYoCieQ2VEccTAR+UBRlG3AMaEvVqgf+C6xVFGU/6gf/ZNT8gSUAiqKsARBCPKkbvw6YDaxUFGUOas7BAmCDECKpGvFL9ExqTiHvbj7FpsNX8HWxZt2z3Qlt6VLp+4UQCKHFyMiY2JPH2PTBO4z6v3kU2ztg7OZO92Gj0WrV/BHvjp3x7tj59s8rLubKq6+Su3s3Hu/OxX7woBq9PkkDJfuqThR8DZpiVRT0ngbOtd+XXiJp6FRZHAghTiiKEohaRdAOiAbeqsL9PyiK4oza1MgDOA4MFEKUrgJ43TA+R1GU/qhJiAeAdOBn4I2qxi7RL0II1kfGMW/LKXILS3jx3tZM7duyUiWJQggURSErJZkf5rxO2OixtO91D86eXrTv1RdTCwvGfK4WtVSlz4HQaIh/401y/vob95kzcRhRPmfV2867ai9S0vDIvgq7P4PIlaoo6DQGer0mRYGkwePgblVnc1WnWqEzMAxIBf4FjlW1IZIQYjGw+BbX+lZw7gxwf1VjldQe55NzmLnpGHsvpBHs48i8YR1p7W57x/u0Gg3fz3kd745dCBv1OLZOzjRr2wFrB0cArOzs6f/Mc9WKSWi1JLz1FlmbN+P66qs4jX3ipjFzQudU69mSBkBWAoR/BpGrdKLgUej9Gjj5GjoyiUQv3PNE3fXcqI6t8D9gPmpJ4mjgPUVRXIUQ0sC7Cygs0bBk5wUW7YjGwtSI+Y90ZHRQ89tWIGxbthCtVssDk1/EyNgYVy8f7FxcAVCMjBj4/Gs1jksIQeK8+WRu2IjzlMm4THy2xs+UNBCy4nUrBatAWwKdH1VXCqQokEiqTXXEQZwQ4ku9RyKp9+y/mMaMTceITsrhoU5NmT24HW62FjeNi9z8CzHHoxj2uuo2WdrZodVqy67f9+zzeo1LCEHyfz8l/ZtvcBo3DtcXX7zl2DkRc9SfcgWh4ZMVD7s/hcjVIDTqSkGv18CphaEjk0hqhR3fqFvI18UKQnXEwTZFUZ4RQnyl92gk9ZLMvGLe//0U3+2PxdPRkpXjg7nHz63s+vnIfUT+9jPDZ76DsYkpRsZGGBmboCkpwdjEhJ5jnrzN02tO6pIlpC5fjsPo0bi98fptqyMuZ8kClwZPmShYBUILnR9TRYGjj6Ejk0hqlYzEvDsP0hPVEQddgLGKosxETRA8QtX2VpA0EIQQ/Ho0gXd+PUl6XhETe/vycv/W5CbE8vNH79LvqYnYubohBJQUF5GbkY6dixtdBjxElwE1by702kOP3HFM6qpVJC/4HPshD9Pkrf+rctmkpAGReUUVBYdW60TB4zpRIJNMJRJ9U51qhYcBFEWxQd1bwR+19bEUBw2ARYsWsXTpUi5dugRAhw4dmDVrFoMGlS/3i03LY9bPx/nnbDKBbiZMtzlNmK83VmYm5BubkHz5Ilmpydi5utEqqDutgrrrPdaHgm//zPTvfyDp/Q+wfeABPN57D8VIf3s0SOoRmXE6UbBGFQVdnoCer0pRIJHUItXdW+E+oAA4KYTYq/eoJLWGp6cnH3zwAa1bt0ar1bJ69WqGDh1KZGQkAQEBlGi0fPVvNP/+uI4MCxfeGjGIR7s24esXVpPRqSOebTvg1MyTZ774qta/pZ+5EgeAX7Obt1DO/OUXrr79NjZ9+tDsow/l5kmNkcw42PVfOLwWhFBFQa9XwcHrzvdKJJIaUZ131E3ABdRKhVRFUVxQbYV79BqZpFYYMmRIueP33nuPL7/8kg2rVhAX0pcv4l04lZDFxMKLdAr0YFCYmtw1Zdk3Zd/M62rpftLSL4Cb+xxk/f4H8W/OwKp7d5p9vgDFzKzSz2zrJLffrfdkxMLu/8Khtepx17HqSoFDc8PGJZEYGJfmNnU2V3XEQVMhxIOKooQJITorijIJcNd3YJLa5fKxKBIvXuBCXhE5OTlkJ2fw5+bfSWszkiVPdKW/332YmF770K0vS/bZO3dyZdo0LDt1ovmihRiZm1fp/te7vV5LkUlqTEaMbqXgG/W465PQ8xUpCiQSHXWxG2Mp1REHpQ2PihRFMRNCLFUUZSfwjv7Ckuib1LgYzkfuJ/jh4Rw/fpxuwT0oKirC0sYW30ffYnOTDowJacm2AW2xszA1dLgVkrtnD1defAkLPz+aL1uKkbW1oUOS6IPrRYGiQOA4VRTY32wnSSSSuqE64mCBoihOqBsnLVEUZQ83tDyWGJ7cjHTO7d9Du559MbeyIu7UCXZ/twa/kF74+fnxx/ZdfPbnCf7+YzMXNn7EN5s2M+q+joYO+5bkHTpE7NTnMPP2pvlXyzG2vXM3xop4Y5fadfv9Xu/rMzxJdUi/DLs+gah1UhRIJJVg29fqrrL3Pd2h1ueqTrXCd7q/fqQoypOo1QpDbnOLpA4oLizgUtQh3Fq0xN7NnbQrsfy9YjF2rq74dgmmbVgf2oT0xMLahnX7Y5j/RxrFGnfmz5/Pxrnp/PH914y6L8zQL6NC8o8dJ3biJEzd3fH6egUmjo7VflZirtzh2+CkX7pOFBhB4FM6UdDM0JFJJPWanPTCOpurRineQog1+gpEUjWEVkv8uTOYWVri6uVDYV4e//vvPHo/Pp7gh4fT1K8d4z9diqNHUwDMrazQaAVv/3qSVRGX6NnKhfeG+ePtbM2Gd7QUFtbdL11lmTV8DEVxccQ+8wzGdnZ4rfwaE1dXQ4clqS7pl+Dfj+HId6AYQ9DTEPayFAUSST2kphsvHUfdeClZ34FJbiYj8SqFuTm4+7ZCINj0wRxaBYcwYMrL2Dg68fh7/8XVR+0nb2xiilPTa2+6i7Zu5r2fN5O0OxzXNi2JznVjDV3JO3+RnTt30mHMcPr+X/lkvSkPDGR0WB9iU5IZq9sh8Xpee+gRHgruzpkrcWWVBdcza/gY+nfqQtTF87y8ctlN1+c9No7Qtu2JOH2SGetW33T9w/sH4TD/QxRzc7xWr8LUw6PK/2aSekDaRdj1MRz5XicKJkDPl8GuqaEjk0gkt0BuvFSPKczLJT3+Ck1aqRmqmxd8gJGJKY++8yFGRsY88sYcHJte82dLx91IRl4Rb2/8jeT0y9hpi0jf8TeJObmctLWhW2AQ32/YwOKofXXymiqLKCwk4a05OGi1eK1ZjVlzmbHe4Ei7AP9+oq4UGJlA8DPqSoGdFHkSSX1HEUJU7QZFCRdC1E9z+joUReloYWFxND+/SrtJGxStRkNK7GXcdN/+tyz8hEtHDjFl6VoUIyPiz57G0tYWR4/KL8Neychn3Nf7uZScyfvDOzIiqP5vSlOcmMjlx59Ak52N9+pVWLTVX2+CzyI/A+DlwJf19kzJDaSeV3MKjnwPxqYQOB7CXpKiQCKpIXs2nQcgZFjL245TFCVSCBFUk7kqLQ4URVmAuo9CK+C8EGJFTSaubRqKOMhIvIqdiytGxsbs2/Qju79fw5Tl32JlZ0/ixfMUF+TTzK99tfoMnIzP4qmV+8kv1rBsbBAhLZ1r4RXol5LUVC6PfZKSxES8Vn6NZUCAoUOSVJbU82pOwdEfVFEQ9LQqCmybGDoyieSuQh/ioCq2wp9AAOAHDFUU5XXgIHAMNe/gt5oEcrdQmJeLkZExphYWRB/cxy8fzeXRuR/RtE072oT0xKFJU0x1jX3cW9xeHd6O8OgUJq2NxMbchA2TQ/k76h8On4OpAwbr66XoHU1GBjFPT6A4Ph6vr5ZLYdBQSD0P/34ER39URUH3yRD2ohQFEkkDptLiQAixGdisKMohIUR73R4LHYBOwEuAFAcVoNVoKCkqxMzSivSr8ax8ZTL3T3oR/7798WzbgX7jJ2Hvpr6JOjZpimOTmidp/Xz4CtM3HMHXxYZVTwfjYW/JpIhdQP0VB5qcHGKenUjRhQt4LvkSq6Aaid5b8sqOVwD49J5Pa+X5dxUp0aooOPYjGJvrRMFLYCsbpkoktcHWpccAeHBS7fekqbQ4UBTlYdSeBtaKongJIWKASCBSUZSXaivAqqIoSoAQ4uj157KyskhLS8PHx6dOYiguKsTUzBxNSTFLpzxFx3vuo9djT+Hg7kHoiMdo0rI1ABY2NnrZ2rgUIQRL/73A+1tP08PXiaVjg7C3rJ/dDq9Hm5dH7OTJFJw6hefnC7AJq72UlozCjFp79l1DyjmdKFivioIeUyH0RSkKJJJapiCnuM7mqoqtcARoArgAqxVF8QESgHig7iK+M+sURXketdQSgOnTp+Pt7c2MGTNqZUKtRoORsTEA6+fOwMzSiiHTZmFsYkrQ4GG4t1ALORRFocfwMbUSg0YrmPub2sNgcIAHn4zqhLmJca3MpU+0hYXEPf8C+YcO0+zjj7Dt18/QIUluRco5+OdDOL7hmigIewls3AwdmUQi0TNVsRUuA8sURTkthPgXQFGUZkBz4GQtxVcdPgLeAl4EuHz5Mhs3buTMmTN6m0AIUbYz4c61K4g5epgnP1oIQKtuoeU2LOo2ZITe5r0VBcUaXv4+it9PXOXZXi1488F2GBnVzc6JNUEUF3PllVfJjYjAY9487AYONHRIkopIPquuFJSKgpDn1JUCKQokkkZLdfocnFYU5W2gSAjxHnBFzzHVlG+B2UAQwLx585g8eTLOzvrJ1D+2/U8i1n/LhAXLMTEzo4lvK0xMzdBqNRgZGdPlgbr19DPyinhm9UEiY9KZPbg9E3rW/1JFAKHREP/66+Rs3477/83G4ZFhhg5JciPJZ3QrBRvB1FInCl4CG9mlUiJp7FRHHKwH1gCvoDZA8geeEkJM02tk1UQIUaIoylzgOSEEGzZs4OzZs9V+XtzJ4/y57HOGvf4Wjh7NsHdrgk+nQIoK8jExM6NtWB/9BV/V2NLzGPf1fmLT8ln4aFcGBdy6jnznOx/UYWS3R2i1JMz+P7K2bMVt+jScHnuszubu7tG9zuZqsNwoCsJehJAXpCiQSAyMZ9vq7ytTVaojDiyFECt0vj5CiOOKotQ3o/hbYG5RURGvvfZalVYNspKT2LLwY3oMG41P50CsnZxw9GhGSVERAF7+AXj5G77E7kR8JuNXHqCgWMOaCd3o4Vv/exiAaskkvvsemT/9hMtzz+E8YUKdzj+50+Q6na9BkXQa/v0Qjv8EplZqPkHoC2DtYujIJBIJEDyo7laGqyMOEhVF8QSu755koad49IJu9eBLIcS8V1999bZjS4qL2frFx3gHdCGg/wCs7B0QAjQaDaCWFw57/a26CLvS7D6XwuRvIrG1MGHDlFDauN95++KPf9kIwLQhw2s7vFsihCD5k09IX7cOp6efxuX55wwWi+Q6kk6pKwUnNqmioOfL6kqBdcMQnBKJRP9URxy8AqwC3BRFeRS4Hzitz6D0xAdt2rSZV9Gqwa7vVmNiakbIiEcxMTWlIC+XYt2uhCZmZjz6zod1HWul2XQ4junrj9LKzYaV49UeBpXht8j9gGHFQcrixaR+tQKHR8fgNn1aWVJnXTL5L3XlYEn/JXU+d70j8aS6UnDiZzCzVrdN4fWqsAAAIABJREFUDnleigKJpJ7y6xdRADz0Qudan6vK4kAIEa0oykBgKNARtUviSn0HVlOEENogXSOd4zu2kXz5Ivc8NRGA7JRkTM2vLXaMnPWuQWKsCkIIvvznPB/+foYQX2eWPhmInUX972FQSurXK0n5YiH2Q4fSZPZsgwgDgMKS+rc1dZ2TeBL++QBO/gxmNtDrVVUUWDkZOjKJRHIbSoq0dTZXVZoguQshEgGEEEXAj7o/9Z70q/EknD+L0GpRjIwY+EK9yJ2sNBqt4O1fT7Bmz2Ue6tSUj0cGNIgeBqWkf/cdSR9+iO2AAXi8O7da+0RI9EDiCZ0o+AXMbKHXNLUCQYoCiURyA1VZOUhQFCUROIW6n8Lx0p9CiJzaCE5f9BzzpMG+qdaUgmINL31/mD9OJDKpty+vD2jbIHoYlJKx6Weuvv0ONn370uzDD1BMquNkSWrE1eOqKDj1P1UU9J6uNjCSokAikdyCqrxTfwb0Bv4CLqFuwjQE8FcURQgh6m2BfUMVBum5RTyz5iCHYtL5v8HteboGPQwszczuPEjPZG3dSsLMmViHhtBswWcoBojhrubqMZ0o+BXM7aD3f6DHFCkKJBLJHalKh8RXFUXxAGaiJiG+K4R4A0BRlDuny0uqRGxaHuNW7icuPZ9Fj3VlYMdb9zCoDFtnzdVTZJUje/sOrkz/D5ZduuC5cCFGup0mDU0fT8P1pagzEo6qouD0b6oo6PO6Kgos665GWiKR6B+fjnVXVqwIIe486sabFKU5ahfCFsArQojj+g5MHwQFBYmDBw8aOowqcy4xm8e+2kdhsYblTwbRvYH0MCglNyKC2EmTMffzw2vVSoxtbAwd0t1BOVFgrwqCHpOlKJBI7jIURYkUQtRoa9uqJCR2BPx0f9qhCgMz3XG9FAcNkYJiDVO/PYQQVLqHQWWYu34dALNH1m43wrzISGKfex6zFi3w+mq5FAZ1QcIR2PkBnNmsioK+b6rbJ1s6GDoyiUTSQKnqroxHgR+A+cBpIYSmOpMqijIVmA54ACeAl4UQuypxX09gp25u/+rMXd+Zv+UU55JyWPN0N70JA4C/jx0Balcc5B87RuzESZg2aYLX1yswdqh/H07jfx8PwMoB9a76turER6krBWe2gIUUBRJJY2fTJ4cAGPZa11qfqyri4BWgA/Aw8DIQpyhKadXCcSHE75V5iKIoo4EFwFRgt+7nVkVR2gshYm5znyPqng5/A82qEHeDYfvpRFbvucyEni3o3aZh9bEvOHOGmGeexdjREa+VX2PiIlvu1hrxh9WVgrNbVVFwz0zoPkn9u0QikeiBO4oDRVHaCiFOCyEW3HDeB/BHbYT0BFApcQC8CqwSQizXHb+gKMoAYArw5m3uWwGsBhSg9vdBrmOSswuZvv4obZvYMv0BP0OHUyUKL1wg5ukJGFlY4LVqJaZNmhg6pMbJlUPqSsHZ38HCAe6ZBd0nSlEgkUj0TmVWDg4rirIMeEsIkVF6UghxCbWk8bfKTqYoihkQCHx8w6U/gdDb3DcVaAKMRE2EbFQIIZi+4Qg5hSV8N7EHFqYNp8FRUVwcMeOfBsBr5UrMPD0NHFEj5EqkulJw7g9VFPSbBd0mgYWdoSOTSCSNlMqIg27Ap0C0oihvA4urm2sAuADGQOIN5xOB/hXdoEuEfAvoIYTQ3KlngaIoE4GJAF5eXtUMs25ZFXGJnWeSeWdIB73mGVyPs43+n1t89Sox455CW1CA95rVmPvW21YXDZO4SPjnfTj3p1px0G82dJsoRYFEIql17igOhBDHgP6KogwFPgKmKIrymhDi/9u777isyveB458bxAmauFFQA3OkqIn2y4Y2TDPNXTZE0XI19Jua2lCzclXOMkeKq8w9KnOU4jZFxZEzU0HEgRuUff/+OA8IyOZZwPV+vc4rnrPu65zwORf3uccfuSg3df9JlcY6lFJFgF+AwVrrs1k6sdazgFlgdGXMRYxWceLSbcb+cYLnapWn2/9VtVg5Kz761KzniwsPJ7iHH/E3b+Ixz5+iNfPGq5CW1VraOoTMXQiEgHHw7yZJCoQQSbwalbdaWdkZBGm1UmodRsPEX5RSO4EPtdbZmZExHIjHeEWQXHkerE0AozdDHcBfKZXYvNwBUEqpOKC11npjNsq3K1Gx8QxYHETJok5M6OydZ0ZyjLtxg+CevYi9fBmPH2dTrF49W4eUZV1rdbV1COkL2WfUFPz7JxRzhedHGElBERljTAgB9Zpb77Vtdge6Lw7sx2gY+C5wWCk1A/hMa30rs4O11jFKqf1AC2BZsk0tgBVpHBKK0eAxuf6m/TtgtHnIs8b9cYKTl+8wz68xZZ0tO4Lg8EVGbjX2Lb9cnSf+zh1C3ulNzLlzuM/4geKNGpkjPKu5F3cPgGKFsjbVtVWE7DVqCs78ZUoKRkKTdyQpEEKkEBtjvNF3Kmz5dmlZ6a0wEGhsWjyBGCAIoztiEPAmcEwp1VFr/XcWypwILFRK7QV2An0BN2CGqbwFAFprX611LKkGWFJKXQGi7XVUxqzacvIK83adw+/JajSvafmqot2nslPBk7aEu3cJ6dOXqBMnqDJtKiWaptuG1G71/7M/YCfjHITshYCxcGYzFC8DL4yCxu9AERk4SgjxoN+mGePV2Ms4B4OA3cAPwB5gv2nK5kQLlFJDgbkY4yBkSGu9RClVBvgU47XBUYzXA+dNu+SNVoS5EB4RzZBlh6hV0YWhrWrZOpwsSYiO5sJ773EvKIjKE7/F5dlnbR1S3hX8t5EU/LfFlBR8Do3flqRACGE3stIg0T0L5/EHxmS1UK31dGB6OtuaZ3LsKGBUVsuyN1prhiw7xO2oOH56O290W9QxMYQOGEjkrt1UGjuWkq1a2TqkvCl4j/H64L8tULwstBgNPr0kKRBC2J3stjlIz1XgOTOdK19buOc8W05eZVTbOtSsaP/vlHVcHKEfDSUiIICKI0fwUIf2tg4p7zm/26gpOLsVSpSDFl9A415QuIStIxNCiDSZJTnQxtSOW81xrvzs1OU7fPX7cZ6tWY7uTatZtewqZbI/nLFOSCDsk0+5s3495T/6iNKvv26ByPKx87uMmoLEpODFL8GnpyQFQgi7Z66aA5GJqNh4Plh8EJeihZjQub7Vuy0uGjAkW/trrbk0ejS31qyh7PvvUaZn7no52It2Xu0sX8i5nUaXxLPboER5ePErU1JQ3PJlCyHyrVpPVLJaWZIcWMmE9Sc5cekO/j0aU87Fst0Wc0trzZUJX3PzlyWUebsXZfv3t3VIZtPey4KvRc7tMGoKzm03koKWY6CRnyQFQgizqN1UkoN8JeDkFebuPEuPptV4tpb1RrhKbuDcmQBM7tkn033Dp33HdX9/Sr/5JuUGDcozgzNlxY2oGwCULlrafCdNnhQ4V4CWY6FRD0kKhBBmdS/C6ChYzLmwxcuS5MDCrkVEM3jZYWpWcGHYS7brthh07r8s7Xftxx8Jnz6dUh07UuGTj/NVYgDwYcCHgJnGOTi73UgKzu8A54rQapyRFDjZ0QBLQoh8Y/1MY3gfexnnQOSQ1pqPlh/mdlQsi95uYvfdFq8v+okr33xLydatqfTFaJSDg61Dsj9aGzUEAeOTJQXjoVF3SQqEEPmGJAdmNHbsWFauXMnJkycpUqQIVWrW53LNDnzp15paFe170pybK1Zy+csvcX7+edzGj0M52nciY3VaGw0Mt46H8zuNpOClCfBYd3AqauvohBDCrCQ5MKOAgAD69+9P48aNORceQdc+HxJ/ZATtJtjxZD/A7XXrCPvsM0o8+SSVJ01EOTnZOiT7kZgUBIyD4F3gUgle+hoe85WkQAiRb0lyYEYbNmwAIDouniHf78KryzCOjO3Arl27aNu2rU1je6RS5TTX39m8mdCPhlL8sceo8t00HApbvqFLnqC1MT5BwDgI3g0ubtD6G2jYTZICIUS+J8mBBXy9/iTHw24zoXU1XvsqgdKlzdgyPodm9fvggXURO3YSOmAgRevUocqMGTgUy//vzF+r+VrGO2gN/wUYSUHIHkkKhBB2o26ztP/IswRJDsxs++mr/LjjLL5PVGX5d6Np0KABTzzxhK3DesDdffu48N57FPb0xGP2LBydC8aofa2qpzMvhNbGnAcB442koGRlePlbIykoZN/jUgghCoYaPhWsVpYkB2Z0PTKGQUsPUaO8Mze3/MiOHTvYsWMHjnbQuK/3D1MBowbh3uHDhPTpi5ObGx5zfsSxVCkbR2c9lyIvAVCxREVjhdbGlMlbx0PI31CyCrw8ERq+JUmBEMKu3LkeBYCLq+VrMSU5MBOtNUNXHObm3VhqnVvFst9WsmXLFh5++GFbhwbAqbBQAKJOnCD47XdwLFMGD/+5FCpTxsaRWdfw7cMB8G85F878ZdQUXNhrJAVtJkGDNyUpEELYpT/9jwEyzkGe8vPeYDYdu4zXv8vYsP0PAgICqFXLdoMepSXh3j2Ce/bCoUQJPPz9capgvSoqu3LvBsxpARf2QSl3aDPZlBRIY0whhABJDsziyxWrGLN6HezfzYUzp3n01Q70mv0diwYMoXiRovy8eztrDwY+cFzA6PEAfLNmBb/t35tiW7HChfnj0y8A+GLZz/x15FCK7WWcXVjx0acADF/kz+5TJ1Jsr1KmbNJkSwPnziTozL/UvB0BDg54zJ1D4SrWa9hiF7SGf/+EsEMQfQfuFZWkQAgh0iHJQS5Fx8WzNPAiCfF3iT7+DwCHFy0BwHPSdABav/k6POxusxgTIiOpeSeSNpFReMydQ5Hq1W0Wi9VpDac3GbMkhu6HKh5Qxgs6rCEOBxwcHJBxIIUQIiWltbZ1DBbj4+OjAwMf/IvdnMasO86sbf8x29eHFnXsr5o+7upVzr/Vjbhr1/CYN49idR+1dUjWoTWc3mh0Sbx4AB7ygKcH43dlCyiFfyt/Hn/8cQIDA/H09KRmzZo8/PDDeHp64unpyTPPPIOLi4utr0IIIZKs+vYAkHmbA6XUfq21T27KkpqDXNhxOpxZ2/6jY4MyNKxif33g427cILhnL2KvXMFjzo8FIzHQGk5tMGoKLh6Eh6rCK9Og/uvg6ET3kKpJu/7www80bdqU8PBw2rVrR6VKlTh16hR//PEH8fHxvPLKKza8ECGESKlBCw+rlSU1Bzl0IzKGVlO24VLUiZjrv+PgoJLaENiD+Dt3CO7hR/Tp07jPnEEJOxxrway0hlPrjZqCsCAjKXhmCNTvCo7pDwf9zjvvcO/ePfbv30/9+vX5/vvvKVPAenAIIfIXc9QcyOvWHPpk9RGuR8YwpWsDHBzsa1rjhMhIQnr3IerUKSpPnZK/EwOt4cQ6mNUMFneFqJvQ7nt4fz881u2BxODsrbOcvXU26fMXX3zB+vXrWblyJW5ubnh7e/Pbb79Z+yqEECJTNy5FcuNSpFXKktcKOfDf1QjWHbnEgOdr8KibfQ0glBAVRci773Hv0CEqT5yIS/Pmtg7JMrSGk+uMmoJLh6F0dWg3HbxfzbCmYPTu0QD4t/IHoGLFigwYMIBRo0axZMkS2rVrh5+fH6tWrWLSpEmULGnfs2kKIQqOgJ9OAtYZ50BqDnJg+f4LODoo3nzceu9/skLHxHBhwADu/v03bmPHULJVS1uHZH5aw/HfYOYz8MsbRrfE9j/Ae4HQ8M0ME4P0fPjhh+zcuZODBw/SrFkzDh06RKFChfD29mbz5s0WuAghhLBvUnOQTXHxCaw4cIFna5ajfEn7aYSo4+IIHTyEyK3bqDhqFKXatbN1SOaVkAAnfzeGOb50BFwfhvYzoF4XcMzdr3GJEiVYt24dbm5uALi4uDBz5kz++OMPfH196dixI+PGjaN48eLmuBIhhLB7UnOQTdtPh3P5djRdfO6PW9CvZWv6tWxts5h0QgJhn3zCnY0bKT9sKKW7ZjLzYF6SkADH1ho1BUvegpi7RlLw7j5o8HquE4NE3t7elC1bNsW6l156icOHD3Pt2jUaNGjAnj17zFKWEELYO6k5yKalgSGUdS7Mc7XKJ6177clmNotHa82lz0dza81ayg34gDI9etgsFrNKSIATv8LWCXD5KLh6QoeZULez2RKCrHB1deWnn35i+fLltG/fnp49ezJy5EiKFJH5F4QQ+ZckB9lwLSKaP49fpkfTajg53q90CQm/CoB72XJWjUdrzZVx47m5ZAll3nmHMn37WrV8i0hIgONrjaTgyj+m0QxnQd1OZkkKenv3ztFxnTt35umnn6Z37940adKEBQsWUL9+/VzHI4QQWeXTuprVypLkIBtWHQwlNl6neKUA0G3qNwBWH+fg6tSpXJ8/n9LdulHuw/+hlH11qcyWhAQ4vsaUFByDMjWg42wjKXAw35TXT7jlvFtnhQoVWL16NQsWLOCFF15g4MCBDB06lEKF5J+REMLy3Gu7Wq0saXOQRVprlgaG0MD9IR6pYPthdcNnzebaDzMo1bkTFYYPy7uJQUICHF0JPzSFZT0gIQ46/gjv/m10SzRjYgBw4voJTlw/kfmO6VBK0b17d/bv38+WLVt48sknOXEi5+cTQoisuhpyh6shd6xSliQHWXT4wi1OXY7gVR/bTaCU6PqChVydOJGSbdpQ6fPPUQ558H9jQjwcXWEkBcv9QCdApznQfw94dzF7UpBo/N7xjN+b+xoeDw8PNm7ciK+vL0899RSTJ08mISHBDBEKIUTadiw9zY6lp61SVh58qtjG0sAQijo50KZ+JZvGcXP5ci6PGYPzC8/jNnYMytEyD1GLSYiHI8tNSUHPZEnBbqjX2WJJgSU4ODjw7rvvsnv3bpYtW8Zzzz3HuXPnbB2WEELkmiQHWXAvJp61QRdpXbcSJYtmf5Adc7n162+EfTaCEk8/TeWJE1FOtosl2xKTgulPwIpexrrOc/NkUpBajRo12LZtG61bt6Zx48bMnj2b/DxniRAi/5OWVFmw4Z9L3ImO49XGab9SGNS2o8VjuL1pExeHDaO4jw9Vpk7BoXBhi5dpFgnxRpuCbRMg/BSUqw2d/aFOe8iLr0PS4ejoyEcffUTr1q3x9fVl9erVzJ49O2lgJSGEyEvyz7ezBS0NDKFqmeI8Xj3tlqJtGz9O28aPW6z8iO3bCf1wEMXq1qXKDz/gUKyYxcoym4R4OLwUvn8cVr4NDoWgyzzotwvqdsxXiUFydevWZc+ePTRq1IgGDRqwePFiqUUQQuQ5Nqk5UEr1B4YAlYB/gIFa6+3p7NsR6As0BIoCx4CvtNZrrRFryPW77DpzjcEvPpJuj4CToRcAqFm5itnLj/x7Lxfee58iXl64z56Fo3MJs5dhVokNDbdOgGunofyj0GU+1H7FLhKCAY8NsHgZhQsXZvTo0bRt2xZfX19WrVrF9OnTHxiBUQghsuP/2ntarSyrf1srpV4DpgBjMB74u4A/lFLpzWLUDNgMvGzafx2wSin1tBXCZdn+CygFnRql/+DvM3MafWZOM3vZ94KCCOnXDyf3KnjM+RFHe54hMD4ODi2B75vAynegUBF4dQH03QGP2s8rhAblG9CgfAOrlNW4cWMOHDiAu7s73t7e/Prrr1YpVwiRP1XyLEUlT+vMBGyLmoMPgXla69mmz+8rpVoB/YDhqXfWWqf+U+9zpdTLQHsgzdoGc4lP0CwPDOGZGuWoVMq6VflRx44R/E5vCpUti8fcuRRytd7gF9kSHwdHlxs1BdfPQIW6RlJQq63dJATJBV0JArBaglCsWDG+/fZbXnnlFfz8/Fi5ciWTJ0+mVCn7mupbCGH/ws7cArBKgmDVb2+lVGGgEbAx1aaNQNNsnMoFuGGuuNKz899wLt6KsvrYBtH//ktwr7dxcHamqv9cnMqXz/wga4uPg6DF8H1jWNUHnIrDa4ugz3ao084uEwOAKQemMOXAFKuXmzgVdJEiRfD29uavv/6yegxCiLxtz+oz7Fl9xiplWfsbvCzgCFxOtf4yUDErJ1BKvQtUARams723UipQKRV49erV3MTK0sAQHiruxAt1rPdwjjl/nmC/nlDIkarz/HGqXNlqZWdJfBwE/WwkBav7QuES8NpP0Gcb1LbP2gJ74eLiwowZM5g5cybdu3fn/fffJzIy0tZhCSHEA2z1TZ66+bZKY90DlFKdgK+BN7XW59M8sdaztNY+WmufcuVyPhHSzbsxbPznMu0bVKZIIev0wY+9eJHzfn7o2Fiqzp1L4apVrVJulsTHwcGf4DsfWN0PCjtD15+NmoLabSQpyIZWrVpx5MgRbty4QcOGDdm9e7etQxJCiBSs3eYgHIjnwVqC8jxYm5CCKTFYCPhao6fCmqCLxMQnZOmVwqeduua6vNgrVzjv50fCnQiqzp9HkRo1cn1Os4iPhcNLYNs3cOMsVPSGrouh5kuQV+dzsAOlS5dm0aJFrFixgg4dOuDn58eoUaNkKmghhF2w6p97WusYYD/QItWmFhi9FtKklHoVWAT00Fovt1yE9y0NDKFu5ZLUccu8h8AL9RvyQv2GOS4r7sYNgnv2JO5qOO6zZlK0Tp0cn8ts4mPhwEKjpmDNu1C0JLz+i/H6oFZrSQzMpFOnThw6dIjjx4/j4+PDwYMHbR2SEELYpLfCRGChUmovsBNjDAM3YAaAUmoBgNba1/S5K0aNwWBgm1IqsdYhRmt93RIBHg29xT8Xb/NFu0eztH/QWaOBSIPq2e+DGn/7NsG9ehEbcgH3WbMo3jDnSYZZxMfCoV9g29dw8zxUagCvL4FHWuaLhGBok6G2DuEBFSpUYNWqVSxcuJAXX3yRAQMGMGzYMJkKWgiRwlOvWq9G2eovirXWS4CBwKdAEPAU0DpZGwIP05KoL0YSMxkIS7astFSMy/dfoHAhB16pn7XGgAP9ZzHQf1a2y0mIjCSkdx+iT/9Lle+mUeLxJtk+h9nEx8KBBTCtEax9D4q7whtLoXcA1GyVLxIDgFqutajlWsvWYTxAKYWvry8HDhxg27ZtNG3aVKaCFkKkUM7dhXLuLlYpyyZ/mmitpwPT09nWPKPPlhYVG8+qg6G0erQipYpbbmKjhKgoQvq/y70jR6g8eRLOT1tlTKcHxcXAocWw/Ru4GQxuj0Hrb6BGi3yTECS3+6LR+O8JtydsHEna3N3d2bBhAzNmzOCpp57ik08+YcCAAThIg08hCryQ40ZluXtty497I/WWqWw6dplb92ItOrZBQkwMFz74gLt79+I2YQIlW6RugmEFcTFw6GfY9i3cCobKjeDlieD1Qr5MChLNOmzU8NhrcgBGLUK/fv1o0aIFPXr0YM2aNaxZs0YGThKigAtcdw6Q5MAmlgaGUPmhYjT1LGOR8+u4OC4OGkzktu1U/GI0pdq2sUg56YqLgaCfYPtEU1LgA20mgdfz+TopyIu8vLzYunUrCxYsIC4uztbhCCEKEEkOkgm9eY8d/4bzwXM1cHAw/4NSx8dzcfjH3Nm0iQoff0zpLl3MXka64mIgaJEpKQgxkoK2k8BTkgJ75ujoiJ+fn63DEEIUMJIcJLNi/wW0hs4ZTLKUljFvdM90H601l0Z9zu1ff6Xc//6Hq2+3nIaZPXHRcHAR7JhkJAVVGkPbKeD5nCQFQggh0iTJgUlAwFY+f38498JO4zE+HH9/f3r06JGlY5vWynhcAq01l8eO5eayZZTp24eyfXqbIeJMxEXDwYWwfRLcvgBVmkhSIIQQIkskOTAJPHORuFJVeN+vO9NG/i9bx+46cQxIP0m4OnkKNxYspLRvN8oNSD3JpJnFRRtdEndMgtuh4P44tJsGDz8rSQEw4okRtg7Brnz11VesW7eOoKAg7t69i9aZjmIuhLCR5m/WtFpZ0j/KJNS5Nh4te/H5wLez3W3s45/n8/HP89PcFj5jJtdmzuShLl2oMHw4ylIP6Ngo2DsbpjaEdYOhlDt0Ww09N0htQTLVS1Wneqnqtg7DbkRHR9OxY0cGDhxo61CEEJkoXbEEpSuWsEpZkhwAt6NiWXckjPYNKlPUyXyTLF2fP5+rkydTsm1bKo4aaZnEIDYK/p51Pyl4yAN810DP9eAptQWpBYQEEBASAMCECRNQSj2wjBhhv7ULd+/epUePHjg7O1OhQgXGjBlDmzZtsvwKLLXRo0czaNAgGtp6ZE4hRKbOHg7n7OFwAJYtW0aRIkU4f/7+HIQDBgzA09MTzPBWQJID4NdDF4mOy9okS1l1Y+lSLo8dh0uLFriNHYNyNPPMjrFR8PdMmNoA/hgCpauB71rw+wMebi5JQTrm/zOf+f8YtTz9+vUjLCwsaRk0aBAVK1bE19fXxlGmb/DgwWzatIkVK1bw119/cfDgQbZt25a0vW/fvjg7O2e4BAcH2/AKhBA5FbQpmKBNxr/fzp07U69ePb788ksAvvnmGxYvXsz69esBct33WdocAEv3hVCrogt1K2c+yVJW3Fq7lksjR1Himaep/O03KHOOkR97D/bPh52T4U4YVH0SOs6Cak9LQpBNLi4uuLgYQ5GOHz+exYsXExAQgJeXF1OmTOHrr7+mbNmyALRo0YKvv/7aluESERHBnDlzmDt3Li1btgTA39+fKlXu964ZPXo0gwcPzvA8bm5uFo1TCGF5SinGjBnDyy+/jKenJ1999RWbN2+mhmlGX6XUAOAj4CqggAPAEK11eFbOX+CTgxOXbnPowi1GtKljlmr/2xs3cnH4xxRv0oQqU6eiChc2Q5SYkoJ5sGMyRFyCqk9Bx9lQ3UbDLucjY8eO5bvvvmPLli088sgjABw9epTJkyfTuXNnG0d335kzZ4iJieGJJ+6P7ujs7Ey9evWSPpcvX57y5cvbIjwhhJW9+OKLNG7cmE8//ZRff/2Vxo0bJ99cFxistV6sjIfbSGA20CEr5y7wycGywAs4OSraN8zaJEtpmexndE2M2LqV0EGDKVavHu7Tv8ehaNHcBxh7DwL9jZqCiMtGDUGnHyUpMJPgzxtqAAAVSElEQVSvvvqKGTNmsHXrVry8vJLWHzlyhCFDhtgwsgdlpSdB3759WbRoUYb7HDt2DA8Pjwz3EULYv82bN3Po0CG01lSoUCH15nrANACttVZKjQVuKKUctNYJmZ27QCcHMXEJrDoYSos6FSisYwgKMrokJiQkEBwcTFBQEK6urpl+kTao7knknr8J+WAARWvUwH3WTBxK5LJFacxd2O8PO6fcTwo6z4VqT+XuvCLJF198wezZswkICEhsxAMYD+GTJ0/SpUsXlFI8+uij/PTTTzaM1ODl5YWTkxN79uzh4YcfBiAyMpKjR48mxS+vFYQoGA4dOkTHjh2ZNm0av//+O8OHD2fDhg3Jd3kEOJnscyzGM78YEJnZ+Qt0cjB40VKOnfyThFsuTLhelS8+uD++wciRIxk5ciQVvOtSq11rBrXtSNvGj3My9AJ9Zk5LcR4VeZduuwNp7uGO+5wfcSyZi7YLMXchcK6RFERegerPQGd/qPZkzs8pkox9eixg1BhMmTKFtWvXUqJECS5dugTAQw89RFhYGF5eXuzbt8+WoT7A2dmZXr16MXToUMqVK4ebmxujR48mPj4+aZ/svlYIDg7m+vXrnDt3DoCgoCDASEScnZ3NGr8QInde8DPG0jl//jytW7fmww8/pGfPnjRp0gRvb28CAgJo3rw5QGHgstY6Otnh7kC41jrTxAAKeHKwbNc24mKuUapYGR59rCFaa0LCr9Jt6jdZPkdCZCRRJ05wsXQp3OfMoVDp0jkLJiYyWVJw1UgKms2TpMDMKpaoiNaaCRMmcPv2bZ58MuX9/fPPP7l79y516mQ86qWtfPPNN0RGRtKhQweKFy/O+++/T2Rklv6tp2nEiBHMn39/jI7ELo1btmxJ/JIRQtgJF9eiXL9+nVatWtGmTZukbtd169alS5cuDB8+nN27d4NRO3Ao1eG9gOVZLUvl5xHRfHx8dGBgYJrbLt+Oolr/93B7qBhnvpuW5j6ZiTp1imDf7qjixai2aBFOOamujYmEfXNg11RTUtAMmg+Dqk1zFJPI2Pqz6wFoVb1VuvuMGTMGR0dHhg4daq2wcqVNmzaULVuWefPm2ToUIYQFnQ68DEANnwfaF6SglAoF5mitR5oaI3YExgJPaa2vZKWsAltzsOLABTRQzqVIjo6POXeO4J69UE5OVJ03L/uJQUwk7PsRdk6Fu+HG2ATNhkHVJzI7UuTCkpNLgIyTg6NHj/L6669bKyQhhMiSo1tDgcyTA4yag55KqTbc78b4XFYTAyigyYHWmmWBF2j1+Ov82N0n28fHhoZy3q8nxMfjsXABhbPT8js6wkgKdk0zJQXPGjUFHv+X7TiEZfz888+2DkEIIXLjrNY6+w+3ZArkCIn7zt3gbHgk3ZrWpGzJUtk6NvbyFc738CMhMhKPuXMokqz7W4aiI4zJkKZ4w58joZI39NwIvqtznBhkNHzm5cuXc3ROkff89ttv8kpBCGFWBTI5WBoYgnORQoRf/4d5mzdl+bi469cJ7tmT+GvX8Jg9i6K1a2d+UPQd2D4RJteDP0dBpQbQaxN0WwUej+f8Ish4+Mw0+rwKIYQQWVLgXitERMfx++Ew2jd0Y/F2o+96j+daZHpc/K1bBPfsRWxoKO6zZlKsfv2MD4i+A3tnwa7v4N518HrBaFPg3jjj47Ihs+Ezkw8BfPv2bZ5//nlmz55ttvKFEELkTwUuOfj98EXuxcbTxced3UFZOyY+IpLg3r2JOXOGKtOnU6JJk/R3jrptJAW7v4N7N8CrhdGmoEquXv+kK6PhM48ePcqUKVPo1KkT0dHRlCtXjrFjxybNF1AQTWw+0dYhCCFEjrTqU9dqZRW45GBp4AW8yjvT0P2hLO2fcO8eIX36cOfIUapMmkiR/3uc2NjYB3eMug37ZsOeH+4nBc98BFUeM7andUwWOTk5pbsto+Ezjxw5wrBhwwA4cOAA7u7uuLq65jiO/KB00RyOQyGEEDZWzNlMc/VkQYFKDv69EsH+8zf4uHWtDCdZCgsLY8WKFSxftox/9u7lVnQ0CUqh2rRJ+wCdYCxgzIyoHIC1piV3lFIEBATQtOmD4x5kNHxm4hDAnTp14u7du1y/fp1t27bh4FAgm5kkWf3vagDae7W3cSRCCJE9x3eFAVC7aSWLl1WgnhTL9ofg6KDo0LBKmtv37t1Ls2bNqFOnDnv37MHX2ZnllSsT/NNPxMXHExsbe3+5E07sn2OI/cKN2E+diV34KrHB+4mNSyA2Ni7lvrlYYmJi0kwMUg+f+fnnn7Np0yYCAgIAOHfuHJ6engQFBXHq1CmGDRtm8ymH7cGaf9fg94KfrcMQQohsO7E7jJYdrTPpXoGpOYiNT2DF/lCeq1U+aeCjdZ98nrR9z549vPLKK3z77bd06dSJa5+N4HbgfiqM+hzX5APiRN2Cv2cabQqibsEjL0HzoeDW0GrXkpXhM48ePUrNmjWTjqlXrx6bN2+2Woz27Ob5m7YOQQghciTk8hmrlFNgkoOAk1cJj4jmVR/3pHXFixhTKicmBvPnz6dVy5aEjRjB7d9/p9ygD3F9601j53s3jaRgz/dGUlCzNTT7yKpJQSJXV1eOHz/+wPolS5Yk/XzkyJGk5CA+Pp5Fixbx/PPPWy1GIYQQeVeBSQ6WBoZQzqUIz9Ysl7Ru+vrfSIiPZ1yfd5k7dy6tWrXi8ldjuLV8BWX796PsO++YkoIZsHs6RN+Cmi+bkoIGNryazB09epTt27ezatUqlFK0aNGCAQMG2DosIYQQeUCBSA6u3Ili84krvP10dQo5OtC1a1fmzZvH0l3buXk+hDJlynDnzh1mdfPlmcBAXHv0oOzb3WDLWKP3QfQtqNXGSAoqZTK+gZ2QIYDv01rTtWtXFixYkGL9zz//jKOjI6+99pqNIhNCiIytXbuW8PBwevbsmbQuLi6Ot956i4ULF2bYmy03CkSDxNUHQ4lP0HRpZLxSiIyMZM6cOQBcPX6SDh06MKh/f1x3bOehzh0o3yQONcUbto6D6k9Dn+3Q9ac8kxiIlJRSREREMGfOHKa/MB2AqKgohgwZkjRglBBC2CMvLy+GDx9OREQEbd43nkGLFi3iypUrFksMoADUHGitWRp4gUZVS+NV3hmAkSNH0q5VKyo1acDVQ0e5GnqJmrGxPNnsUSoWX4jadhtqt4VmQ6FiPRtfgTCHkSNH0qlTJ3r16gXA7Nmz8fHx4bHHHrNxZEIIkb46derw3HPP8f333ydNI//ll18m/YFrKfk+OTgYcpN/r0QwvtP9h3yNsDAeiY3l1OkzaDQrrlxhWuXKFGc/yrOFKSmw3khUwvKaNGmCt7c3/b7qB8C4ceP49ddfbRyVEEJk7rPPPuPZZ5+lubcxPou7uzvNmjWzaJn5PjlYFhhCMSdHXvZ2S1p3ZdJk+pcuzRvBoYCidpHC1C1ajKvn3HnotYW2C1ZY1MiRI3n25WcBpNZACJFnJNYeTJ06FTC+yyzNJm0OlFL9lVJnlVJRSqn9SqkMR3VQSjUz7RellPpPKdU3K+UkaM2vh8J42bsSzkVMedDd68RdvEjdosWo6+BIXEwM/U1zDcRduZbLKxP2rEmTJrhWN4aPtsY/LiGEMJfPPvuMJRtnAtC8eXOLl2f15EAp9RowBRgDNAR2AX8opTzS2b86sM60X0NgLDBNKdUps7Ju3YslIjrOGNsg8hr8+TlMrkeh4nEA9C9blkZFi1G3aDEAClWy/JCUwrYe83uMIiWLSK2BECJPqVOnDp1feJvyrpWtUp4tag4+BOZprWdrrY9rrd8HwoB+6ezfF7iotX7ftP9sYD4wOLOCbkTGUt81jsb/ToUp3rBjEtR4kfKDBqOKFuWpEs4srFoVAFW0KOX/N9A8Vyjslmt1V15f8nrmOwohhJ157cXezPg493P2ZIVV2xwopQoDjYBvUm3aCDw4gYDhCdP25DYA3ZVSTlrrdKc7dIm5wvKoPqidUVC3ozFLYvlalAIo6caVSZOJCwujUKVKlP/fQEq1bZuzCxNCCCHyEaW1tl5hSrkBoUAzrfW2ZOtHAG9qrWumccwpYJHWenSydc8AWwE3rXVYqv17A71NH+sCR81+ISK1skC4rYPI5+QeW57cY8uTe2wdNbXWLrk5ga16K6TOSFQa6zLbP631aK1nAbMAlFKBWmufnAYpskbus+XJPbY8uceWJ/fYOpRSgbk9h7XbHIQD8UDFVOvLA5fTOeZSOvvHAdK9QAghhDAzqyYHWusYYD/QItWmFhi9EdKyG3ghjf0DM2pvIIQQQoicsUVvhYlAD6XU20qp2kqpKYAbMANAKbVAKZV8hpwZQBWl1GTT/m8DPXiwUWNaZpk5dpE2uc+WJ/fY8uQeW57cY+vI9X22aoPEpEKV6g98BFTCaDD4v8QGikqpAACtdfNk+zcDJgGPAheB8VrrGdaNWgghhCgYbJIcCCGEEMJ+FYgpm4UQQgiRdZIcCCGEECKFPJ0cWGsCp4IsO/dYKdVRKbVRKXVVKXVHKfW3UuoVa8abV2X3dznZcU8ppeKUUjLYVyZy8H1RWCk12nRMtFIqWCn1gbXizYtycI/fUEoFKaXuKqUuKaUWKaVSd10XJkqpZ5RSa5VSoUoprZTqkYVj6imltiql7pmOG6GUUpkdl2eTA2tO4FRQZfceA82AzcDLpv3XAauy+qArqHJwnxOPKw0sAP6yeJB5XA7v8WKgFcaIqzWBLsBhC4eaZ+XgO/lJYCHGXDmPAu2BOsBPVgk4b3LGaMQ/ALiX2c5KqZLAJoxxhBoDHwBDMOY4ypjWOk8uwN/A7FTrTgNj09l/PHA61bofgd22vhZ7XbJ7j9M5x17gW1tfiz0vOb3PwEpgJDAKOGrr67DnJQffFy8Ct4Cyto49ryw5uMeDgfOp1vkBEba+lrywABFAj0z26QfcBoolW/cpxjQGKqNj82TNQbIJnFJPyJSTCZx8lFJO5o0w78vhPU6LC3DDXHHlNzm9z6buwBWBLy0XXf6Qw3vcHtgHfKiUuqCUOq2UmqqUcrZgqHlWDu/xTqCSUqqtMpQFumLUOArzeALYrrVOXsuwAWNsoWoZHZgnkwOMyTsceXDI5cs8ONRyoorp7F/IdD6RUk7ucQpKqXeBKhhVhyJt2b7PSql6GDUGb2qt4y0bXr6Qk9/lh4GngPpAJ+A9jFcM8ywTYp6X7Xustd4NvI7xGiEGuIoxb053y4VZ4KT33Evclq68mhwkstgETiJJdu+xsZPRluNrjAfYeUsEls9k6T4rpYoAvwCDtdZnrRFYPpKd32UH07Y3tNZ/a603YCQInZRSFSwYY16X5XuslKoDTAW+wKh1aIXxwJppyQALoBw992w1K2NuyQROlpeTewwkJQYLAV+t9VrLhJdvZPc+V8JotOWvlPI3rXMAlFIqDmittU5dtVvQ5eR3OQwI1VrfSrbuuOm/HhkcV1Dl5B4PB/Zqrb82fT6slIoEtiulPtFah1gm1AIlveceZPI7nCdrDrRM4GRxObzHKKVeBRZhNJRZbrkI84cc3OdQoB7QINkyA/jX9HO6/28Kqhz+Lu8E3FK1MXjE9F+pCUslh/e4OEZCkVzi50y72oks2Q08rZQqmmxdC4xpCM5leKStW1zmoqXmaxjvqd4GamN0oYkAqpq2LwAWJNu/OhAJTDbt/7bp+E62vhZ7XXJwj7sCsRjdbComW1xtfS32vGT3Pqdx/Cikt4JZ7zFGl7EQYBlGN7snMbqQLbP1tdjrkoN73MP0fdEPo43HkxiNQPfb+lrsdTH9Xib+UXAXGGH62cO0fSzwV7L9S2HUHvwC1AU6YvReGJRpWba+2FzeqP4Y2U80Rtb6TLJtAUBAqv2bAQdM+58F+tr6Gux9yc49Nn3WaSwB1o47ry3Z/V1OdawkBxa4xxhjG2w0fQmHAt8DLra+DntecnCP3wf+Md3jMOBnoIqtr8NeF6B5Ot+x80zb5wHnUh1TD9gGRJnu8Ugy6caotZaJl4QQQgiRUp5scyCEEEIIy5HkQAghhBApSHIghBBCiBQkORBCCCFECpIcCCGEECIFSQ6EEEIIkYIkB0IIIYRIQZIDIQoQpVQXpVS0UqpqsnVTlFJnZEIhIUQiGQRJiAJEKaUwhqg9qLV+Ryk1GPgIeFJrfdq20Qkh7IXUHAhRgGjjr4GPgR5KqWEYQ6m+nJgYKKUGKKW0Uqp+4jFKqYmmdZUyOrdSqppSqp3p5zZKqWmWu5KkMr6zZBlCFFSSHAhRwGhjSud9wJfAq1rrfck21wWOYMwrgFLKDWNOkita67BMTt3SdDyAN3DInHGnwRplCFEgSXIgRAGjlHoOqI8xLW7qOd3rAUswJQfAJ8Aq4Hiy42sopX5TSgUqpbYrpSoqpZphzAjXQykVBDQGPJVSu5RSF5RSjyU7/g2l1N9KqSNKqQ1KqeKm9b8qpUYrpXYnP0Yp9ajpPEdN+xQ3nao+cNjMt0cIgSQHQhQoptcFKzFmw1uN8UBP3KYwps5dC9RSSnlgJAvnMGoTUEoVAWYA/bXWPsB84F2t9VaMB/WLWusGQC3grNa6KTAG6JAsjA1a68e11vWAMxjzy4NR6xCqtX4i8RjTPPRLTWXUBU5hTPWbuP9RM90aIUQyhWwdgBDCOkw9FNYBE7XWc5VSe4HDSqnmWusAoBrG1MQngOrAZxivHp7n/kO4PVAbWGvkEhTGmCse0/HnTA90J631LNN6R+BaslB6KaW6mI51B9YopVwAB631zFTHtAf+1FofNK0/AbiZylBa68hc3xghxAOk5kCIAkAp5QqsB37TWo8G0FofBZZxv/agLnBEax2L8eD2NLVPSGyHAEZNwhCtdQPTUkdrPVopVQW4ZGrwWBcITFZ8PUzJhVKqO1AHeEZrXR8IB46ZjtmXxjG1k5WduD5x/39yeVuEEOmQ5ECIAkBrfV1rXVtr3SfV+tdM1fiQ7CEOjAcGmn5OXn1/CWhhegWBUqqeab07cNH0c31SPtC9k32uC+zWWt9TSvUBymmtQ0zrD6VxzEXuN470Bl7AeO0h7Q2EsCBJDoQQiZKSAK31Mq31YaVUSdPn26Z9/IFSwHFTw0M/0/pjQFWl1BHgDe63UVBAea11YsPHhcAwpdQ2oBIpayQOp3HMQoz2D0eAHzB6V0RjJA+SHAhhITIIkhBCCCFSkJoDIYQQQqQgyYEQQgghUpDkQAghhBApSHIghBBCiBQkORBCCCFECpIcCCGEECIFSQ6EEEIIkYIkB0IIIYRIQZIDIYQQQqTw/xSwjV8gDYAtAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x23beeda7278>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"import locale\n", | |
"from scipy.optimize import root\n", | |
"from matplotlib import pyplot as plt\n", | |
"from IPython.display import Latex\n", | |
"locale.setlocale(locale.LC_ALL, '')\n", | |
"%matplotlib inline\n", | |
"plt.rcParams['font.size'] = 14.0\n", | |
"\n", | |
"p = 100. # kPa\n", | |
"x1d = 0.98\n", | |
"x1b = 0.02\n", | |
"z1f = 0.30\n", | |
"q = 1\n", | |
"rlv_faktor = 1.4\n", | |
"\n", | |
"# Antoine\n", | |
"a = np.array([7.20587, 7.19621])\n", | |
"b = np.array([1582.271, 1730.63]) # °C\n", | |
"c = np.array([239.726, 233.426]) # °C\n", | |
"\n", | |
"v = np.array([40.73, 18.07]) # cm^3/mol\n", | |
"delta_lambda12 = 54.04 # K\n", | |
"delta_lambda21 = 236.3 # K \n", | |
"\n", | |
"t0 = 90 # °C (Erster Schätzwert)\n", | |
"x1 = 0.1\n", | |
"x2 = 1-x1\n", | |
"t = t0 + 273.15\n", | |
"def opt_fun(t, xi):\n", | |
" global p1, p2, err, p1_s, p2_s, gamma1, gamma2\n", | |
" x1 = xi[0]\n", | |
" x2 = xi[1]\n", | |
" p1_s, p2_s = 10**(a-b/(c+t-273.15)) # kPa\n", | |
" lambda12 = v[1]/v[0] * np.exp(-delta_lambda12 / (t))\n", | |
" lambda21 = v[0]/v[1] * np.exp(-delta_lambda21 / (t))\n", | |
" ln_gamma1 = -np.log(x1+lambda12*x2)+x2*(\n", | |
" lambda12/(x1+lambda12*x2)-lambda21/(lambda21*x1+x2))\n", | |
" ln_gamma2 = -np.log(x2+lambda21*x1)-x1*(\n", | |
" lambda12/(x1+lambda12*x2)-lambda21/(lambda21*x1+x2))\n", | |
" gamma1 = np.exp(ln_gamma1)\n", | |
" gamma2 = np.exp(ln_gamma2)\n", | |
" p1, p2 = [x1 * gamma1 * p1_s , x2 * gamma2 * p2_s]\n", | |
" y1, y2 = [p1,p2]/sum([p1,p2])\n", | |
" err = (sum([p1,p2])-p)/p\n", | |
" y1, y2 = p1/p, p2/p\n", | |
" return err\n", | |
"soln = root(lambda t: opt_fun(t, [x1, 1-x1]), t0+273.15)\n", | |
"t = soln.x\n", | |
"y1, y2 = p1/p, p2/p\n", | |
"print(\n", | |
" 'x1=' +\n", | |
" locale.format('%0.4g', x1) + '\\t' + 'T= ' +\n", | |
" locale.format('%0.4g', t-273.15) +\n", | |
" '°C' + '\\t' + 'err: ' + \n", | |
" locale.format('%0.3g', err*100) + '%' + '\\t' +\n", | |
" 'y1= ' + locale.format('%0.4g', y1) + '\\t'\n", | |
" 'y2= ' + locale.format('%0.4g', y2)\n", | |
")\n", | |
"print('')\n", | |
"\n", | |
"x1 = np.linspace(0,1,20)\n", | |
"y1 = np.zeros(len(x1))\n", | |
"t = np.zeros(len(x1))\n", | |
"for i in range(len(x1)): \n", | |
" t[i] = root(lambda t: opt_fun(t, [x1[i], 1-x1[i]]), \n", | |
" t0+273.15).x - 273.15\n", | |
" y1[i] = p1 / p\n", | |
"\n", | |
"# Verstärkungsgerade bei (L/V)_min als\n", | |
"# y = mx + b\n", | |
"m = (np.interp(z1f, x1, y1)-x1d)/(z1f-x1d)\n", | |
"b = x1d - m * x1d\n", | |
"nu_min = x1d/b - 1\n", | |
"\n", | |
"# Verstärkungsgerade bei (L/V)_min als\n", | |
"# y = mx + b\n", | |
"nu_arbeit = rlv_faktor * nu_min\n", | |
"b_arbeit = x1d/(rlv_faktor * nu_min + 1)\n", | |
"m_arbeit = (b_arbeit-x1d)/(0-x1d)\n", | |
"\n", | |
"\n", | |
"\n", | |
"# plot\n", | |
"fig = plt.figure(1, figsize=[8,9])\n", | |
"ax = plt.subplot2grid([2,1],[0,0])\n", | |
"ax.plot(x1,y1)\n", | |
"ax.plot(x1,x1)\n", | |
"ax.set_xlim([0,1])\n", | |
"ax.set_ylim([0,1])\n", | |
"ax.set_xlabel('$x_{Methanol}$')\n", | |
"ax.set_ylabel('$y_{Methanol}$')\n", | |
"\n", | |
"str_nu_min = r'$\\frac{x_D}{\\nu_{min}+1}='+ \\\n", | |
" locale.format('%0.4g', b) + '$'\n", | |
"str_nu_unendlich = r'$\\nu=\\frac{\\dot L}{\\dot V}=\\infty$' + \\\n", | |
" 'bei min. Bodenzahl'\n", | |
"str_nu_arbeit = r'$\\frac{x_D}{'+\\\n", | |
" locale.format('%0.4g', rlv_faktor)+\\\n", | |
" r'\\nu_{min}+1}='+ \\\n", | |
" locale.format('%0.4g', b_arbeit) + '$'\n", | |
"ax.plot([z1f, z1f], [0, np.interp(z1f, x1, y1)], '--')\n", | |
"ax.plot([x1d, 0], [x1d, b], '-o')\n", | |
"ax.plot([x1d, x1d], [0, x1d], '--')\n", | |
"ax.annotate(s='$z_{F}$', xy=[z1f,0], xytext=[z1f, 0.1],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax.annotate(s='$x_{B}$', xy=[x1b,0], xytext=[x1b+0.1, 0.05],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax.annotate(s='$x_{D}$', xy=[x1d,0], xytext=[x1d, 0.1],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax.annotate(s=str_nu_min, xy=[0,b], xytext=[0.1, b+0.3],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"\n", | |
"x_min_stufen = [x1b]\n", | |
"y_min_stufen = [x1b]\n", | |
"x_boden = x1b\n", | |
"for i in range(6):\n", | |
" y_gleichgewicht = np.interp(x_boden, x1, y1)\n", | |
" x_min_stufen.append(x_boden)\n", | |
" y_min_stufen.append(y_gleichgewicht)\n", | |
" ax.text(x_boden, y_gleichgewicht ,str(i+1))\n", | |
" x_boden = y_gleichgewicht\n", | |
" x_min_stufen.append(x_boden)\n", | |
" y_min_stufen.append(x_boden)\n", | |
" \n", | |
"ax.plot(x_min_stufen, y_min_stufen, '--',\n", | |
" color='xkcd:dark blue green')\n", | |
"ax.annotate(s=str_nu_unendlich, \n", | |
" xy=[x_min_stufen[4], y_min_stufen[4]], \n", | |
" xytext=[x_min_stufen[4]+0.1, y_min_stufen[4]],\n", | |
" arrowprops=dict(arrowstyle=\"->\"))\n", | |
"ax.annotate(s=r\"$q=\\frac{\\dot L' - \\dot L}{\\dot F}=1$\", \n", | |
" xy=[z1f, z1f], \n", | |
" xytext=[z1f+0.1, z1f-0.2],\n", | |
" arrowprops=dict(arrowstyle=\"->\"))\n", | |
"\n", | |
"ax2 = plt.subplot2grid([2,1],[1,0])\n", | |
"ax2.plot(x1,y1)\n", | |
"ax2.plot(x1,x1)\n", | |
"ax2.set_xlim([0,1])\n", | |
"ax2.set_ylim([0,1])\n", | |
"ax2.set_xlabel('$x_{Methanol}$')\n", | |
"ax2.set_ylabel('$y_{Methanol}$')\n", | |
"ax2.plot([z1f, z1f], [0, z1f*m_arbeit+b_arbeit], '--')\n", | |
"ax2.plot([x1d, z1f, x1b], [x1d, z1f*m_arbeit+b_arbeit, x1b], '-o')\n", | |
"ax2.plot([x1d, x1d], [0, x1d], '--')\n", | |
"ax2.annotate(s='$z_{F}$', xy=[z1f,0], xytext=[z1f, 0.1],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax2.annotate(s='$x_{B}$', xy=[x1b,0], xytext=[x1b+0.1, 0.05],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax2.annotate(s='$x_{D}$', xy=[x1d,0], xytext=[x1d, 0.1],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax2.annotate(s=str_nu_arbeit, xy=[0,b_arbeit],\n", | |
" xytext=[0.1, b_arbeit+0.3],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"\n", | |
"x_stufen = [x1b]\n", | |
"y_stufen = [x1b]\n", | |
"x_boden = x1b\n", | |
"for i in range(12):\n", | |
" y_gleichgewicht = np.interp(x_boden, x1, y1)\n", | |
" x_stufen.append(x_boden)\n", | |
" y_stufen.append(y_gleichgewicht)\n", | |
" ax2.text(x_boden, y_gleichgewicht ,str(i+1))\n", | |
" x_boden = np.interp(y_gleichgewicht, \n", | |
" [x1b, z1f*m_arbeit+b_arbeit, x1d],\n", | |
" [x1b, z1f, x1d])\n", | |
" x_stufen.append(x_boden)\n", | |
" y_stufen.append(y_gleichgewicht)\n", | |
" \n", | |
"ax2.plot(x_stufen, y_stufen, '--',\n", | |
" color='xkcd:dark blue green')\n", | |
"ax2.plot([z1f, 0], [z1f*m_arbeit+b_arbeit, b_arbeit], ':')\n", | |
"ax2.annotate(s='q=1', \n", | |
" xy=[z1f, z1f], \n", | |
" xytext=[z1f+0.1, z1f-0.2],\n", | |
" arrowprops=dict(arrowstyle=\"->\"))\n", | |
"\n", | |
"\n", | |
"Latex(str_nu_min + r'$\\quad\\Rightarrow \\nu_{min}= '+ \n", | |
" locale.format('%0.4g', nu_min) + r'\\\\'+\n", | |
" r'\\text{Verstärkungsgerade: } \\nu='+\n", | |
" locale.format('%0.4g', rlv_faktor)+\n", | |
" r'\\nu_{min}= '+ \n", | |
" locale.format('%0.4g', rlv_faktor*nu_min)+'$')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.4573529411764705" | |
] | |
}, | |
"execution_count": 2, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"0.991/0.68-1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.8490566037735847" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"0.98/0.53-1" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[0.6402199999999999, 1.19]" | |
] | |
}, | |
"execution_count": 4, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"[1.4*0.4573, 1.4*0.85]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.6041872431746962" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"0.991/(1.4*0.4573+1)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Fall 2.\n", | |
"\n", | |
"| Spec | Symbol | Wert |\n", | |
"| - | - | - |\n", | |
"| Feed | $z_F$ | 0,75 |\n", | |
"| Destillat | $x_D$ | 0,991 (entspricht 0,995 Massenanteil)|\n", | |
"| Sumpf | $x_B$ | 0,02 |\n", | |
"| Druck | $P$ | 101,325 kPa |\n", | |
"| Rücklaufverhätlnis | $\\nu$ | 2,8 $\\nu_{min}$ |" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"x1=0,1\tT= 88,24°C\terr: 5,03e-11%\ty1= 0,4116\ty2= 0,5884\n", | |
"\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/latex": [ | |
"$\\frac{x_D}{\\nu_{min}+1}=0,6097$$\\quad\\Rightarrow \\nu_{min}= 0,6254\\\\\\text{Verstärkungsgerade: } \\nu=2,8\\nu_{min}= 1,751$" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAImCAYAAAAyr6IYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XdclvX+x/HXxbi5GbJFkaEMWeIEt5azMs2GqWmZo452zFL7qWnj1DmZNuwcrZNNM7OyZWVDj1mJmiPNwZC9RIYisgTZ9/f3x3WDIg7AG27G9/l4+DCu67qv6wMJ95vvVIQQSJIkSZIkXY2JsQuQJEmSJKnlkkFBkiRJkqRrkkFBkiRJkqRrkkFBkiRJkqRrkkFBkiRJkqRrkkFBkiRJkqRrkkFBkiRJkqRrkkFBkiRJkloIRVFcFUXZpCjKOUVRShVFiVYU5VZj1mRmzIdLkiRJkqRSFMUe2A/8AYwHzgHeQLYx62r2FgVFUW5RFOUHRVEyFEURiqLMqsdreiqKskdRlBL96/6hKIrSDOVKkiRJUnNZBmQJIR4WQhwWQqQIIX4TQsQYsyhjdD3YAFHAQqDkRhcrimIL7ALOAv2BJ4GlwFNNWKMkSZIkNbd7gD8VRflSUZRsRVFOKIqywNi/GCvG3OtBUZQiYIEQ4uPrXPN34FWgkxCiRH/sOeDvgLuQm1VIkiRJbYCiKKX6//wP8BXQB3gLWC6E+K+x6moNgxkHA/uqQ4LeTqAL0M0oFUmSJEmS4ZkAx4QQK4QQx4UQG4E3gceNWVRrGMzYGUi/4tjZy86lXH5CUZS5wFwAa2vrkICAgCYvUJIkSWp7MjMzycrKqnXMzMyM3r17N8nzNBoNHTp0GBwaGlrTUt6tWzfS0tK4/FhZhY6yvDzMz51FubxRXRGYWesIP1+RI4ToaKi6WkNQALiye0G5xnGEEO8D7wOEhoaKv/76q4lLkyRJktqiF198kS+++IKwsLCaY6ampnTsaLD34FqmT5/O6dOn2bdvHwBVOsGTS57mh++/564XNhGVUcDJzELKSsvZtHMlTlbaOvcw6+SC3969pwxZV2sICmdQWw4u56L/+yySJEmS1ETMzMzo3PnKtyDDq9IJJj08l6kTxjJ6xpNoug8jMiKcrB/fxj90PHmfb2FieTaL8jOwP3sak8oKAIot1bdD6xJ1BmVl9jmD19YagsJB4FVFUbRCiOqBHmOBTCDVaFVJkiRJbV5ycjJubm5oNBoGDhzIqlWr8Pb2vql7VukEyeeKiMwoIDKjgB/+3E16biEuWl9CR85i34+fUHnhbTSWWty93bC2ycY2NZWBVSA6abDvXkBBspaqMhPi/KcB0O/EOgDMXF0h1rCzKZs9KCiKYgP46j80ATwVRekD5Aoh0hRFWQ0MEEKM1l/zOfAC8LGiKCsBP2A58E8540GSJElqKgMHDuTjjz8mICCA7OxsVq5cyZAhQzh58iROTk71ukeVTpCSo4aCiPQCtfsgowCrglx8CjLwv5BJqS6JMir4KnYzADMH9UXRWGBiZaX+0ZrTsVM53dlJiTDBKmQ62uI+ZL2yrtazFK0Wl8WLYPfvBv06GKNFIRTYfdnH/9T/2QTMAlwBn+qTQogCRVHGAm8DfwF5wBvAv5up3lZj6NChvPHGGwwaNIi5c+fi5+fHkiVLjF2WJElSqzRu3LhaHw8aNAhvb282bdrEU0/VXcpHpxMk5xQTdVkoiEnPwy7vbE0oePjiGTzOp2Nx8YL6IkVhp383Aq1scFm6BG1gIAcCAzFzcID8NNj3bzj+qXptvxlYDXsK7D2wA7B2Qvk6B1FejlmXLrgsXoTdXXcZ/OvQ7EFBCBHGpcGIVzs/6yrHIoFbmq6qtuGFF15g1apVjBkzhoqKChkSJEmSDMjGxoYePXqQkJCATidIOa+Ggsj0AiIyCog/nYtzTjo++Rn4XchkTvEZuuSmY15eBoBibo5F9+5oB92ORWAg2sBAtP7+WL7yTwCcHnlEfVB+Gvz4Ihz/TP2438MwbDHYe9Sqx+6uu7CMPwZA9/+b12Sfd2sYoyDV02233cZzzz3Ht99+yy+//AJAv379GDJkCHl5eUyePJl77rnHyFVKkiS1LjqdIPV8MUeTz/JXeBTnOvgy8LkfcMlOw6cgA7/CTOYVn6FzbiYmuioATKytsQgMQDt2iBoIggKx8PFBMTe/9oPyTsG+N+DE56AoEDJTDQh27s30mV6dDAptyLFjx8jJySE4OBiNRkNSUhKjRo1izZo16HQ6brvtNhkUJEmSrkMIwervtrHljzDO7T9C0PAHKbwgyEzeSV7kEcov5COK4lCOJeJUWs7fz+Ri6uTE056dye7eERNrdVyBYmHBYP9AVj80G4BJr63kfNGFWs8a3bM3z0+ejqVSBXkp8FY/UEwaFBBC7+zWFF+GWlrDyoxSPWRmZjJnzhx+/fVXsrKyOHHiBMePHyckJAQAExMTrK2tjVzlJevXr8fLywutVktISEjNvOH6ysrKYubMmXTs2BGtVktQUBB79uxp0DMuXLjAokWL6Nq1K5aWlgwZMoQjR47UuqZbt24oilLnz/jx4xv3iUuS1GIIIUg7f5GfI7JYvSOG6e8fZOzSz1m35UsSUhPRnU4l8s1FhL+/gLy9O7EUlfQYPhDbTs6Yu7ljM2oUvnv34Lf/D6wHDcTcwx1TR0cUrVZtEbiRknzYtoAdphvZ0XEvhMyGJ0/A+Dfq3YrgEeiIR6DjTX4lrk+2KLQBJSUlTJ48mXXr1uHt7c0zzzzDSy+9hL+/P7NmzQIgLCyMPn36GLdQvS+//JKFCxeyfv16hg0bxvr16xk3bhzR0dF4enre8PX5+fkMHTqUYcOG8fPPP9OxY0eSk5NxcXGpuaY+z3j00UeJiIhg06ZNuLu78+mnnzJmzBiio6Nxc3MD4MiRI1RVVdXcNysri5CQEKZMmWLgr4okSU1JCEFGfgmR6eqUxKjTuZyPjqfTWbX7oHthBrcVZmFVdpGZ3ToDCltCQrAMCtSPJwhCGxiAqa3tVe//6cKl133+1mXPXfogNwX2rYHw50ExhdA5MHQR2Lk1+PM6d1ptpejo0aHBr60vo24K1dTa+8qMd955J97e3piZmWFtbc3zzz+PVlt3Ja/mNnDgQHr16sUHH3xQc6x79+7cf//9rF69+oavf+aZZ9izZw/79+9v9DNKSkro0KEDW7du5e677665JiQkhHHjxrFy5cqr3vfll1/m9ddfJzMzEysrq/p8upIkNTMhBGcKS2tmHkSnnKMwOoaOZ1LxKcjEtyADr8IzmFepixYJCwt1UGGQGgju/nMvJlaWhK183bCF5SbD3jcgfAuYmEHILBi2CGy7NPqW372hDma89//61RxTFOWoECL0ZsutJlsU2rDt27c36f1XrVrFqlWrrnvNjh07GD58eM3H5eXlHD16tM6MjNtuu40DBw7U67nff/89d9xxB1OnTmX37t106dKFRx99lMcffxxFUer1jMrKSqqqquoEJ0tLS/7444+rPlcIwYYNG3jooYdkSJCkFiRbHwoiMgpISMqkKCoa5zOp+OZn0KMggzuKsjHR/1IsbDpgGRSIVdBotEHqzAONlxeK2aW3w37FeYYt8HySOkgx/As1IPR/VB2DYOtq2Oc0ERkUpEZ77LHHbtgEX92EXy0nJ4eqqio6depU63inTp349ddf6/Xc5ORk1q9fz+LFi1m+fDknTpzgiSeeAGDBggX1ekaHDh0YPHgwK1euJDg4mM6dO7NlyxYOHjyIr69vnWcC7Nq1i5SUFB599NF61SlJkuHlFJWp0xFP55MSl8LF6BicMlPxKcigb0EG4y5eepMXzh2x6heEdY/7aroPzN26oNxg/MDaOQaaanh5QDA1hwFzYejCVhMQqsmgIDWao6Mjjo6NG0Rz5TeqEOKG37zVdDodoaGhNd0Uffv2JSEhgbfffpsFCxbU+xmbN29mzpw5uLu7Y2pqSr9+/Zg2bRrHjh276nM/+OAD+vfv32LGekhSU1u1ahXPPvssjz/+OP/973+b/fkFFyuIzCggPC2X05HxlMbE4JCZgk9BBgPyM7itvLjmWp2bBza3DMS6R1DNeAKzeq6eaHDnk2DvGoj4Ug0IA+epAaFD0+8Z0RTafVAQQlBRUWG055ubm9d5Q6vvG2Zzu3I8S2O6HpydnTE1NeXMmTO1rsvOzq7TAnAtrq6uBAUF1ToWGBjIunXrGvQMHx8f9uzZQ3FxMYWFhbi6ujJ16lS8vLzqPDM7O5tt27bx9ttv16tGSWrtDh06xAcffECvXr2a5XlFZZVEZRQQlZpDeng0pdEx2GeooWBQQSajKtVFi3SmZoiuXtgOHotNcA91fQL/AExtDDer66F16tiEGw1QrON8Eux9XR8QNDDwMRj6ZKsNCNXaXVDIzs7m22+/5ZtvviEqKoq8vDx0Op3R3py/++67OlPtjDnAdOLEiezbt4/Ro0fzzTffXPfaxnQ9aDQaQkJC2LVrF5MnT645vmvXLiZNmlSvGocOHUpcXFytY/Hx8XTt2rVRz7C2tsba2pq8vDx27tzJa6+9VueajRs3YmFhwQMPPFCvGiWpNSsoKODBBx9kw4YN/Otf/zL4/UvKq4jOKiQqMYszxyIpi4nBNiMFn/wMBhSeYahQZxpVWmgR3t2xH3Mftr16oA0MxMLXF0WjMXhNl0s/n9OwF+QkqgEh8iswtYBB82HIk9Chfr/83IxB9/jc+KKb1G6CQmRkJIsWLeLo0aOMGzeOxx9/nEGDBuHg4NAiZgI0l7CwMMLCwnjxxReven7x4sX87W9/Y9OmTTe8V2O7Hp566ilmzJjBgAEDGDp0KO+++y6ZmZk89thj9Xr94sWLGTJkCC+//DJTp07l+PHjvPnmm7VaN+rzjJ07d6LT6QgICCAxMZGlS5fi7+/P7Nmzaz1PCMGHH37IAw88QIcOTTcFSZJairlz53L//fczatSomw4K5ZU6Ys8UEh19irNHIyiLjcEuIwXv/AxCi3IwQf3FqNzGFuHrh23v23DsHYxFYCCarl1RTFrwcj85CfqA8PWlgDB0Idi43Pi1BuLqY9fkz2gXQSEiIoLbb7+dF154gZ9++glLS0tjl3RdOTk5hIaGkpqaSlVVFSEhIRw9ehRTU9Mmf/bIkSMJCwtr0mdMnTqV8+fPs3LlSrKysggODmb79u01LQIAH3/8MbNnzyYlJYVu3brVen3//v35/vvva9aL8PT05KWXXmL+/PkNekZBQQErVqwgPT0dR0dHJk2axMsvv4z5FUushoWFkZiYyGeffdY0XxBJakE++OADEhMT2bx5c4NfW6UTxJ8tJPZEAmeOhlMZF4ttegpe+en0Limoue6iY0cI8seq9ySc+/ZCGxSIWadOLbbbtY6cBNjzGkR9owaEwY+rLQjNGBCqZSWpX9emDAxtPihUh4S1a9cydepUY5dTL87OzuTm5gJgampK586dSUlJueZo/NZo/vz5td7Yr5SSkkJQUBDu7ldfnWz8+PE3XB3xRs+YMmVKvRZOGjlypFG7gySpucTFxfHMM8+wb98+NDdo3hdCkJp9gdgjUZw9FkFlbAwd0lPwyksnoKKEAECnKBS5uKOE9EfTJ5hOIb2wDAzE1N6+eT4hQzsXD3tfg6itYKaFwQv0AaGj0Uo69H0SUHsdBUNr00FBCMG0adN47bXXWk1IqObg4MD58+dxdHTk9OnTODs7X/f6F1988ZrdCaC+2eXl5VFUVERRURHff/89AFu3bsXHp+n7uBpq+/bt/Pe//8XMrE3/E5WkFuXgwYM1+8VUq6qqYu/evbz77rts/2I7eZGxVMbG0iE9GY/8TLpVVdANqDA144JrV6qGj8S0T0/c+vfBMsAfkxbegns1g/0Cah+oDgiR34C5JQx5AgY/YdSA0Jza9E/h0tJSLly4wEMPPWTsUhrM1dWVrKwsvvrqK4YPH05+fj73338/Y8aMISEhgQEDBvDTTz/x0UcfUVxcjKIopKamMnfuXG6//XZiYmL48MMPa+63e/du4MZjFFqKK/dckCSp6d1zzz2EhoZSkJNPyolocqPjefObTXiYmPKkrTXuzz6Jh6JQorGkwM2LwpAJaPr1pOvAvlj73mBnxFakeiMnzsXpuxi2grmVOv5gyBNgff1f3NqaNh0U8vLymDZtWuvp97pMly5d2LJlC7t372bXrl38+uuvTJkyhblz53LHHXcwb948CgsLyc7OJjExkd69exMeHs6kSZOYN28eM2fONPanIElSK1CYkcVrn3zCDyePIy6WYFZWgnlVBYvO5jG2pIy3K8uJcHbgxUGhmHewxtK2A6ZaLWvnzKWPlw+/hh/n8S0b69z3vXlP4O/mzo9H/uSNH7+tc37zk0vwcO7Il/v38M7OuqvIfrPkGZxt7fj49118HFZ3Mbbtz/4TKwst6//3E18dqLupXNi/XgVgzbat/HT0cK1zlhoNO557CYCXvv6c3yLDa513Moetgecg6ls1IAxbpLYgWBtpXQYja/NB4fLpca2Jq6srP/zwA7///jvW1taEh4czY8YMCgsLCQwMBCAhIQE/Pz+2bt3KjBkz2Lx5MzNmzEAI0eiBj2PGjCE8PJzi4mLc3d35+uuvGTx4sCE/NUmSjEDodJScSiPl4DGyj0VQGReHbXoytiWF/NKtM6laDd4VglILQaFGw8UJj9Pp7glYT7qbIlGJg283Y38KTa/8IuSnQdkZME1Xl1kevKDdBoRqbXZTKEVRbBRFuVBZWYlJS55eU0+zZ8/mo48+4o8//iApKYlZs2bxyCOPsGHDhppzc+bM4aOPPiIxMZGvvvqKZ5991thlS5JkBKKigtKkJLL+Cufs0Qgq4mLpkJ6CtrwEgErFhAy7zhS6e2Pq509+t8507RvAmP6hxObGAhDgGHC9R7QtZ6PVMQgnvweNtbqS4qDHW0VAuNrukYbeFKotBwVPc3PzU+Xl5cYuRZIkqcnoLl6kNC6OvHB19kF5TCzWmacw0++MWGpqTqqdG/luXpj5B9CxX08CBvWmq6tDq+yWNaiz0bDnVYj+HjQd1IAw+HGwatzS9C2F3D2y/mybY90BSZKk5lKVn09pTAxFUSfJPhZJRWwMFmfSa3ZGrDC3ItnejdweIzDx88elXy8CQnswwc0ec9Nrt6z+Gn4cgDG9+3Iw8yAAg7u04S7Hsyf1AWGbGhBuWaoultQKA8LpGHUqvUdg09XeloNCO4/KkiS1VkIIKs+coTQmhpKT0eSGR1IWE4vmfHbNNbmW9iTZuXG25x2Y+PnTsV8vAnr5cpe7PR20DZt9sHLrF4AaFN6PeB9oo0HhTJQaEGJ+aPUBodpf21MBGRQkSZLaLKHTUZ56itLoaEpjorkQeZLSmBhMLxQCoEMhw8aZJDs3TvcaiOLnj3OfngQFenKnuz2d7drPEvSNdiZSHxB+BAtbuGUZDPp7qw4IzUkGBUmSpGaiKy+nLCGBspgYSqNjuBgdTWlsHEqpOsiwwsSM1A6dSHIMIMXbjSofPzr27kEPn86M9bTH29kGExPZWFpvWRFqQIj9SQ0Itz6tBgRLB2NX1qrIoCBJktQEqoqKKYtVA0FpTAylMdGUJSRClbozYqm5liS7LiR0CSHJzo1Cdy86BgfQ28uZYZ4OPNbFDkuNHGfVKLUCgh3cuhwGPSYDQiPJoCBJknSTKs+fVwNBdHRNKKg4lVZzvtjKliQ7N2K8byXJvgvpTh64+PvQu6sjfT3smeVpj6td61vquMXJCoewVyHuZzUgjFgBAx8Dy1a6t0QL0ZanR/bUarURJSUlxi5FkqQ2QghBRUZGTSAo07cWVGZfGmR4wcGFZHs3wrWdSLTrQpKdG/burvTp6kBfTwf6etjj37nDdWchNLe4jHQA/N3cSSlIAcDLzsuYJTVM5gm1BSFuO2jt1DUQBs5rFwEh70wxAA6drWuOyXUU6kkGBUmSboaorKQsOblmPEFpTAylsbHoCtVBhsLElKJObqQ4uHNc48JJ684k27lhatuBPvpA0NfTnj4e9thbXX8nRqmRMo+rLQjxO9SAMHiBGhC0Tbflcmsg11GQJEkyMF1pKWXx8bW6D8ri4xFlZeoFGgsuenTjtP8Ajlu4cNDUmVRbVyrNzAnobEtfT3tmejrQ19MeLyfrVjfg8McjfwJwV/+BhJ0OA2CExwjjFXQjtQKCPYx8DgbObZcBISUiBwCvXk23UZUMCpIktStVBQWUxsReGmAYE0NZckrNIEOTDh0o8+pO1rBxRFp2IkznQLSZAzoTU+wszennac9dng6EdHWgt4c91hat/8do9aZNd/UfyKaTm4AWGhQyjqoBIWGnGhBGPQcD5oHW1tiVGc2JXepYGBkUJEmSGkgIQWV29qUWAn0XQkVGRs01Zi4uCF8/zvccRLR1Z/bhyIEiDVX6HllfFxtCPB2Y0dWekK4OcnqisaQfhT2vQMIv6syFUc/DgLntOiA0JxkUJElq9YROR0VamtpKUD2eIDqaqtzcmms0XbuiCQ7m4u13Ed+hCwdMnPgjR0f2hTLQgVWZKX087Jnf34F++m4EObbAyNL/grBXIHGXDAhGJIOCJEmtiigvpywp6bL1CWIoi41FV6yO/sbcHAtfX2xGjKDKuzuJdm4cMXXiz7OlRGYUUJ6rg1zwcIQhPk7066oGg4DOHTBrQTMR2rXTR9QWhMRfwdIRRv9DDQgWHW78WsngZFCQJKnF0hUXUxoXX7O8cWlMDOUJiYgKdWdExcoKrb8/dnffjUVgIPnu3hxT7DmSUcTh1FySE4uBcjSmZ+npbsesId3o52lPP08HXGzl0sctzunDagtC0m/6gPACDPibDAhGZpTpkYqizAeWAq7ASWCREGLfda6fDiwD/IBC4FdgiRDizHVeI6dHSlIrUpmXR2l0dK3piOWpqaD/GWXq4IA2MBBtUCAWgYFoAgJJMrfnr9MFHEnN40hqrtqNANhqzejfzZHQbo707+ZAT3c7LMzkKofXcjrnHAAezh05U6z+WO1s3bkZCzgMYash6XewcoIhT0D/v4GFTfPV0EpdyC0FoIPjpeDb6tdRUBRlKvApMB/4Q//3bCBICJF2leuHAnuBJcD3QCdgPZAnhBh9nefIoCBJLZAQgsrMzNrjCWJiqDxzKfebdXFFGxSkBoPAILRBgVQ6OhORXsCR1FyOpOZx7FQeF8oqAehip6W/lxoMBnRzpLuLHHTYKqT9qQaE5N36gPAk9H9UBoSb1BaCwp9AhBDib5cdSwC+EUKsuMr1S4AnhBBdLzs2G3hLCHHNf00yKEiS8YmqKspTU9WuA30oKIuJoaqgQL3AxASNl5c+EOhbCwICMHNwIP9iOUdP5XE4NZe/UvOISM+nQj8dwa+TDf27Oap/vBxxs5fLH9+ML/fvAWDq0Fv5X8r/ALjD646me2DaIX1ACAMrZxj6JIQ+IgNCIyT8dRaA7qGdao616gWXFEXRACHAmitO/QIMucbL9gOrFEW5C/gJcAIeALY3VZ2SJDWcrqyMsviEmrEEZdExlMbHI/RhXdFosPDzo8Ntt6ENUoOBhb8/Jpbqm3xGfgl/pOZyOCydv1IjiTt7AQBzU4WebnbMGeZF/66OhHZzkLMRDOydneqP06lDb+XLuC+BJgoKpw6qASFlD1h3hLEvQf9HQGN949dKVxW1R53ue3lQMLTmHszoDJgCZ684fhYYc7UXCCEOKooyDfgMsESteRcwswnrlCTpOqouXKi1NkFpTAxlyclQqXYFmNjYoA0IwGHKZCz03QcW3l4o5uaA2v1wOreEQ1E5HEo+z6Hk82QWqH2tNhZm9OvqwF29XQnt5kgfD3u05nJ8Qat26oA+IOxVA8JtKyF0jgwIrYSxZj1c2d+hXOWYekJRgoA3gZeAnagDIF8H3gMevsr1c4G5gGWVfqU1SZIar/LcuUvjCfSLF1WcPl1z3rSjM9rAQGxGjqzpPjB3d0cxuTTVUAhBel4JB5PO1AkGzjYaBno5MbebA6HdHAl0tcVUji9oG1L3qwEhdZ8+ILysDwhWxq5MaoDmDgo5QBVw5XBaF+q2MlRbARwWQryu/zhCUZRiYJ+iKM8KIU5ffrEQ4n3gfUVRepqamkYYsHZJatOEEFScPn3ZAEM1FFSdy6m5xtzTE21QEPaTJtV0H5h17HjV+53OvchBfSj4MzmXjHy1C8LJWsMgbyf+7u3IYB8nfDraoCgyGLQpqX+o0xxT94G1C9y+CkJmy4DQSjVrUBBClCuKchQYC3x92amxwNZrvMwKNVxcrvpj+dNFki7z9ttv895775GamgpAjx49eO655xg/fnyt60RFBWXJyfpQEK2OJ4iNRVdUpF5gaoqFjw82Q4ai7aHOPrAICMC0w7Xns5/OvahvLcjlUPL5mmDgaK1hkLcjj93qzSBvJ3xdZDBos1L2qds9p+4Dm04yILQRxpoeuRl1WuR+4DHgEaCHEOKUoiifAAghHtZfPwv4AHiSS10PawETIUTIdZ4jZz1I7c62bdvQaDR0794dnU7Hpk2beO2119j/2Wd0r6q6NJ4gPh5RXg6AotWi9ffHQt9CoA0MwsKvOyYWFtd9VnrexZpQcCj5POl5tYPBIG8nBnk70V0GgxYvp1CdheJsa0deaR4ADlqH+t8gZZ/agnDqDzUgDFsMIbPAXM5GaWolRer3saXNpQG+rX56JNQsuLQM9U0/ClgshNirPxcGIIQYcdn1T6AGCi+gANgNLBNCpF/nGTIoSO1OVX5+nfUJ+v1vB4s7dmSqvQOmdnb6QBBUM55A060biumNBwtm5JdwKOl8TXdCdTBwsDKvCQXVwUCuYdAOCKG2HIS9Aqf2g01nfUCYKQOCkbWJoNAcZFCQ2jIhBJVnzlwRCqKpzMyquUbp1InfNOYs3r2bve+8Q8j48Zi5utb7t/uCixUcSMphb0IO+xNzSMu9CKjBYKCXE4N9ZDBoKz7+fRcAs0aN5fvE7wG4x/eeq18shDp7IewVSDugBoThT0G/h2VAMIKYA+r3fOAQ15pjrXodBUmSGk7odJSnnlLHElwWDKry1CZiFAVNt25Y9emLdvp0EjUaRs+fT2n0+giVAAAgAElEQVRiAjY2Nny3bRuDrhijcDXllTqOpeXxR0IO+xJziEzPRyegg4UZg3ycmDO0G4N8nPBz6SCDQRvzcdivgBoUtiVuA64SFIRQ1z8IewXSDkIHVxj3uj4gyH0zjCX2YN2gYGgyKEhSC6IrL6csIaFWICiNi0NcVH+bx9wci+6+2IwedWl5Y38/TKwvzUfvUF7OiSFDyM/PZ+vWrcycOZOwsDCCg4NrPUsIQWJ2EfsScvgjUV3P4GJ5FaYmCn087HliVHeGd3emt4c95nJXxfZLCHUFxT2v6gNCF7hzDfSdIQNCOyGDgiQZSVVRMWVxsbXWJyhLSgL9zogmVlZYBAZif999l5Y39vFB0Vx/VUKNRoOvry8AoaGhHDlyhP/85z9s2LCBnKIy9ifmqOEgIYczhepaBl7O1kzq587w7s4M8nHCVmvetJ+81PIJoe7BEPYqnD4kA0I7JoOCJDWDyvPna40lKIuOoTwt7dLOiE5O6qJFw4fXrE9g7ulZa9GixiitqCK3qIyc5GzGrdtHTFYhAPZW5gz1cWZYd2eG+Trj4Sinr0mXKcmHj26H03+CrRuMf0MNCGbXnwkjtU0yKEiSAQkhqMjIuNRCoA8HldnZNdeYu7mhDQrE9u6J+h0SgzBz6WiQKYRPP/00QQNHkF5uxYHYdA7u2kben/txnfoiAZZmLL3dn+HdnenRxU6ufijVJoDE3yArHMouwEUNjP839H1IBoR2Ts56kKRGEpWVlKek1JmOqCtUf2vHxAQLH++avQ7UMQUBmNrZGbSO3OJywuKyCYs7x+ZXniI/8QiUlqibMDk54zoolNf+byn3Dx5CXEY68957q849npv0AGN69+VEShKLNr5f5/yq6TMZEhDEgdhonvl8U53za2fPpY+XD7+GH2fl1i/qnH9v3hP4u7nz45E/eePHb+uc3/zkEjycO/Ll/j01GxRd7pslz+Bsa8fHv++qGXh3ue3P/hMrCy3r//cTXx3YV+d82L9eBWDNtq38dPRwrXOWGg07nnsJgJe+/pzfIsNrnXey6cDWZc8BsOLTjRyMj6113t3JmU8XLgVg0UfvcSI1udZ5P1c33v/7kwDMfedN4rMyap3v082btXPmAfDQutdJP59T6/xgvwBWPzQbgEmvreR80YVa50f37M3zk6cDMG7l85To18eoNiFkAEvungTAiH88zZWmDB7GrK5msO8NrLKOUGLrDsOexLLfLH4N28fOnTtxdXWlvLyc8vJyKioqKC8vZ/jw4UyYMKHO/aTmVVGurj9orrk0xVnOepAkI9CVllIWH18rEJTFxSHKygBQLCyw8PfHdty4S+MJ/Pww0Rq+L1cIQfzZIn6LPcvvMdkcS8vjQmECHbRm3LfwHxyK3IadpTkas0vdFhZmclMl6QoCKMmDA29i9edhsPOACWux7PMgmKnjYA4cOMCaNWvo0qULw4cPx9fXFwsLC6ytrbEzcOCVGufygNBUZIuCJF2hqrCw9niCmBjKklNAv8mYia0t2oCAmkCgDQpC4+WFYtZ0ubussopDybn8HnOW32KzaxY7CnazZVRAJz7f9R42FmaEvfRqk9UgtRFCQOKv6jTHjL/AzhNu+T/oPR3MNHwRq7YIPRDwAADz5s3jyJEjFBcXY29vz4oVK5g4cSImNzl+RjKMyDB13cGeI9xrjskWBUkyECEEldnn6qxPUJF+acFPMxcXdZDhmDH6YBCEuZtbsyxJnH2hlLDYc/wWe5Z9CTlcLK9Ca27CMF9n5o/wZVSAC53t1BaLH/bJb2XpBoSAhF2w5xXIOAr2nnDXupqAUG1n6k7gUlB46623uPXWW5k0aRIBAQGsXLmSZ599lqeffppp06Zhbi5nyBhT4lF1/NPlQcHQ5E8XqV0QOh0VaWl1xhNUnT9fc42ma1e0PYOxnzKlprXAzMmp+WoUgpOZhfwWk83vsWcJT1fX33e103JvXzfGBHZisI8TWnPZjSA1gBCQ8IvagpB5TA0IE9+C3tPA9MZv8hqNhm+++Yb+/fuzadMmjhw5wq+//sqqVav4xz/+wdKlS5kzZw6WlnJVxrZKBgWpzRHl5ZQlJdUeTxAbi664WL3AzAwLX19sbrnl0niCgABMbWyavdaS8ir2J+bwW2w2u2OzOVNYiqJAHw97ltzmx6iATgS6dpCbKkkNJwTE71RbEDKPg33XBgWEy7m5ufH555/zwAMPcOLECcaOHcvYsWM5dOgQq1ev5qWXXmLhwoXMnz9fjl1og2RQkFo13cWLlMbGURpzaTpiWUICQr9okWJlhdbfH7u771YDQWAgFt27Y3KDRYuaUlZBib7VIJv9iTmUVeqw1phyi19HRgW4MMLfhY4d5HQ0qZGEgPj/qS0IWSfAoRtM/C/0fqDBAeFyI0aMYMOGDZhetoHYoEGD2LZtG1FRUbz66qt4e3szd+5cFi1aRKdOnQzwyUgtgQwKUqtRmZdHaXTt8QTlqamXFi2yt0cbFIjjzIdrpiRqunrWa2fEplQ9S+HnyCx+jT5LtH7RIw9HS6YN8GRMYCf6eznc1MyEb5Y8Y6hypdZKCIjbobYgZIWrAeHut6HX1JsKCJcbf409Q4KDg9m8eTMpKSmsWbOGgIAApk+fztKlS+nWrZtBni0Zj5z1ILU4Qggqs7IujSfQL15UeeZMzTVmXVxrbZWsDQzErHPnFtVEn5h9gR/Ds/g5MovE7CJMFAjt6sjoQBdGB7rg09GmRdUrtVJCQNx2tQXhTAQ4eMEtS6HXFIMFhIY6c+YMa9eu5YMPPuDOO+9k+fLl9OjRwyi1tEdym+l6kkGhdRBVVZSnptZZ3riqQB3Ih4kJGi8v/WJFl8YTmDk4GLfwa0g6V8TPEVn8HJFF3NkLKAoM6ObIhN5duKNH5ybrUrh8m2CpnRACYn9WN2uqDgi3LoOeU8C0ZTQW5+fns379etatW8fgwYNZsWIFAwcONHZZbZ4MCvUkg0LLoysroyw+odZ4gtL4eIT+/5Fibo6Fn1/NWAJtYCBaf39MrFr2PgSpOcX8HJnFTxFZxGQVoijQv6sj43u5Mi64My62Tb+BTvWKe9UrEEptmE4HcdUBIRIcveGWZdBzskECwsdRHwMwK3jWTd+r2sWLF/noo494/fXX8fHxYcWKFYwZM0a2qBnA8V/SAOh7m2fNMbmOgtQqVBUVqWMJLus+KEtOhspKAExsbNAGBGA/+X61CyEoEAtvb5RWMic77fxFforM5OeILE5mqmMOQro68I8JQdzZ07VmfQNJMhidDmJ/gj2vwdlIcPSBe9+D4PsN2oKwJ30PYNigYGVlxYIFC5g3bx6ff/45CxcuxMrKihUrVnDvvffKxZtuQmqkuuT35UHB0GRQkG5a5blzddYnqEhLqzlv2tFZXbRo5Mia7gNzd/eb3hmxuZ3Ovcj2SHXMQYR+jYM+HvY8Nz6QO3u60sVeziOXmoBOB7E/6gNCFDj5wr3vQ/CkFtPFUF/m5ubMnDmTGTNmsG3bNlavXl2zeNODDz6IxoizkaRra13/yiSjEkJQcfp0rfEEpTExVJ27tImNuYcH2sBA7O+7F22g2oVg7uJixKpvTmZ+Cdv13QonTucD0NvdjmfuDGBcsKvcnllqOjodxPygBoTsk2pAuO8DNSCYtO5Ft0xMTLj33nu55557+P3331m9ejUvvPACS5Ys4dFHH8WqhXc3tjcyKEhXJSoqKEtOqb28cWwsugv6netMTbHw8cFmyNBaYwpMO3QwbuEGcKagVB8OMjmWpoaDYDdbnr4jgPE9XfF0kj/EpCak00HMNn1AiAan7nDfhxB8X6sPCFdSFIXRo0czevRoDh8+zOrVq3n55Zd54oknePzxx3FooYOW2xsZFCR0JSWUxcXV6j4oi49H6LerVbRatP7+2E4Yr599EISFX3dMLNrOokBFZZX8GJ7Jt8fSOZKaB0Cgqy1Lb/fnzp6ueDlbG7nC69v+7D+NXYJ0s3Q6iP5eDQjnYsDZzygBwcLMON/XAwYM4LvvviM6OppXX30VX19fHnnkERYvXoyrq6tRamoNzDRN34UrZz20M1X5+XXGE5SnpKg/pAATO7taUxG1gYHqzohGXrSoKQghCE8v4IvDafwQnsnF8ip8XWyY2LsL43u54tOx+Zd0ltohXZU+ILyuDwj+6jTHHve2uRaEhjh16hRr1qzh008/ZerUqSxbtgxvb29jl9UqyOmR9dTeg4IQgsqzZ/WB4NJ0xIrMzJprzDp3rhMKzLp0afNTlgpKKvj+eAZbDqcRe+YCluamTOjlygMDPOnnad8qP//1//sJgPl3TDByJVK96arg5Hew93U4FysDwjVkZ2ezbt063n33XW6//XaWL19Or169jF1WiyaDQj21p6AgdDrKU0/V2S65Kk9tQkdR1J0Rg9RtkqvHE5g5Ohq38GYkhOBIah5fHE7j58gsyip1BLvZ8kB/Tyb26YKttnVMy7wWuY5CK1IdEPa8Bjlx0DFADQhB97SIgPBu+LsAPNb7MSNXUltBQQHvvPMOa9eupX///qxYsYIhQ4YYuyyjO/JzCgD9x3vVHJPrKLRzorycssREdVnj6u6DuDjExYvqBebmWHT3xWbUyJr1CbT+/phYt+w+9qaSW1zOt8fS2XI4jaRzxdhYmHF/iDvTBngS7CZ3uZOaka4Kor6Fva9BTjx0DIT7N+oDQsuZKvxn1p9AywsKdnZ2LF++nIULF7Jx40YefPBBPD09WbFiBbfffnurbAk0hPRY9RfCy4OCocmg0IJVFRVTFhdbe7vkxETQ74xoYmWFRWAg9vfdd2l5Yx8flHY+F1mnExxMPs+Ww2n8cvIs5VU6+nra89qkXkzo7YqVRv6zl5qRrgqitqotCOcTwCUIJn8MgXe3qIDQWlhaWjJ//nzmzp3LF198wZIlS3jmmWdYvnw5kyZNqrW7pWQYbe4npqIoHkKI05cfKy0tpbCwEJcWPJ+/8vz5OvsdlKelXdoZ0dFRXbRo1sya9Qk0Xbu2ukWLmlJ2YSlfH03nyyOnScu9iJ2lOdMHejJtgCf+nVv/tE2plamqVAPC3tf1AaEHTN4EgRNlQDAAMzMzHnroIaZPn85PP/3E6tWree6551i2bBkzZszAog3NyjK2NhcUgF2KoswELlYfWL58OQ4ODrzwwgtGLEslhKAiI7P2eILoaCqzs2uuMXdzQxsUiO3dE/UtBUGYubi026a166nSCfbGn2PL4TR+i82mSicY6OXIU2P9uCO4M1pz+duF1MyqKiHqG31ASFQDwpRPIOAuGRCagImJCRMnTuSuu+5iz549vPLKK2g0Gh5++GFjl9ZmtMWgsBZ4AXgaICsri08++YTo6OhmL0RUVlKeklJ7OmJsLLrLdka08PHGatDAS1smBwZgaif7zm8kI7+Er46c5uu/TpNZUIqTtYZHh3kxtb8H3u1wWqMcxNgCVFVC5NdqQMhNgk7BMGUzBExoVQHB3sLe2CU0iqIojBgxghEjRhi7lGaltWn6gdhtbtaDoigWQAKwXKvVfjZv3jxMTEz497//3aTPVXdGjKf0ZPSl8QRxcYiyMrUuCwt1Z8TLpiJa+PlhYin3B6gvnU7we2w2n/15irD4cwAM83Vm2gBPxgR2QmPWen4YS21IVSVEfqUPCMnQqSeMeBr8x7eqgCC1HXJ6ZD0oivIY8KCFhcUwKysroqOj6dy5s8HuX1VYSGlMbK3ug7LkZKiqAsCkQ4da6xNYBOp3RjRriw04Ta9KJ/gpIpO3dycSf7aITrYWTAn1YEqoh9xrQW/Ntq0ALLl7kpEraUeqA8Ke1yAvBTr3hFuXg/+dMiBIRiWnR9bPRuCFiooKZs2a1eiQIISgMvtcnfUJKtLTa64x69gRbVAQNmNG14wnMHdzk+MJDKCiSsd3xzN4JyyJlJxifF1sWDu1DxN6uWJmKn8QX+6no4cBGRSaRVUlRHyptiBUB4QHPlcDQhv4vl97dC0Ai0IWGbkSqT4OfpcEwOB7fZrsGW0yKAghyhRF+UCn0z2/bNmy+r1Gp1N3RoyJqdV9UHX+fM015l090QYHYz958qWVDJ2dm+rTaLdKK6r4+mg674YlkZFfQpCrLe882I/be3TGxKT1/yCWWqmqissCQip07gUPbAH/cW0iIFQLPxdu7BKkBjiTXNDkz2iTQUHvJXczs+cvTH8Qy8WLsLvrrpoToqKCsqSk2tMRY2LRFRerF5iZYeHri80tt1zqPggIwNSm/Q2Sa04Xyyv5/M803t+bTPaFMvp62vPSPT0Y6S9nfEhGVFUB4V+oASH/FLj2hmlfgN8dbSogSA135513snXrViwNMNbMkPcyNKMEBUVR5gNLAVfgJLBICLHvOtdrgOeAGUAX4CywRgjx5rVeI4SoCNZaUpmZSdazz1G0/wCKmSll0TGUJSQg9IsWKZaWaP39sbt7Ys3yxhbdu2PSzhctak6FpRVsPniKDX+kkFtczmBvJ9ZO7cNgHycZECTjqaqA8C2wd40+IPSBca+B3+0yIEgAbN++vUXey9DqHRQURXkLOAFEAFFCiEZtoqAoylRgHTAf+EP/9w5FUYKEEGnXeNkWwAOYizqjoRNQ79glyssp/P57TO3t0QYF4vDwjJrljTVdu7bJnRFbg7zicjbuT2HjgVQulFYywr8jC0b6Etqt/exBYSiWMtgaTlUFnPgc9q2B/DTo0hfufB263yYDglTjjTfeIDs7m1dfvTQ1edu2bdx9990GuVdL0pAWhf8BvYD/A4L1v+mdRA0OEUKIH+t5n6eAj4UQH+g/fkJRlDuAvwMrrrxYUZTbgDGAjxAiR384tQF1V9+I7gcPyN9QW4DsC6Vs2JfCp4dOUVxexe09OrFgZHd6usv1Ixprx3MvGbuE1q+yHMI/h31v6ANCP7jzDeg+tl0FhE7WnYxdQqsQFRXFqFGjaj4+efIku3fvblRQuPJeDWHj0PQrUNY7KAghfgZ+rv5Yv15BMNAbGAXcMCjouxBCgDVXnPoFuNY2YPcAR4CnFEV5GCgBdgDPCCGK6lu/maurDAlGlplfwvt7k9lyOI2KKh139e7C/BG+cnllybiqA8LeN6AgDdxCYPy/wXdMuwoI1V4Z/oqxS2gVoqKiWLhwYc3Hv/32G48//rhB7tUQY+f0aNTrGqLBYxQURdECs4COQDSwWQhRUc+XOwOmqGMMLncWtdXgaryBYUAZMAmwB95CHatw/1Xqm4vaRUEPC616TKvFZbGc6mMsaecv8s6eRL45mo4QcF8/N/4+whcv5/a5o2VTeOnrzwF4fvJ0I1fSilSWw4nP1BaEgtPgFgoT/gO+o9tlQJDqTwhBfHw8gYGBNccsLCzo3r27Qe7V0jRmMOOXqOMEYoFbgH8qijJZCBHTgHtcucqTcpVj1Uz056YLIQoAFEVZAOxUFKWTEKJW6BBCvA+8DxBsaSnMunTB5YpZD1LzSMy+wPrdSWwLz8TUROGB/p7Mu9Ubdwe5SJKh/RapTmmTQaEeKsvhxKew799qQHDvD3etBR8ZEABePaz2kz894GkjV9JyJScn4+rqWmvjqXnz5tW5Ljg4+Kqv37FjBx4eHte8V0Ps+yoegOFT/K57naIotwBLUFv1uwCzhRAf1+cZjQkKXkKImk4YRVF6ob4xD6/Ha3OAKuDKFZBcqNvKUC0LyKgOCXrVocTzOq9D26MH3X//rR5lSYZ0MrOA9buT2B6VhdbMlDlDu/G34d642GqNXZrUnlWWwXF9QChMB/cBcNc68BklA8JlYnNjjV1CixcVFUXPnj3rdZ2h7nUtOafr3QNvA0QBn+j/1Ftjlre7oA8HAAghIoB6jUITQpQDR4GxV5waCxy4xsv2A10URbl8EYPq6HSqXhVLzeJ8URmLvzzB+Df/YG/8OR4f4cv+5aN4dnyQDAmS8VSWwZEP4c2+8PNTYOcGM76DR36R3QxtVHx8PGPHjkWr1eLj48OOHTuwsLDgt98M84tjVFTUNVsLjHmv6xFCbBdCPCOE+AbQNeS1jWlRmAt8qSjKLiASCKBhsxD+DWxWFOUwagh4DLUZ5F0ARVE+ARBCVO8R+jnwPLBRUZQXUccorAO+EUJkIxmdEIKvj6azansMxWWVPD7Sh7m3+GBn2fS7mknSNVWWwbFP4I//QGEGeAyCu98G7xEyHLRhCQkJ9O/fn9mzZ/POO+8QFxfHo48+Snl5Ob1796517apVq1i1atV177djxw6GD6/dYH7y5El++eUXNm7cCECvXr344YcfGlVvQ+51tXqrKtT3fNMXTGrqNbQGBwUhxElFUUJQZyMEAomo2zrX9/VfKorihLqAkitqU8idQojq1gHPK64vUhRlDOoAxiNAHvA9sLyhtUuGl3yuiGe+i+RQci6hXR1YfV9PuneSsxiam5ON/JrXqCiF45tlQGinFixYwMSJE1m7Vt2zwtfXlzvuuIOdO3fifMWS+4899hhTpky57v3c3NzqHPv8888NVm9D7nW1en/ZcBKA2x5RZz9crd6b1ZhZD32Ae4HzwF4gsqGLLwkh1gPrr3FuxFWOxQG3NbRWqemUV+p4d08S/92diIWZCS/fG8y0/p5yLwYj2brsOWOXYHwVpZdaEC5kgudguGc9eN0qA0IDdLXtauwSGu306dP88ssvHD16tNZxjUZTpzUBwNHREUfH1rPA29XqPd2jElADUVNpTNfDD8Bq1GmOU4GXFUXpKIRouiqlFuVIai4rvo0kMbuI8b1ceWGCHIMgGVFFKRzbpA8IWeA5BO59F7xukQGhEV4c8qKxS2i0Y8eOYWpqWqfPPyIighEjRtS5vrFdD825Jo8QlyYEXrfex9S/WkTXA5AuhHjH4JVILV7BxQpe+V8sWw6n4WZvycZZ/RkZ4GLssiRgxadq/+bqh2YbuZJmVFECRzfB/rVqQOg6FO57H7oNlwGhnTIxMUGn01FRUYFGv6z5/v37OXDgAIsW1V1Lp7FdD5e/eTenxtZ7sxoTFHYpivKoEOJDg1cjtUhCCH6KyOKfP0aTW1zG34Z7sXisH1aatrz5aOtyML4dTWmrKIGjH8Mfa6HoDHQdBvd9AF71maEt3ciLB15U/26FLQshISFoNBqWL1/O4sWLiYyM5Omn1fUgjN31YIjdIa9W7+5P1e/9kQ8FXPe1+pmD1S3/JoCnfihB7nX2WQIaFxT6AjMURXkWdXBhOA3b60FqRU7nXuT5bVGExZ2jp5sdH8/uT7Cb3JNBMoKKEvhro9qCUHRWbTmY9KEMCAZ2qrD1zjrv0qULGzZsYMWKFWzcuJGxY8cyf/58nnnmmSbtw6+PptodMv/sxfpeGgrsvuzjf+r/bEJdbfmaGjPrYSLUpJNg/Z8x1GOvB6n1qKzSsXF/Kv/eFY+iwPMTgpg5uCtmpo1ZekOSbkL5RTi6EfavuxQQ7v8Iug0zdmVSC/Tggw/y4IMP1nz84osv0qtXL0xMjPOza926dbz++us1My7Gjh3L66+/3ux1CCHCUFdBbrDG7vUwFigFooUQhxrzYKnlikjPZ8W3kZzMLGR0gAv/uicYN/vGN5dJUqOUX4S/PlIDQnG2Ojjx/o3QbaixK5NakYiIiKt2OzSXqKgo1q5dy/3319maqNVoTNfDd0Ay6oyH84qiOKN2PYw0aGVSsysuq+SNX+L5+EAKzjYWrH+wH+OCO8tdN1sBdyfnG1/UWpQXXxYQzqnTG0dsgq7X2mBWkq4tPDycZcuWGe35kZGRLF261GjPN4TGBIUuQohxiqIMFUL0URRlHiA3MG/lfo0+yz+2RZFZUMpDgzxZdkcAtlq5smJr8enC1v2DCFADwpENcOBNNSB4j4Bbl0PXwcaurF0JcLz+oLjWJikpyWjPFkIQFxfH5MmTURSFHj168Nlnnxn0Gc4eNje+6CY1JihUL65UriiKRgjxnqIoYcC/DFeW1FzOFpby4g8n2RF1Br9ONmydPpiQrq1nARKpDagOCPvXwcUc8B4JI5aD5yBjV9YuyV0jDSc1NRVfX1+OHDnSZM+40a6RhtCYoLBOURRH4GvgXUVRDnLFsstSy6fTCT47nMZrO2Ipq9Kx9HZ//jbcG42ZHKzYGi366D0A1s6pu9Vti1VWpG7WdOAtGRCkNikqKoqgoCBjl3HTGjPrYYv+P19XFOVh1FkPd1/nJVILE3fmAiu+jeBYWj5DfJx4+d6eeDlbG7ss6SacSE02dgn1V1YERz7QB4Tz6jbPty4Hz4HGrkwClu9Tt9F5ZfgrRq6k9YuMjGzyoLDrI3Wvh7FzejTZM25qxRwhRIP2tJaMb+fJMzy55ThWGlPemNyb+/q5ycGKUvMouwCH9QGhJBd8RqstCB4DjF2ZdJmzxWeNXUKbERUVxbRp05r0GUV5ZU16f7j5TaGiUDeFOmfowiTD23zoFC9si6Knuz0fPhxKxw4Wxi5Jag/KLsDh9+HAf9WA4DtGbUHw6G/syiSpSRlyl0ljkptCtQNCCNb8Esfbu5MYHeDCW9P7yuWXpaZXWqgGhIP/hZI88B2rtiC4hxq7MkmSGqAx7xan5aZQrUd5pY7l30bw7bEMpg3w4KW7g+Xqim2Qn6vhN4JptNJCOPweHHxbDQjdb1NbENxDjF2ZJEmNUO+goCjKOtR9HfYoivKIEGJD05UlGUJRWSV///Qo+xJyeGqsH0+M8pXjEdqo9//+pLFLUAPCn++pLQil+dD9dhjxNLjJgNCa9O5ovFUMpYbr7N30e+8o9d0uU1GU8UAv1I0lAlFDxl9AJOo4hZ+aqsjGCg0NFX/99ZexyzCK7MJSZn98hNgzF1h9X0+mhHoYuySprSot0AeEt9WA4HcH3LqsxQYEQ+ziJ0ktmaIoR4UQBuvjq3eLghDiZ+BnRVGOCSGC9Hs+9AB6AwuBFhcU2qvE7CJmfnSYvIvlfDgzlJH+LsYuSWpic995E2jmloXSAjj0Lp0GPzUAACAASURBVBx6W/1vv3H6gNCv+WpohKbaxU+S2qqGdD1MRF0zwVpRFE/9/tVHgaOKoixsqgKlhjl6KpdHNv2FmYnCF3MH0cvd3tglSc0gPiuj+R5Wkq+2IFQHBP871YDQpW/z1dBIb7zxBtnZ2bz66qvGLqXFWrx7MQD/GfkfI1ci1ceO9yIBGDevZ5M9oyGDGcOBzoAzsElRlG5AFpAJVBi8MqnBqtdI6GJvyabZA/B0sjJ2SVJbUpIPf74LB9dDWQH4j9cHhD7GrqzeoqKiGDVqlLHLaNHyy/KNXYLUAKVFTf/225Cuh1PA+4qixAoh9gIoiuIGeADRTVSfVE+bD6bywg8n6eVuz4aZoTjZyDUSJAMpyYdD76h/ygogYIIaEFxb36C3qKgoFi6UDaCS1BCNmScXqyjKPxVFeVYIkSGEOCSEKDR4ZVK9CCF49X+xPL/tJKMCOrHlb4NkSJAMoyQPdq+CtT1hzyvgNRzm7YMHPmuVIUEIQXx8PIGBgcYupcaIESNYsGDBTd1j1qxZTJgwwUAVNf19m9KECROYNWuWscuopT7/j1v617ox6yh8DXwCLEZdbCkYmCWEWGLQyqQbKq/UsXxrBN8ez2D6QE/+NbGHXCOhnerTzdtwN7uYq7Ye/PkulBVC4F1w69PQuen6QJtDcnIyrq6uWPw/e/cdXUW1PXD8u1OBJARCqAlIJ5RQpIMUBRQLiiL2J/D00ZSigIKCICL8KCo8QQV8DxHUR7FhQwENRXpPaNJJQiihBgKp5/fH3MRUyA25uQnZn7VmwZ05M2ffIYvZOXOK5+2VSM+YMYOcjl4rCNft3bs38+fPT/1cpkwZWrVqxbRp0wgKur2WuL5d5CZRKG6M+Y+IvAxgjAkTEX3p5wCTJk3im2++4cCBA3h6etKqVSsmTZpEgwYNiLmewICF21l3KJrh99bmpbt1joSiLE9WjYw9Dxs/skYyxMdA3YdtCUKDW792ARAWFkZwcOFOdrLi65u34+hbVmzpkOum1blzZxYsWADAyZMnGTFiBI8++ij79u1zWJ23q8Cg0g6vIze/fp4WkUAgbapZLI/iUWmEhIQwcOBA1q9fz++//46bmxudO3fmwLGTPDl7IxuOnGPq4w15+Z5amiSo3Is9D6vegekNYc1UqHkP9P8TnlyQb0lCt27dePLJJ1M/b968mRIlSnD16tU8qyMsLIwGDQpe0pOYmMiQIUMoXbo0pUuXZsSIESQnJ6ceN8YwZcoUatSoQfHixQkODmbhwoWpx3PSbN2xY0cGDBjAsGHD8PPzo2zZssyYMYO4uDheeuklSpUqRZUqVViwYAH9G/Wnf6P+ma7bsWNHBg4cyBtvvIG/vz/lypVj+PDh6WLNKU9PTypUqECFChW48847eeWVV9i/fz/Xrl1LLRMXF8fQoUMpX748xYoVo1WrVqxbty71eGxsLL1798bb25vy5cszceLETPXc7N7d7HuFhIQgIpm2jh07pp6/fPly2rVrR+nSpfHz8+O+++7LlPAkJyfnyX3LSvMHq9H8wWp5cq3s5CZReAX4DCgnIk+LyDxgf55GpQD49ddf6dOnDw0aNCA4OJgFCxZw9uxZuo/9L8fOXeW/vZvTUydSUsBzM6by3Iyp9p0Uex5Wjbf6IKydBjU7wYD18MTn+d6KEBAQQGTk30M8W7Rogbe3NytXrkxXbuLEiXh7e99wW7t2bZZ17Nmzhw8//JCqVatStWpVHn744WzjuZV6xo0bR506dXj66ae5ePEiy5cvp0mTJrRp04aNGzdmKv/FF1+QnJzMhg0bmD17NnPmzGH69Ompx0ePHs1//vMfZs2axd69exk1ahT9+vXjp59+uuE9zaoeHx8fNm3axMiRIxk6dCjdu3endu3abN26lV69evHiiy9y8uTJG17Dzc2N9evXM3PmTKZPn86iRYvsiiOjmJgYFi1aRHBwcLpJsF577TUWLVrEf//7X3bs2EFwcDBdu3YlKioKgOHDh7NixQq+/vprVq1axY4dO1izZk26a+f03mX3vdq0aUNUVFTqtnXrVkqVKpUuUbh69SpDhw5l8+bNhISE4OvrS7du3YiPj3fofctXxhi7N8ADeAJ4B3gJKJGb6zh6a9q0qbmd/LJpjwFMnRc/MLvDLzo7HFWAdBjzmukw5rWcFb4SbcyKcca8W8mYsb7GLO5lzKk9Do3vZsaPH2/uuOOOdPuqVq1q5s6dm27fuXPnzMGDB2+4xcbG3nI8ua1nxYoVpl+/fiYmJsZMmTLF3H333aZhw4Zm79695ujRo6Zdu3YmOTk5tXyHDh1MrVq10u175513TEBAgDHGmCtXrphixYqZNWvWpKtnyJAh5v777zfGGNOrVy/z4IMP3vD7dOjQwbRq1Sr1c3JysvH39zfdunVL3RcfH2/c3d1NlzFdTL8V/TJdN+M1jDGmc+fO5oUXXrhh3Rn16tXLuLq6Gi8vL+Pl5WUAU7lyZRMaGppa5sqVK8bd3d3Mnz8/dV9iYqKpXr26efPNN01MTIzx8PAwCxcuTD0eExNjfH19Ta9evVKvcbN7Z8/3io2NNU2bNjWPPvpoun+vjK5cuWJcXFzM2rVrc3z9nPwbZmfZv3eYZf/ekW4fsNXk4bPUngmXyhtjTtuSi3hgsW1T+WB52Cl69u6Hd6WaLJ/4AlXL+jg7JFXYXD0HGz6ETXMgIRbqP2oNcyzn/FEAAQEBnDx5EmMMIsLBgwc5fvw47dq1S1fOz88PPz8/h8eT23p27NhBr1698Pb2ZsSIEXz33XcMHjw4daRFUFAQ0dHRlC1bNvWcVq1apXt12Lp1a8aMGcPly5c5cOAA169fp2vXrunKJCQkULVqVbtia9iwYerfRYRy5cql67Ph7u5O6dKliTkfQ1xi3E2vAVCpUiXOnDljVxwA7du3Z86cOQCcP3+ejz76iHvvvZdNmzZRuXJlDh8+TEJCAm3btk09x9XVldatW7N3714OHz5MfHw8rVu3Tj3u7e2d7vvs3bs3x/fuZt/LGEPv3r1JSkpiwYIF6a53+PBhxowZw6ZNmzh79izJyckkJydz4sSJHF//ViTG580rjBuxpzNjlIicBvZhre8QlvKnMeaKI4JTls83HGPQkKEkntzHn+vWaZKg7HM1GtZ/CJvnWglCg8eg/WtQruD0MA8ICCAhIYGzZ89StmxZhg4dSrdu3ahTp066chMnTszyXXRav/zyS6YE42Z9eEyG3v25radOnTosX76c1q1bs3r1auLi4nj//fd54IEHKFmyJPv376dMmTI3vG5aKe+xf/jhB6pUqZLumLu7e46vk1V5Eclyn0nOfqRDVuVz8669RIkS1KxZM/Vz06ZN8fX1Zc6cObzzzjup/x5Z/buJSI5GY9hz7272vcaPH8+aNWvYsmULXl5e6cp269aNgIAAZs+eTUBAAG5ubtSrVy/dq4e8um/OYk+iMB1oD6wEjmEtEPUI0EBEjDHGsb0piqDkZMOUXw8w8a2RJB5cx4Y1q2ncoOD8564KuKvRsP7fsPlTLl+5ygdHatDy0QF0ffxfzo4sk4AAa5nsiIgIZs2axZ49e9iyZUumcv379+eJJ57I0bXSysmDJS/q6datGz///DNVqlShfPnyLF26lE2bNtGiRQvc3Nx4//33cXFJ3zVs06ZNqS0pABs3bqRSpUqULFmSevXq4enpyfHjx2/rGSVFBBcXF2JjYwGoWbMmHh4erFu3jurVraG/SUlJbNiwgWeeeYaaNWvi7u7Oxo0bU49fvXqVsLAwatSoAZBn927p0qVMmTKFP/74g8DAwHTHzp07x759+5g1axZ33303ANu3bycxMTHX9RVE9szM+KqIVATeBO4FJhhjRgKIiP6Km8fiE5N5/evd/GfqWyQd+pNN69YQ3KC+s8NSBVTr2mkSyCtnrQRhy6fEXYtl9sm6vPvDIbo+EEy/jt2cF+QNpDx0R48eTWhoKKtXr07XPJ8iL1495GT1yNzWIyJ88skn6fZVrVo13YiOjE6ePMnQoUMZOHAgoaGhTJ06ldGjRwPg4+PD8OHDGT58OMYY2rdvz5UrV9i4cSMuLi707dvX7hgdaebMmcycOZP9+2/cvz0uLo5Tp04BcOHCBWbOnMmVK1fo1s36+fTy8mLAgAGMHDkSf39/qlWrxgcffMDp06cZOHAg3t7evPDCC7z++uuULVuWSpUqMX78eJKSklLryIt7FxYWRq9evZg4cSJVqlRJjdnDwwM/Pz9Kly6Nv78/c+fOpXLlykRGRjJixAjc3HIz80DBZde3McZEAS+LSGVgjIi8DrxijAlzSHRF1JW4RPov2Mb3H71D4oEQflz2PWX9y6T+kKb0ulYqxaTn+lgJwm+jYct/SI6/xv8uNWH0t4eo26AMK1bNSfee1BhDXFwc169fz/WWm/OnTp3Kc889lyn+0qVLU6JECQ4ePMiaNWuoVs1xDZQFbfXIZ599lqSkJFq2bImI8MILL/DKK6+kHn/nnXcoX74806ZNY8CAAZQsWZLGjRvz2muvOSSemqVq0iGwAyGE2H1udHQ0Bw4cuGm5lStXUrFiRcB6oAcFBbFkyZJ0owlSFu7q06cPFy9epEmTJixfvjz1vGnTpnH16lUeffRRSpQowaBBgzINp73Ve7d161ZiY2MZOnQoQ4cOTd3foUMHQkJCcHFxYdGiRQwePJgGDRpQs2ZN3nvvPXr06JGj6+eFqsH+Dq9DctokJyLBQB3bVheohjX64f+MMV87LMJb0KxZM7N161Znh2EXYwwvfbmdhau+Imbee1mWGTt2LIdKexFxLjrd/ta1g6wHBtBjygTOXYlJd7xTcCPG9HwGgPsnjOFamndoAA81bcHwR6wf8I5vvZ6p3ifatGNg14eIjbvOA++OzXS8d8fO9L6nC9GXL/H4tMzvdwfc9wBPtu1AePRZ/vHvaZmOD+v2GN2at+RAZAT9Zn+Y6fjoHk/RuVETdh49zNB5czIdn/hML9oE1WP9/r288eX8TMen9+lL42o1WLlrBxO+/l+m47P7DaJOQCA/bNnEez98k+n4gsHDqexflkV/rubjXzM/bJYOfwP/kr589vsKPgtZmen4z2++TQnPYny0/EcWr888tC5kvPUf47Tvv+bHbZvTHSvu4cEvo98B4J0lX7IqdNffB5PiKXP9FF/7hUDidWjwOBUHfsfZcxe44447cHd3z/Ih7+npSbFixTJtGfd7enpSvHjxLMvau5UrVw5XV9dM393R9u3bR69evdi8+e/7Gh0dTePGjQkNDaV0acdPWqNUfhGRbcaYZnl1PXtXj9wNLAImAfuNMUk3PiVrIjIQGAFUBPYAQ40xWQ9KTn/eXUCIre6CN3NKHliyNYKfQ0/RKLAUrmPSZ72Nq1ZPnYHP7jHz6vaTGA+XIyEmClzioW03aD8C/Gsx/nwLPv74Y06dOsXTTz/NM888g5+fX+oD28PDI9O78ttZzZo1OXLkSLp9U6ZMoV+/fpokKHUT9rQoDAHqA8FAdSCCv0c/hBljlufwOk8CC4GBwDrbn32AesaYEzc4rzSwDTgIBOQkUShsLQpHo6/y4L/X0iiwFF+82BIXF51tUWUh5rStD8J/ICkOgp+wJQg1MxXdtGkTU6ZMYe3atQwYMIDBgwfb1ev+dlKnTh3WrFlD+fLlOXPmDM2bNycsLAwfH+1ilVaf5Var5Lyu85wcicqJb9/bDsCjw+5M3ZfXLQo3/ZVCRIIAjDEzjDF9jTGtjTHlgR7AUsAdyPzSMXuvAp8ZY+YaY/YZYwYBUcCAm5z3H2A+sMGOugqNhKRkhv5vB+6uLrheW0//LJreVREXcxqWvwEzGlprMtTvDi9vhcdmZ5kkALRs2ZKvv/6adevWERUVxezZs/M56IIjKCgo9f35lClTePnllzVJUCoHcvLqYYeIzAHGGmMupuw0xhzDGib5Y04rExEPoCmQ8QX1b0CbG5w3EKgA9ATG5LS+wuSDFX+xK+ISnzx3J/+3eJWzw1EFScwp+HMGbP0vJCVAwyeh/XAoUyPHl6hdu3bqBDdFVVBQEH/99Rd16tTh22+/JTQ01NkhKVUo5OQlZQusVw6HRGSQiNxKTyR/wBU4nWH/aaxEIBNbJ8qxwLO57RNR0G08co6PVx/mqeaV6dqgorPDUQVFzCn4ZSTMaASbZkODHvDyFnj0Y7uSBGVJSRQmT57M0KFDKVGihLNDUqpQuGmLgjEmFOgsIt2BqcAAERlmjPnlFurN2DFCstiHiHgC/wOGG2OO5uTCItIX6Atkmo2rILoUm8Ari3ZStYwXYx6q5+xwVEFwOQr+nA5b50FyIjR6GtoPA7/qzo6sUAsKCmL27NlcuHCB3bt3OzscpQoNeyZc+k5EfsZaPfJ/IvIn8Koxxp6VI6OBJDK3HpQjcysDWKMi6gHzbKtUgtUKIiKSCDxgjPktQ5xzgDlgdWa0I7Z8Z4zhjW9DORsTxzcD2+DleXtN0qHsdPkkrJsO2z6zEoTGT0O74eCnk57mhbp167Jp0ybmzJmDp6ens8MpsO6rep+zQ1B2qNm0nMPrsPfJVAJr5MF8rFUjd4vIJ8AYY8ylm51sjIkXkW1AF2BJmkNdgKzmYojEGmWR1kBb+Uex+kgUWku3RfBTaBSvdw2iYWCp1P2Nq+pvjkXK5ZOw7gPYNh9MktWC0G6YJgh5rFSpUnZP5VwUPRX0lLNDUHYI7hh480K36KaJgogMBZrbthpAPLATmGH781lgr4g8ZozZlIM63wcWiMhm4E+gP1AJ+MRW3+cAxpjnjTEJWMMv08ZzBogr7LNBHou+ythle2hV3Y++7dMnBilzJajb3KVIK0HYPh9MMjR+xkoQSld1dmSqCLuWeA2A4m7ZT3GtCo6EeKvrnruH4yYyy0mLwjCsIYkfAxuBbbZlplN8bpvK+b9YnR5vyBizSETKAKOxXi2EYb1COG4rUvA7FtyihKRkhtiGQn7wZGNcdb6EouVShC1B+NyWIDxrSxDucHZkSjFw5UBA51EoLH780JqlNe08CnktJ50ZK+fgOvOAG6/Jmv6aHwEfZXOs403OHQeMy2ldBdGMlQfZFXGJj5+9k4q+mbP2lFkXFw4Zkd+hKUdKlyAYaPIs3PWqJghKqQItr3rPnQVu3zVQ89CmI+eYFXKIJ5oFcn9w1kMhM67hoAq5SxGw9n0rQQBo8hy0exVK3faNZ0qp20CeJArG6iG0Oi+udTtLOxRybDddMvq2dzEc1r0P2xdYn+/8h9WCUConjXRKKVUw6Hi8fGKM4Y3vQjkTE8fXA3Qo5G3t4gmrBWHHQuvznc/DXa9ogqCUKpT0aZVPvt4eyU+7oxhxXx0aVS518xNU4XPxBKx9D3Z8ASLQtJeVIPg6fviSUnnlkZqPODsEZYeg1o6fzVcThXxwLPoqY78Po2U1P/p3uPnUu61rB+VDVCrPXDhuJQg7vwBxgaa9bQlCgLMjU8pu3Wt2d3YIyg5122iiUOglJCUzZNFOXF0kx0MhJz3XJx8iU7fswjFbgvCllSA0+ye0HaoJgirULly/AEDpYqWdHInKiWtXrNkKint7OKwOTRQc7N+rDrIr/CKznrmTSqV0ApPbwvmjVoKw6ysQV2j2Atw1FEpWcnZkSt2yV0NeBXQehcJi+Wxr7kGnzqOgcm/z0fPM+uMQPZsG8mDDnDcP9ZgyAYCvXxvtqNBUbpw/Cmunwc6vwMVNEwSlVJGgiYKDXLpmDYWs4leCcQ/bNxTy3JUYB0WlcuX8EVhja0FwcYMW/7JeMZTUJcGVUrc/TRQcwBjDm9+GcvrydR0KWZidO2x7xfA/cHWHFn2h7RBNEJRSRYo+wRzgm+2R/KhDIQuvc4dhzTTYvchKEFr2sxIEn4yroyul1O1PE4U8dvzcVd6yYyikKkAyJQj9oe1gTRBUkfJknSedHYKyQ4MOjh9lpYlCHrJWhbRvKGRWOgU3yuPI1A1FH4I1UyF0Mbh6QqsB0GYw+JR3dmRK5buu1bo6OwRlh1rNHP//lCYKeejDVQfZGX6Rmc80uaWhkGN6PpOHUalsRR+0JQhLbAnCQOsVg3c5Z0emlNOcunoKgApe2pJWGMScvw6Aj18xh9WhiUIe2Xz0PDP/OMTjTQN5qKEOlyvQog/C6ikQtlQTBKUyGLV2FKDzKBQWK+ftBXQehQIvZShk5VwMhczK/RPGAPDL6Hdu+VoqjbN/wZopEPY1uBWD1i9Zrxg0QVBKqWxponCLjDGM+S6MU5evs7R/a7zzYCjktfj4PIhMpTp7wNaC8DW4F4fWL9sShLLOjkwppQo8TRRu0bc7Ilm26yTD761Nkyo6N3qBcma/rQXhG3AvYY1gaDMYvPydHZlSShUamijcghPnYnnr+z20qOrHgI41nR2OSnFmn9WCsOdbW4IwBNoM0gRBKaVyQROFXEpMSmbooh2IwAdP5X4opMpDZ/bB6smw5zvw8LLWYWg9CLzKODsypQqNXvV7OTsEZYfGXao4vA5NFHLpw98Psf3ERT58ugkBebwq5ENNW+Tp9W57p/daCcLe720JwitWPwRNEJSyW8fKHZ0dgrJDtYaObynVRCEXLlyN5+OQw3RvXIlujfJ+KOTwR3rk+TVvS6f3pEkQvKHdq1aCUMLP2ZEpVWgdvXQUgGq+1ZwcicqJC6euAlC6gpfD6tBEIRe+2xlJfFIy/TvqFM1OcSrMShD2LQMPH2g33BrqqAmCUrds/IbxgM6jUFiEfHEA0HkUChRjDIu2hNMw0JegCiUdUkfHt14HIGT8ZIdcv9DKmCC0H2FNlqQJglJKOYwmCnbac/Iy+0/FMKF7A2eHUnScCrUlCD+AZ0lo/5q1HoMmCEop5XCaKNhp0ZZwPN1cHNI3QWUQtdtKEPb/aCUIHV63EoTiOl+FUkrlF00U7HA9IYnvd0Zyf4MK+BZ3d3Y4t6+oXdY8CPt/BE9f6DASWvXXBEEppZxAEwU7/LrnFJevJ/JEs8rODuX2FLULQibDgZ+sBKHjKGjZH4qXcnZkShUZfRv2dXYIyg7NHqjq8Do0UbDDkq0RVPYrTqvqjh2f/0Sbdg69foFzcqf1iuHAz1DMFzq+AS37aYKglBO0rtTa2SEoO1Su6/i+Wpoo5FD4+VjWHYrm1S61cXHwLIwDuz7k0OsXGCd3WC0If/1iJQh3v2klCMV8nR2ZUkXW/vP7AQjyC3JyJConzobHAFC2so/D6tBEIYeWbotABHo0DXR4XbFx1wEo4VnM4XU5ReR2qwXhr+VQrBTcPRpa9tUEQakCYPJma1i2zqNQOKxbfBDQeRScLjnZsHRbBHfV9M/z6Zqz8sC7Y4HbcB6FyG1WC8LBX62OifeMhhb9oJhj5qNQSil16zRRyIE/D0cTefEaox7QprhcidgGq/8PDv5mSxDGQIu+miAopVQhoIlCDizeGkGpEu50qVfe2aEULhFbIeT/4NAKKO4Hnd6yEgRPx71LU0oplbdcnFGpiAwUkaMicl1EtolItt38ReQxEflNRM6KSIyIbBKRh/Mr1oux8fy65xTdGwfg6eaaX9UWbhFbYeHj8Gkn63VDp7EwdDe0G6ZJglJKFTL53qIgIk8CM4CBwDrbn7+ISD1jzIksTukA/A6MBs4DzwLfikhHY8xaR8e7bNdJ4hOTde6EnAjfYr1iOLQSSpSBzuOg+b/A09vZkSmlcmjInUOcHYKyQ6vujl+c0BmvHl4FPjPGzLV9HiQiXYEBwKiMhY0xGX9q3xaRB4HugMMThUVbwmkQUJJ6lfLvfXrvjp3zra48Eb7ZesVweJUtQXgbmr+oCYJShVDjco2dHYKyQ8Uajh8tlq+Jgoh4AE2BaRkO/Qa0seNSPsCFvIorO2GRl9hz8jLjH6nv6KrS6X1Pl3ytL9dObLJaEA7/biUIXcZDsxc0QVCqENt5ZiegCUNhEXX4EuDYhCG/WxT8AVfgdIb9p4Ec/RotIi8BgcCCbI73BfoCVKlSJdeBgjV3goebC480Cril69gr+rL1D+9fsoDOK3Bio9WCcOQPKOEPXd6B5i+Ah5ezI1NK3aIZ22cAOo9CYbHxu8PA7TmPgsnwWbLYl4mI9ACmAk8ZY45neWFj5gBzAJo1a3bTa2bnekIS3+6IpGv9CviWyN8FoB6fNhEogPMoHN9gtSAcCQGvsnDvBGj2T00QlFLqNpbfiUI0kARUyLC/HJlbGdKxJQkLgOeNMcscE97fVuw9zaVrCdqJEeD4eqsF4ehqW4Lwri1BKOHsyJRSSjlYviYKxph4EdkGdAGWpDnUBfg6u/NE5AlgPtDLGLPUsVFaFm8NJ6BUcdrUcOwCUAXasT+tFoSja8CrnCYISilVBDnj1cP7wAIR2Qz8CfQHKgGfAIjI5wDGmOdtn5/CakkYDqwRkZTWiHhjzHlHBBh58RrrDkUz+J5aDl8AqkA69ieETIJja60E4b6J0LSPJghKKVUE5XuiYIxZJCJlsOZFqAiEAQ+k6XOQsQdif6w4p9u2FKuBjo6IcenWCAB6NnP8AlAFyrF11iuGY2vBuzzcNwma9tYEQaki5PUWrzs7BGWHu56o5fA6nNKZ0RjzEfBRNsc63uizoyUnG5ZsC6dtDX8CSzvnATngvgfyt8Kja60E4fg6K0Ho+n9WguDu+AWwlFIFiy4vXbg4cnnpFLrWQwYbj5wj4sI1RtxXx2kxPNm2g+MrMcZqOQiZbEsQKkDXydC0lyYIShVhG05uAKB1pdZOjkTlRPg+6w185bp+DqtDE4UMFm0Np2QxN+6rn3FgRv4Jjz4LQGX/snl/cWOszomrJ8PxP60E4f4pcOfzmiAopZizew6giUJhsfXnY4AmCvnmUmwCv4Sd4qnmlSnm7rwFoP7xb2viyjydR8EYa3hjyGQ4sR58KsL9U20JQrG8q0cppdRtRROFNJbtvg0XgDLGmiBp9WQ4sQF8KmmCoJRSExGs9QAAIABJREFUKsc0UUhjydZw6lYsSf18XADKYYyxplgOmQzhG60E4YFp0OQfmiAopZTKMU0UbBZ8+wsrZ4zD8+JxXIaeZt68efTu3dvZYdnPGGuRptWTIXwTlAywEoQ7nwc3T2dHp5RSqpDRRMFm+c5jFCtXlffHvsLAvv90djj2M8Za5jlkMkRshpKB8OB7VguCJghKqRx6q/Vbzg5B2aHjs44foefi8BoKgbjEJPa61uDpl16n93NP4eLi3NsyrNtjDOv2WM4KGwMHV8J/usDCHnD5JDz4PgzeDs1f1CRBKWWXar7VqOZbDYApU6YgIpm2t97SZKKgKF3Bi9IVrIX5lixZgqenJ4BHynERmSEih0WkfG7r0EQBWLn3DBdiC84CUN2at6Rb85Y3LmQMHFwBn3aGL3pAzCl46ANbgvCCJghKqVwJCQ8hJDwEgAEDBhAVFZW6DRs2jAoVKvD88887N0iV6ujuaI7ujgbg8ccfJzg4GKxZjxGR4cDTQFdjzA0XXrwRTRSwFoCq5FuMu2r6OzsUAA5ERnAgMiLrg8bAX7/Bp53gi8fhyhl4aDoM2m4t2KQJglLqFszfM5/5e+YD4OPjQ4UKFahQoQLz58/nq6++IiQkhJo1azJjxgwCAwNp3LgxjRs3ZsSIEU6OvGjaueIEO1ecAEBEmDhxIkAZERkJjAUeNMYctB0fIiKRIrJTRHaJyDwRuemDr8j3UTh58RprDp5l0N01cS0gC0D1m/0hkGEeBWPg4G/WVMsnt4NvFeg2Axo9A24e2VxJKaVu3aRJk5g5cyZ//PEHtWvXBiAsLIzp06fz+OOPOzk6lda9994LEAtMALoZY7akOdwAGG6M+UpEBCuRmAs8eqNrFvlE4ZvtERgDjzctGK8dMjEG/vrVWu755A4oVQW6/RsaPa0JglLK4d59910++eQTVq9eTc2aNVP3h4aGaitCAfT7778DpEyzm/F1QzDwIYAxxojIJOCCiLgYY5Kzu2aRThSSkw2Lt0bQunoZqpQpYCskGuDAL1YLQtROKHUHPPyhlSC4ujs7OqVUEfDOO+8wd+5cQkJCqFGjRup+YwwHDhygZ8+eiAj169fniy++cGKkCmDXrl089thjACeA7cAk4D4AWwtCbeBAmlMSsPKA4sDV7K5bpBOFUV8tZfPuX6lZ1pv5Ky7QqGxFTl04z7W4OMZ99ikz14fgVrw4xXxLMqzbY3Rr3pIDkRGprwbSGt3jKTo3asLOo4cZOm9OpuMTn+lFm6B6rN+/lze+nJ/p+PQ+fWlcrQYrd21n5+EDNC5+Db76BEpXhYdnQqOnNEFQSuWbd999lxkzZrBs2TK8vLw4deoUAKVKlSIqKoqaNWuyZcuWm1xF5Zfjx4/zwAMP8OqrrzJ27NhzWK8VdotIR2NMCFAVOG2MiUtzWmUg2hiTbZIARTxR+HJtCAlx0fh5+XF4/wF63/v38s7HV//J8dV/Ur5hA4IeyYdln42B/T/DT1Np7BrPM/7J8MgsaPikJghKqXwzqd0kjDEEPRnE5cuXadu2bbrjK1euJDY2lnr16jkpQpVW5z71OH/hPF27duKhhx7irbfeYuzYsRhjwkRkCVarQmus/gl7Mpz+ArD0ZnWIMSbvIy8gmjVrZrZu3ZrlscvXE6jwr4GU9fbk+Mcz8zmyNIyBAz9brxhO7YbS1aD9CGj4hCYISqkCaeLEibi6uvL66687OxSVBRHZZoxplmHfG4CnMWas7TXEY1hJxF3GmDM3ul6RbVH4YddJko2hXEknDSc0Bvb/ZHVSPBUKftWh+8cQ/AS4Ftl/FqWUky0/uhyArtW6ZlsmLCyMp59+Or9CUjdwcKvVX7FWs5vOp9QAaCciDwGC1YfhnpslCVCEE4XFWyNo0+hxFvVtlb8VJyfDgZ+sqZZPh4JfDej+CQT31ARBKeV0iw4sAm6cKHz55Zf5FY66ibDVkcDNEwVjzDO5raNITrh04FQMu8Iv8mzrOpT1LZU/lSYnw95lMLsdLHoOEmLh0dnw0mZo/HSukoSU6TqPHz+eum/IkCHUqFGD06dzPQmXUkoplapIJgqLt4bj7ipcu7Kfz35f4djKkpNh7/dWgrD4H5B4HR6dYyUIjZ66pVaElOk6J0yYAMC0adP46quvWL58OeXL53pab6WUUipVkWvrjk9M5tsdkXSpV56l6xcD0PueLnlfUXIy7FsGq6fAmT1QphY8Nhca9AAX1zypImW6zgcffJAaNWrw7rvv8vvvv1OrVi0AZsyYwdSpU/H39+fy5ct06tSJuXPn5kndSimlioYi16Lw+/7TnL8aT09HLQCVnAx7voVP2sKSXpCcAI99Ci9tskYy5FGSkOLee++lefPmjB49msWLF9O8efPUY2FhYcyYMYOdO3eyb98+Fi1aRHR0dJ7Wr5RS6vZW5FoUFm0Jp0LJYrSvVTZvL5ycDHu/s1oQzu4D/zrQ4z9Q/9E8Tw7S+v3339m1axfGmEyvG0JDQxk5ciQA27dvp3Llyvj5+TksFqVU4fd+x/edHYKyQ9d+DRxeR5FKFE5dus7qv84yoGONGy4AlZCQwKpVq1i6dCn79+/nwoULXLlyJfsLJ8TC9ctW64GLOxQrCe6nYeowYNgtx/3VV1/Rpk2bTPtTpuv88MMP+emnnxg1ahS//vor8PcUqz169CA2Npbz58+zZs0aXFyKXCOSUsoOpYuVdnYIyg7FvR2/5k+RShS+3h5BsoGe2SwAdfToUSZMmMB3331HnTp16NmzJ88//zx+fn54e3tjzVFhk5xkrea46RM4dx7K1IWW/aHWvXneglClSpVM+9JO1/nPf/6TFi1a0LBhQ0JCQujYsSPHjh2jRo0apEw4NW3aNKZOncq8efPyNDal1O3lu0PfMfiBwZz464SzQ1E5sG99FA8/dzcHj+x3WB1FJlEwxrBkazgtq/lR1d8LgJ/ffDv1+OHDh7n77rvp06cPO3fupHLlbPowJCdZfRBWT4HoA1C2Ljw6H+p1h3z6bf38+fN07do1dbpOgAYNGtCzZ09GjRrFhg0bCAsLo06dOqnnBAcHp6wqppRS2fr+0PeEHwx3dhgqh/ZviOLQ0QM3L3gLikyisPnoeY6di2XQPbVS95XwLAb8nSS8+eab9OvXL+sLpCYIkyH6LytBeHxeviYIKfz8/Ni3b1+m/YsWLUr9e2hoaGqikJSUxMKFC+nUqVO+xaiUUur2UGQShcVbI/D2dOOB4Iqp+z5a/iPGGGYNe51Ro0ZlnSQkJ0HYN7BmipUglKsHPedD3YfzPUGwR1hYGGvXruXbb79FROjSpQtDhgxxdlhKKaUKmYL7pMtDMdcT+Dk0im6NKlHcw5XRo0eTlJTE4vVr+e83S4mLi6NOnTr89ttvf5+UnAS7F8OslvDNi1YnxSc+h/5/Qv38b0Ww15dffkl4eDg7duxg+/btTJ48GTe3IpMXKqXscPnyZd59991M+xctWsSOHTucEJG6kWXLlrF+/fp0++Lj41NfRee1gv20yyM/7o7iWkISTzQLBOCPP/5g8WJrsqWzew/w+OOP89JLL1mFkxJh1yKY1QK++Re4ecITC6D/Oqj3SIFPEJRSyl7FihVj7ty56R4+ly9fZtCgQRQvXtyJkamsJCcn8/LLL5N29ef58+ezceNGh9RXJJ56i7eGU6ucN40rW+s6jBs3jvHjx5OclMTZfQfw9fXFr3RpupQ7ZyUI3/YFt+Lw5ELotxbqFezXDEopdSs8PDx48803efvtt/mo80cAzJw5k3vvvZegoCAnR6cyeuSRRzDG8MMPP/DQoEYAvPvuu4wbN84h9d32T7+Dp2PYceIiTzavnDq8sXPnzvj5+RG1fReJ1+NYMHcW4xqfQb7rDx4l4MkvoN8aqNtNEwSlVJHQq1cvDhw4wI7N1quG6dOnM3r0aCdHpbIiIowdO5Zx48bh5m49o2rXrp3lfDt54bZ/Ci7ZFoGbi9C9SUDqPhFh3JgxRKzfiIsk45d0ms7B5eGpL60WhLoPaYKglCpSUloVBrw2AEBbEwq4lFaF98fPAWDs2LEOq8spT0MRGSgiR0XkuohsE5F2NynfwVbuuogcEZH+OanHAN9sj6BT3XL4e3taO5MSYccXdN7/OjWLxZJ4LY5xY8ch/ddB0IMg2c/YqJRSt7NevXpx+OBhAG1NKOBSWhXefHcoAG3btnVYXfmeKIjIk8AMYCLQBFgP/CIimacftMpXA362lWsCTAI+FJEeN6sr5loC0VfieaJZZUhKgB0LYWYz+H4gUtyX14a9QtWq1ej8zzc1QVBKFXkeHh407dMUDx8PbU0oBB555BGCa7WgnF/AzQvfAknbazI/iMgmYLcx5l9p9h0ElhpjRmVRfjLwmDGmVpp9nwL1jTGtb1RX2Wp1Tc0XPmDd/WdwXfceXDgGFRtDx5FQu6smB0oplUGf5X0AmNdVp3svDL59bzsAjw67M3WfiGwzxjTLqzrydWC9iHgATYFpGQ79BmTXC6O17XhavwK9RMTdGJOQXX2u1y/wi+sruP5wEio1ga6TofZ9miAopZRSOZTfM/D4A67A6Qz7TwOdszmnArAyi/JututFZVdZoJylmG9t6DzdWqxJEwSllFLKLs6aqi/j+w7JYt/Nyme1HxHpC/S1fYwr/tLaMOiaqyBVjvkD0c4O4jan99jx9B6n8RmfOeKyeo8dZXi6T3WyKZUr+Z0oRANJWK0EaZUjcytDilPZlE8EzmUsbIyZA8wBEJGtefmeRmVN77Pj6T12PL3Hjqf3OH+IyNa8vF6+jnowxsQD24AuGQ51wRrVkJUNZH4t0QXYeqP+CUoppZS6dc6YR+F9oLeIvCgidUVkBlAJ+ARARD4Xkc/TlP8ECBSR6bbyLwK9ydwhUimllFJ5LN/7KBhjFolIGWA0UBEIAx4wxhy3FamSofxREXkA+AAYAJwEBhtjvs5BdXPyLnJ1A3qfHU/vsePpPXY8vcf5I0/vc77Po6CUUkqpwkMXNFBKKaVUtjRRUEoppVS2CnWikF+LSxVl9txjEXlMRH4TkbMiEiMim0Tk4fyMt7Cy92c5zXl3iUiiiIQ5OsbCLhf/X3iIyHjbOXEickJEBudXvIVRLu7xMyKyU0RiReSUiCwUkYzD4ZWNiLQXkWUiEikiRkR65+CcYBFZLSLXbOe9JWLf7IOFNlHIz8Wliip77zHQAfgdeNBW/mfg25w+9IqqXNznlPNKA58DqxweZCGXy3v8FdZsbX2xJrDpCex2cKiFVi7+T24LLADmA/WB7kA94It8Cbhw8sYaADAEuHazwiJSEliBNU9Rc2AwMAJ41a5ajTGFcgM2AXMz7DsITMqm/GTgYIZ9nwIbnP1dCupm7z3O5hqbgfec/V0K8pbb+wx8A4wFxgFhzv4eBXnLxf8X9wKXAH9nx15Ytlzc4+HA8Qz7+gBXnP1dCsMGXAF636TMAOAyUDzNvtFAJLbBDDnZCmWLQprFpTIuFpWbxaWaiYh73kZY+OXyHmfFB7iQV3HdbnJ7n0VkINaMpRMcF93tIZf3uDuwBXhVRCJE5KCI/FtEvB0YaqGVy3v8J1BRRLqJxR94CqslUuWN1sBaY0za1odfseYuqprTixTKRIEbLy6V3futCtmUT1lcSqWXm3ucjoi8BARiNS+qrNl9n0UkGKsl4VljTJJjw7st5OZnuTpwF9AI6AG8jPUa4jPHhFjo2X2PjTEbgKexXjXEA2ex1vHp5bgwi5zsnnspx3KksCYKKRy2uJRKZe89tgpZfT+mYj3Mjt+svMrZfRYRT+B/wHBjzNH8COw2Ys/Psovt2DPGmE3GmF+xkoUeIlLegTEWdjm+xyJSD/g38A5Wa0RXrIfXbEcGWATd8nPPWatH3iqHLy6lcnWPgdQkYQHwvDFmmWPCu23Ye58rYnX4mici82z7XAARkUSsWU4zNv8Wdbn5WY4CIo0xl9Ls22f7s8oNziuqcnOPRwGbjTFTbZ93i8hVYK2IvGmMCXdMqEVKds89sONnuFC2KBhdXMrhcnmPEZEngIVYnWyWOi7C20Mu7nMkEAw0TrN9Ahyy/T3bf5uiKpc/y38ClTL0Saht+1NbyDLI5T0ugZVcpJXy2a7heypbG4B2IlIszb4uWEshHMvxVZzdc/MWenw+ifVe60WgLtawnCvAHbbjnwOfpylfDbgKTLeVf9F2fg9nf5eCuuXiHj8FJGAN3amQZvNz9ncpyJu99zmL88ehox7y9B5jDUMLB5ZgDd1rizUsbYmzv0tB3XJxj3vb/r8YgNUnpC1WB9Jtzv4uBXWz/Vym/IIQC7xl+3sV2/FJwKo05X2xWhX+BzQAHsMaBTHMrnqd/cVv8aYNxMqK4rCy2fZpjoUAIRnKdwC228ofBfo7+zsU9M2ee2z7bLLYQvI77sK22fuznOFcTRQccI+x5k74zfYfciQwC/Bx9vcoyFsu7vEgYI/tHkcBXwKBzv4eBXUDOmbzf+xntuOfAccynBMMrAGu2+7xWOwYGmmM0UWhlFJKKZW9QtlHQSmllFL5QxMFpZRSSmVLEwWllFJKZUsTBaWUUkplSxMFpZRSSmVLEwWllFJKZUsTBaWUUkplSxMFpYoQEekpInEickeafTNE5LAudqSUyopOuKRUESIigjVN7g5jzL9EZDjwGtDWGHPQudEppQoibVFQqggx1m8GbwC9RWQk1nSuD6YkCSIyRESMiDRKOUdE3rftq3ija4tIVRF5xPb3h0TkQ8d9k9Q6ZjqyDqWUJgpKFTnGWoZ6CzABeMIYsyXN4QZAKNY6B4hIJaw1Us4YY6Jucun7bOcDNAR25WXcWciPOpQq8jRRUKqIEZF7gEZYS/lmXJM+GFiELVEA3gS+BfalOb+WiPwoIltFZK2IVBCRDlgr1/UWkZ1Ac6CGiKwXkQgRuTPN+c+IyCYRCRWRX0WkhG3/DyIyXkQ2pD1HROrbrhNmK1PCdqlGwO48vj1KqQw0UVCqCLG9UvgGa9W+77Ae7inHBGu532VAkIhUwUocjmG1MiAinsAnwEBjTDNgPvCSMWY11kP7XmNMYyAIOGqMaQNMBB5NE8avxpiWxphg4DDQxba/ARBpjGmdco6IFAMW2+poAPyFtTxxSvmwPLo1SqlsuDk7AKVU/rCNdPgZeN8Y818R2QzsFpGOxpgQoCrWcsr7gWrAGKzXE534+4HcHagLLLPyCjyw1rrHdv4x28Pd3Rgzx7bfFTiXJpQXRKSn7dzKwPci4gO4GGNmZzinO7DSGLPDtn8/UMlWhxhjrt7yjVFK3ZC2KChVBIiIH7Ac+NEYMx7AGBMGLOHvVoUGQKgxJgHrIV7D1p8hpd8CWC0MI4wxjW1bPWPMeBEJBE7ZOks2ALamqT4YW6IhIr2AekB7Y0wjIBrYaztnSxbn1E1Td8r+lPJ7bvG2KKVyQBMFpYoAY8x5Y0xdY0y/DPuftDX1Q5oHOjAZGGr7e9om/lNAF9trCkQk2La/MnDS9vdGpH+4N0zzuQGwwRhzTUT6AWWNMeG2/buyOOckf3esbAh0xno1ov0TlMonmigopVKkJgTGmCXGmN0iUtL2+bKtzDzAF9hn67TYx7Z/L3CHiIQCz/B3nwYByhljUjpNLgBGisgaoCLpWyp2Z3HOAqz+EqHAx1ijNOKwEglNFJQCRKS9iOwWkSTbUGYjIp+mOe4uIvtEJDnN8Q22fkg3v75OuKSUUkoVXiLyADASKAfUwOp/+B9jzIu242OBt4CNtu1VIBGrM3EDY0zija6vLQpKKaVUISAiPiIyXUSOi8g127Dh5saYn40x7Y0xQUBchnME6A+8ZYxpy999khKxXuvVvVm9migopZRShcOnWBOb9cJ6XfcbsFJEAm5wTjWggq1sWodsf164WaWaKCillFJOIiKuIvKOiBwVkeu2PyeIiFuGcsWBHsBIY0yIMeaQMWYc1gN/wA2qqGD7M+PkagHAWWNMxM1izPdEwdbpYpmIRNo6VPTOwTnBIrLa1tQSKSJvpfS6VkoppQqx14GXgMFYE5UNsX0elaGcG9b8Itcz7L8G3JWDelI6JLra/nQn/eikbDmjRcEbq2f1EKwveEO2XtcrsLKh5lg3cwRWZwyllFKqMGsD/GCM+cEYc8wYswxrCHDLtIWMMTHABmC0iATYWiKeA1pjjSDKzinbnxVsrRQpE6EdAG7amgBOSBRsnS7eMMYsBZJzcMqzQAmglzEmzBjzNdYY71e1VUEppZSziMixNMMN024/2XGZdcDdIhJku2Y94B6sWVQz+gfWczMCq9PiYOArIOkG1z+KlSzch7WOS33b/rrA+pwEWBj6KLQG1hpj0rY+/ApUwpoyVimllHKG5li/zadsd2I18S+24xqTseYL2SsiCVgzjs43xnyUsaAx5rAxpgNWy3xlY0wLrFcIJ0TkHhF5jb+XZmgoIgOxWib+jbWkfGdgoe14IhApIlVvFqBT51EQkSvAy8aYz25Q5jcgwhjzzzT7qgDHgTbGmA0ZyvcF+gJ4eXk1DQoKckToSimlVDpRUVGcPn2ahg0b4uKSs9/Dz58/T0REBIGBgRQvXpzY2FjCw8MJDAzE398/U/mEJMO1hEQSL1zC49xpDsZdp5SLC+eTs22gP4yVIBzN5vj3xpjuN4qxsCwKlTGbkWz2Y1uIZg5As2bNzNatWzMWUUoppfKUMYYaNWrQv39/Zs6cmePzKleuzNSpUxkyZEjqvgkTJvDZZ5/x46p1hEZeIjTyEjuPn2XJ/yaQmJSMi28pKp88yNEr56jk5sVPAYG4297Eu1WsQO2QkG221V3TyvWr+sKQKJzi7+EdKcrZ/sw43EMppZTKdytWrODo0aO8+OKLdp0XGxuLq6srpy9fZ3eElRR8tzOK8PNXaTVpFTEXQxGBRjWa4Z0cz+Wtm0mIvcoJN3dKl/enY9MnCPWsw507ZwCQeCrvH4uFIVHYAEwWkWLGmJRhIV2wFos55rSolFJKFVhRUVGMHDmSn3/+mZiYGKpXr87HH39Mhw4dHFLf3Llzad68OY0bN75p2dOXrzPp2+/5ccs6YsuUZfDrIxn50yZKVb2bhNOHOfvzf/GqU4di137l3KUIgkuUYO76zcSdPAkBgXj6JpAQ60ZygrDds066a7tVrAj79+Xpd8v3REFEvIGato8uQBURaQycN8acEJFJQAtjTCdbmS+xOmF8JiITgNpYc1q/bXShCqWUUhlcvHiRtm3bctddd/HTTz9RtmxZjhw5Qrly5W5+ci6cOXOG77//nlmzZmU+lqalICzyErsjL3E2Jo5TEStIiIumZIvWuO3aTvKmn4n+YykVK1YgsGE9AurUJPn4QUpev859xyJwKZFAuUaX8KlVHI/7h3DpTCWi3n43XV1SrBjlXhkKf/yep9/PGS0KzYA/0nx+27bNB3pj9RytkXLQGHNJRLoAs7DWuL8AvAe8n0/xKqWUKkSmTJlCxYoV+fzzz1P3VatWzWH1zZs3D09PTzo92J1V+07/nRREXOJMjLX0gotAzXLetKvlT3CAL5/+vBYvzwr89tYETEICsVu2ELNyJTErV5F45gzs2ItXozr43HEV72IHcfcvA21HQbN/gocXvgBunsiSaEx8PG6VKlHulaH4duuW59/vtl49UjszKqVU0VOvXj26du1KZGQkf/zxB5UqVeLFF1/kpZdeIq+m3zkbE0do5EV2h19i7D8641m5ASU6vQSACNQs601wgC/Bgb4EB/hSr1JJSnj8/bt58rVrXFm3jisrVxITsprkS5eQ4sXxvusufBpXwTvhd1xP/QleZaHtUFuCUCJTHN++tx2AR4fdmbpPRLLqzJhrhaGPglJKKZVjR44c4aOPPuKVV15h5MiR7Ny5k0GDBgHw8ssv23296CtxhNpeH4RGXmLVjrVEXz6NX9l2XD+xm8unwynbpgWe137D29OVEh5uNCtXl0lP9gGgx5QJnLsSg0lMJOniRZIuXKD5qbMMiIrGxdcXn44d8bm3C14B4LLxAzg2H7zKwX0ToWmfLBOEFM0eqJqre2QPTRSUUkrdVpKTk2nWrBmTJlkrKjdp0oSDBw8ya9asmyYK567EWQlBmsQg6pLVj14Eqvt7EX/tEDEXj7Jy9GvUq3Qf/Vu6EXEuOsvrJZw+Q3x4OHGnT5EUEwPGIB4eFKtXjyoTe1OiWTMkYiOsngxr19oShEnQtPcNE4QUlev62XdzckETBaWUUreVihUrUq9evXT76taty4wZM9Ltu3A1PjUZSEkMIi/+PQlwdX8vWlTzs14hBPhSP8AXb083Or71CzXLBdOimvWQXjhkRLrrxh87RszKlRx78imu7drFFMCjalV8ujyIT5cuFGvQAHFxgaNrYWF3OL4OvMvblSCkOBseA0DZyj523CH7aKKglFLqttK2bVsOHDiQbt/uPfsoVzGQj0MOExp5kdDIS4Sf/zspqFqmBHfeUZrebarSIMCXBgEl8SnmnqP6jDHE7dvH5RUruLJyJXEHDwFQrH59yg4dgk/nznjUqGH1jzAGjq2FkP+D43+CdwXo+n9WguBe3O7vum7xQSB9H4W8pomCUkqp28q/Bg6iy93t6f6vYXjXbc/2HdvZv3gGpTs8z+Tl+6niV4KGAaV4tuUdNLS1FPgWz1lSkMqYv0cqrFhJwsmT4OJCiaZNKf/GKHw6dcI9ICBdeY6stl4xpCYIk6Fpr1wlCPlJEwWllFJ2GTduHG+//Xa6feXLl+fUqVPZnOE4V+IS2WN7fbA7whqWeCT6Kp739GTZ0s8wl2fg6u1NmZbNqNvSn+9HdqG0lwejFs7jf6v287801wos45/6GmHof2ez89iRdHXVKl+BDxrcSWDkSRJORnF8yQ+Iuztebdvi/9JAvO++Gze/DH0GjIGjqyFkMpxYDz4VbQlCb3Av5tibk0c0UVBKKWW3OnXqEBISkvrZ1dXV4XUxVWSRAAAgAElEQVRei09iz8lLqRMY7Y64yJHoq6SM8r94+id8irnx2uOD2HHH3RxoFoC769+LM5Xx9qS0l4dddZqkJJIvXiTxwgUubdxM+IdzGOPlhXeHDvgMHoZXu/a4entlcaKBIyFWC8KJDeBTCe6fCnc+X2gShBSaKCillLKbm5sbFSpkXIYn78QlJrE/KobdkZfYHW71KfjrdAzJtqSgrI8njQJ9ebhRAMGBJWkQ4MsTU9cAMKhTLehU64bXn/Rcn2yPJZ4/z7iSZYg5vYOr69djEhJw9fPDp1MnfEZ3pkSrVrh4ZJNwGANH/rBaEMI3WgnCA9OgyT8KXYKQQhMFpZRSdjty5AgBAQF4eHjQsmVLJk6cSPXq1XN1rYSkZA6evsLuiItWYhBxkQOnYkhIsrKC0iXcaRhYii71ytMwsBQNA30pXzJvH7oJkZGp/Q1it2+H5GTcAwIo/cwz+HTpTPEmTZAbtZoYA4d/t1oQwjdByQArQbjzeXDzzNNY02rVvcbNC90iTRSUUkrZpWXLlnz22WcEBQVx5swZJkyYQJs2bdizZw9lypS54blJyYYjZ6+wO+JSamKw9+Rl4hKTAfAp5kbDQF9euKs6DQN9aRjoS0Cp4nk2o2IKYwzxhw4Rs3Ill1esIG6vtZCSZ61a+Pfvh0+XLngGBd28XmPg8CqrBSFiM5QMhAffs1oQHJggpKhYw9fhdWiioJRSyi73339/us+tWrWievXqzJ8/n1dffTV1vzGG4+di2RVxkdAIa0GkPZGXuBqfBEAJD1caVPLlH63uIDjQl4aBpbjDrwQuLnmbFKTGk5zM9dBQYlasIGbFSuKPHwegeOPGlBsx3BrGeMcdObyYgUOrYPX/QcQWW4LwPjR5Ll8ShBRRhy8Bjk0YNFFQSil1S7y9valfvz47w/axPCyKXbbWgtCIS1y+ngiAp5sL9SqV5PGmgamvD6qX9cY1D5OCh5q2yLQvywWX3NzwatECv9698L6nE+7l7VhVMiVBCJkEkVutBOGhD6Dxs/maIKTY+N1hQOdRUEopVcBcuBrProiL7I64xLYjp1m3dTdeiQGsWbgdNxchqKIPDzWqREPbwki1y/ukG4HgCMMf6QHcZMGlLp3x7tABV187fwM3Bg6ttCUI28C3Mjw03ZYg2DeSorDRREEppdQNXY1LJDTyEjN/+YkEKcOf/8/eeYdHVW19+D3pvRdIJ4RAICRA6DVAQHovihcpKiiooKIo6rVcxY/eu3QLIghKU3pHgUACSC8hQCC9t2n7+2OSANJSZjJJOO/z5EnmnH32WjNJzvxm71XWrSbb1Ysc9R1EXi7in2jU+Zk4B5gyfYAfXUPrsCvqJDO2fM/R0w/PtfadCXi7uPLzkQMs+nP7I7Y2TJiEi509q/buYtX+3Y+c3/7Jl1iZW7Dwj62sP3qo6LhQqWhvZctr8clkHTqMyMu733CpUwTWrVphZFmKwkZCwJVdWoEQdwrsfaDnHAgdUuUFQiGyUJCRkZGRKaIoLfF2WtEWwpWELISAe7cPYmNpi6MyjbS9e1BmpGFqZYW9lwd+PYZi7epC3er2WJjqv6YCgFAoUKemoU5NQZ2ZyXYhMNYY8Xq/fth2itA2XDItYcXFoskFXNlZIBBOg4MP9JwLoS89NwKhEEkUVqqogjRu3FicPHnS0G7IyMjIVEjUGsG1xCyibqVpMxBup3PxbiYKtTYDwdnarCDzwIEG3g58unYapsZG7P9qisF8Lmy4lLlrN7nR0UBhw6UIbCMisKhfX9twqbQIAZf/1AYpFgqEth9oBYJxKUWHHtk04xTwcIyCJEmRQojGurIhryjIyMjIPAcIIYhLzyP6VhrRt9KIKihilFOQgWBjbkJ9T3tGtPYjtCDY8N9pifqOMXiS3/kXLhSIg133Gy7Vrftow6WyGYLLf2ibNd2NAgdf6DUfQl+skAKhkNaDnl5YShfIQkFGRkZGh0yePJlPPvmEsWPHMn/+fIP5kZ6r1G4f3Eoj6lY60bfTSMzMB8DM2IggDzsGFmQghHrb4+9io7e0xJIi1GpyT50qylRQ3rnz9IZLZTIm4NIO7QrC3Whw9IPeCyBkcIUWCIXos710IbJQkJGRkdERf/31F8uWLSMkJKRc7ear1Fy4m3l/teB2GtcTs4vO+7ta0ybAhQY+DoR6OVCnui3mJuUTR1BcNAoFOceOacXBnr2oU1K0DZdatsRlzJuPb7hUFoSAS9u1Kwj3zoBjDei9EEIGVQqBUMitCykAeAfp8LX5F7JQkJGRkdEB6enpvPzyyyxfvpyvvvpKb3Y0GsGN5OwHREE6F+IyiuIKXGzMaeDtQL+GnjTwdqS+VylaKD+ByUOG6WSeQtRZ2WQfPEDm7t1kHTiIJjsbo8KGS50intxwqSwIARe3aUstFwqEPoug/iAwrnxviSe3xwCyUJCRkZGp8IwaNYoBAwbQoUMHnQqFhMw8om+la4VBwVZCYREjKzNjbVxBKz8aeDsQ6u1AdXsLnZc7LqRlnbplnkOVkkLW3r1k7tpN9rFjCIUCYycn7Lp1xbZTp6c3XCoLGg1cKhQIZ8HJH/oshvoDK6VAKE/kV0dGRkamjCxbtoyrV6+ydu3aMs2Tp9S2UT4dm8bpWG3A4Z20XACMjSRqu9vSPcSDBt72NPB2JMBNt5UNn8XRi+eBkguGJzZceuml4jVcKgsaDVzcCgemQvxZcKoJfZdA8ABZIBQT+VWSkZGRKQOXLl1i0qRJHDp0CLMSfBIWQhCbklMgClI5fSuNC3czijomejpY0sDHgRGt/Aj1diDYwx5LM8PGFUz6cTXAM9MjH2y4lLlrN3nntQKjxA2XykKRQJgC8efAOQD6LoXg/rJAKCHyqyUjIyNTBo4dO0ZSUhLBwcFFx9RqNQcPHmTx4sVkZ2djbm5ORp6SM7fSi0RB1K00UrIVgHYLIcTLntfa+NPA24GG3g646biNsr7RacOlsqDRwMUt2m6OCf9oBUK/ZVqBYFSxAjgrC7JQkJGRkSkDffr0oXHjh2vbjBgxAncvP9oOGsWnv18g6lY6VxO11Q0BAtxs6FjHjYY+jjTwdiDQ3QYTA9QoKCs6b7hUFjQauPC7dgUh4Tw414J+30FwvyotEMJfrq13G7JQkJGRkSkDDg4OKI0tOR2bStQtbWzB+cR8LmlyORetwNEqgQbeDvQM9aChjwMhXg46y0IwCGpN0ZZC5v792oZLFhbYtGlT+oZLZUGjgQu/aWMQEs6DSyD0Xw71+lZpgVCIYzUdZ4U8BlkoyMjIyJQApVrDxbuZnIpNZfW+P4m8Egkmbji6tMDESCI7ZRdqZTIWaolq0j4slMb424TyTschAHT9+jNyFYqH5uwR1rSo82H4fyc+YnNQyzaM6dKDnPw8un3z+SPnh4dHMLxDJ5Iy0hkwffIj5998oRuDW7XjVlIiQ+dOf+T8+z370bNJM05+v4ax639EKBRIZmaYenlh4uLMx1160jwxGbtrN7iXmsztjVt103CpLGg0cH6zViAkXgCX2s+VQCjkxpkkAGqEuOjNhiwUZGRkZJ5CaraCU7GpnIpNJfJmKtG30slVassep9yNJD8/iQ6hQfzvpRYEe9rz8qxTJL/6HwN7XXLSt2whcc5chLO20p9Q5KO4cQPl3Thu/7GHuIxsXq1ejcshdfH57OuyNVwqCxr1AwLhIrjWgQEroG6f50ogFBK1KxbQr1CQm0LJyMjIFKDRCK4mZnHqplYURMamFlU4NDaSqOdhRyMfRxr5OhLm68jLM74A6dlZAJWBKx06kpkYzz17G/yS0inKRzA2xnnkCN00XCoLGjX8s0krEJIuaQVCu4kFAqHyxXfoCrkplIyMjIweycpXEX0rTSsKbqZyOja1qJiRo5UpYb6ODAjzopGPIyFe9liZ/euWWTFaI5QaIQQJMdexd3NHFRdHmr01FzxdcMzOwyFX2xcCjQa39983nJNFAmEKJF0G1yAYuAqCej/XAqE8kYWCjIzMc4EQglspuUTGphQIgzQu3ctAI0CSINBNW8wozNeRRj4O1HCxfmaev5ez/pZ79YVGo0alUGBmYUlSbAzffzSOxpb2uAFuGTm0P38TS6WqaLxJ9eoGclQN536Fg1O1AsGtLgxcDUG9ZIFQzshCQUZGpkqiUGk4F5fOiRtaYXAqNpWkLG0QoY25CQ19HOjcoRZhvo408HHAzqLk++3fj/tA127rFbVKyXdvv0ZQ63BavtAT5fJVhN5KwEmdiG337mTt2YNxXl7ReMnCArd3x5evkxo1nNuo3WJIvgJu9WSBYGBkoSAjI1MlyMxTcjo2jRMxKRy/kULUrTTyVdpGSX7OVrQNdC1YLXAk0N22XEsfG5J9q5eRn51FlzHvYmxiSmiHF7C8fI1rnV9Ao1AQ/OKLuIwdg4mjI+lbtnBvxgw08QmYVK+O27vjse/Zs3wcVau0AuHgNK1AcA+GQWugTk9ZIDyFiBFl77/xLAwiFCRJGgN8AFQH/gHGCyEOPWX8EOBDIBDIAHYDE4QQ98rBXRkZmQpIQmYeJ2NSOX4jhZM3Uzgfp91GMJKgnoc9LzfzpYmfI439nHC1NdeLD+NXLAFg9sjRepm/NNyIiuTayb+JeG0MAGaWVgihQWg0ZGzZgvOCZaju3cOqY0fcJryPeY0aRdfa9+xZfsKgELUKzm0oEAhXCwTCWqjTQxYIxcDWSf8VPMtdKEiSNBiYA4wBDhd83yFJUl0hROxjxrcC1gITgM2AO7AQ+AHoWF5+y8jIGA4hBDeSsrXCICaFkzEpxCTnAGBhakRDb0fe6lCLJn6ONPRxxMa8fG5tUTHXy8XO08hOS+XSsUOEdOyCiZkZqXfvcCMqkrysLCxsbGg16GWyjx8nZuAg8v75B4u6dfGYMgXrZk0fO98fN/4AoEuNLvp1XK2Cs79oBULKNXCvD4O/h9rdZYFQAq6cjAegVmN3vdkwxIrCe8AqIcSygsdvS5LUBXgT+Pgx41sAt4UQswoe35AkaR4wT/+uysjIGAKVWsP5uxmciEnlRMGKQWF8gaOVKY39nHi5mS+N/RwJ9rTHtBKWPy4tQghS7tzC0s4eKzt7Em5cY9+qpbh4++ITHEpop2407NITSZLIv3GDhOkzyNqzB5Nq1fCYOgW7Hj2emuL486WfAT0KBbUKzq4vEAjXoVp9GPwD1O4mC4RScO7AHaAKCQVJksyAMODfpcF2Ai2fcNkRYLIkST2BrYAz8CKwXV9+ysjIlC85ChVRsWkFqwXawMMchbaokbeTJW1rudKkhhNN/Byp6Wqj366DFRCh0aBU5GNmYUlGYgKr3h9D+CuvEda9Dz71Qxk5ewmO1T0BMDYxQZWaStKChaSuW4eRmRmu48fjNHwYRhYGbDSlVsGZn7UCIfWGViC8+KNWIDxnv8/KRnmvKLgAxkD8v47HAxGPu0AIcUySpJfQbjVYovV5FzDsceMlSRoFjALw8fHRjdcyMjI6JTtfReTNVP66nsxf15M5czsdlUYgSVCnmh0Dw7xo7OdEEz8nqtlXri6KukZoNKx87018gkOJeG0M9m7udHvrfbyDQwEwNjEtEgma/HxSv/+epMVL0GRn4zBwIK5vv4WJiwHTONXKAoEwvUAghMCLP0HtrrJAqCQYKuvh3+Ugpccc056QpLrAXOB/wJ9oAyCnAUuAVx6ZWIilwFLQVmbUncsyMjKlJUeh4mTMo8LAxEgi1NuBUW39aVLDiUY+jpWqYVJgwRu0rjmy/ntS7tym57sfIRkZUb/jCzhUu1/PIKhN+4fGCyHI3LGDhBkzUd65g3W7trh/8AHmAQF68a9YqJUQvQ4OTYfUGKgeKguESkp5C4UkQA1U+9dxNx5dZSjkY+C4EGJaweMzkiRlA4ckSfpECHFLP67KyMiUlhzFgysGKUTfSisSBiFe9oxq609zf2fCfB2xLqfAQ32w9M13dDLPrX/OcOHwfjqNehtJkjAxM8fM0hIhBJIk0aRnvydem3PqNPFT/o+86DOY166Nz4rlWLd80k5uOaBWQvRP2hWEtJtQvQG8tA4Cu8gCoZJSrv+hQgiFJEmRQCfglwdOdQI2PuEyK7Ti4kEKH8t/dTIyFYAchYpTN9M4dj3pIWFgXMWEga7IyUjn8l9HCGodjrmVFekJ8dw4fZKs1GRsnVxo1mfgM+dQxMaSMGMmmX/+iYmrK9W/+Rr7Pn2QjMvWGGlm+MzSXahWQtSP2hWEtFitQOg6RRYIeqbL6GC92zDEf+xMYK0kScfRBiq+AXgAiwEkSVoDIIQo3FbYAiyTJOlN7m89zAZOPS6dUkZGRv/kKtQPxRhE305Dqb4vDF4vEAaNq7gwGLVoLlC8lYXUe3GYWVhi7eBIatwd9ixfiLWjI7WatCCoTXvqtetYrIZL6vR0khYtJuWHH5BMTHAZOxbnkSMwsrYu8/MBcLRwLNkFKgVE/wiHZmgFgkdD6DYdanWWBUI5YGljpncb5f4fLIT4WZIkZ+BTtG/654BuQoibBUN8/jV+lSRJtsBbwAwgHdiHtgCTjIxMOZCrUHMq9r4wiLp1XxjU97Tn1db+NPd3orGfU7nVMKgIXL5754nnhBAo8/Mws7AkJyOdFeNH03LAEFoMeAmPwDoMm74AZy/t7c7Y5NmvmVAoSF23jqQFC1FnZGDfry+u74zD1N1NZ88HYPPVzQD0Cejz9IEqBUT9AIdmQnoseDSCbjOgVidZIJQjF47eBSCopf56chjkP1oIsRBt0aTHnQt/zDG5boKMTDmi0Qj+icvg0NVEDl1OIvJmKgq1BmMjiWBPe0a2rkELf+fnThiUhB8mvYeThyfd3p6AlZ093d6egGftIAAkIyNcvH2LNY8Qgsxdu0iYMQPlzVisW7bA7cMPsahTRy9+/3b1N+ApQkGlgKjvCwTCLfAMgx4zISBCFggG4OKxKioUZGRkKh530nI5fCWRg1eSOHo1idQcJQB1qtkyrKUvLQNcaOzriG0pmic9Dxz/bQN3Lv5D34mfA1C3bXss7eyLzge1alfiOXPPniV+yhRyT0ZiFlAT7yWLsW7b1jB1JB4RCI2hx2wI6CgLhCqOLBRkZJ5TMvOU/HU9hUNXEjl8JYnrSdkAuNma076OG21qudAqwAU32+e7jsGTiLt8kdB7dzjj7gGAiZkZphaWaNRqjIyNadS1V6nnVt65Q8Ks2WRs3YqxszPVvvgChwH9kYqxRaFzVPlwukAgZNwGrybQczbUlAXC84IsFGRknhNUag3Rt9OLhMHpW2moNQJLU2Oa+TvxcnNf2tRyoZbb81f5sDjk52Rz+e8j1GzUFCt7B7JSk/HMzcHUTVs6t1HXXmUSBwDqzEySly4jZfVqkCScR4/G+fXXMLax0cVTKBmqfDi9tkAg3AGvptBrLtTsIAuE5wxZKMjIVFGEENxMzuHQlUQOXUni2PVkMvNUSBLU97TnjXb+tA5wpZGvA+YmZUupq6pkJCYgGRlh6+xCRmICOxfPpcuYd6nXriMBjZszYfUvGBmV/bUTKhWp69eTNH8B6pQU7Hr1xG38eEw9PHTwLErqjAay4mFuQ61A8G4GveeDf3tZIDynSEJU3eKFjRs3FidPnjS0GzIy5UZajoIjV5M5fFUrDm6n5gLg6WBJ20AXWge40rKmM47W+k+pqowIIVDl52NqYYEyL48Fr75Igy49CR/6KkIIkmJjcPHx09mKixCCrP37SZg2HcX161g1bozbxIlY1td/bvwjKPPg9FpyD82ErLtYejWD8I/AP1wWCBUYZUFPFFOz+4JVkqRIIURjXdmQVxRkZPTEggULWLJkCTExMQDUq1ePTz/9lO7du+vMhkYjOBeXzu4LCRy4lMCZO+kIAbbmJrSo6czotv60ruWKn7OVvJ1QDDZ88xmm5ub0+eAzTC0s6PrW+7jX0JZBliQJV98aD43/zxxtwdjvx31QYlt5588TP3UaOX/9hZmfH14L5mPToUP5/56UeXBqDRyeCZl3sfRpAX0XQY12JCUnY5Wbi5WVVfn6JFNsHhQI+kIWCjIyesLLy4spU6ZQq1YtNBoNq1evpk+fPkRGRhISElLqebPzVRy+msTeCwnsvZRAYmY+RhI09HFkXMdatKnlQqiXAybPUevl0nL6z61cPfEXAz/9GoDAZi0xMr5/W6zdos1Tr7+dnFRim8r4eBJnzSb9t98wtrfH/ZNPcHxxMJJpOWeTKPPg1Go4PAsy74JPS+i7hHX5caC4x4uSRFhYGLGxsVSrVo1atWrh7+9PzZo1qVmzJr169cLGELETMg9xdv9tAOqHe+nNhiwUZGT0RO/evR96/M0337Bo0SKOHTtWYqFwOzWHvRcT2HMhgWPXk1GoNNhamNAu0JWOQW60C3TDSd5OeCYJMdc5/ccWOox8A1Mzc4xNTDGzsECZn4epuQWhnbrpzbYmO5vk5ctJXrES1GqcRozA5Y3RGNvZ6c3mY1HmQmSBQMi6B76toN9S8GsDksSff4wA4MU6L7J8+XL69euHUqmkQ4cOeHl5cf36dX7//Xfq1KlDo0aNytd3mUe4GpkAyEJBRqbSo1ar+eWXX8jKyqJlMRr2qDWCqFup7LmQwN6LCVy8lwlADRdrXmnuS4cgN5r4OWEqrxo8FUVeLldP/IVXUDB2Lq7kpKdx5fhRGrzQA/caNQnp+AIhHV/Qqw9CrSbt119JnDsXdWISdt264vree5h56e/G/liUuRC5qkAgxINva+i/rEggPI6IiAg6duyIh4cHP/30E2FhYcyfPx8nJ6fy9V3GoMhCQUZGj5w9e5YWLVqQl5eHjY0NmzZton79+o8dm5Gn5NDlJPZciGffpQRSc5SYGEk08XPi0+5BdKjjhr+rvNT7LLJSU9CoVNi5upGbkc6O+TNoP3w0jbr2xKd+KG8u/aFYJZN14suhwyRMnUr+lStYNmiA+7x5WDZoUC62i1DmwsmVcGS2ViD4tYH+y6HG07dVCpkyZQotW7YkMjKSmTNnEhISwtKlS+nWTX+rLzIVC1koPGe0atWKGTNm0Lx5c0aNGkVgYCATJkwwtFtVltq1axMVFUVaWhobN25k2LBh7N+/n+BgbVR7TFI2uy/Es/diAsdvpKDSCBysTGlf240OddxoG+iKvaVcCfFZFG4dqFUqVr77BnVatqXTqLewd6vG0ClzcfXxA9CmMupwEaZF4OPLKOddvkzC1GlkHz6MqZcXnrNnYfvCC+UbqKjIgciVcGTOfYEwYAX4tS7RNIGBgQwZMoSpU6eyYMEC+vTpw4gRI+jUqRMzZ87E1tZWT09ApqIgp0c+Z+zcuZP58+cTERHB6dOnWblypaFdeq7o2DECK6dqNB8+iT0XE7ieqK2GGOhuQ4c67kQEudHQxxFjIzlDobj8PnMyeZmZDPr8WwAu/30EZy8fnD29y90XVWIiiXPnkbZxI0Y2Nri8+SaOLw/ByKwc40cUOXByhVYgZCdAjbbQ7iPwa1Wsy0cUxCis7HL/3pCUlERQUBCnT5/Gy8uLjIwM3nvvPfbs2cPKlSsJDw/XxzORKQabZpwCoO/79+NFdJ0eKQuF55CmTZtiZWXFzp07MTMzo1GjRrRs2ZLU1FQGDhxInz7P6BonUyLylGoOXE5k+9m7LP94BFg54tHnQ5r5OxER5E6HOm54O8npZ8Xl3P7dnNu3k8FfTEGSJM7t24UyP4+GXXoazCdNbi4pq1aRtOw7hEKB45CXcHnzTUwcS9iyuSwosh8QCIlQo522DoLvs2NiisP58+epWbMm5ubmRce2bdvGqFGjGDRoEJMnT8bS0lIntmTKhlxHQaZMnDp1iqSkJIKDgzEzM+PatWt06NCB6dOno9Fo6Ny5sywUdEC+Ss2wN8aj9mpAdKoJWVlZqC8fIvvmGb5asJZ3R3aSuy4Wk+Tbt4jcvpm2L4/AwtoGY1NTzCytyMvOwtLGluD2nQzmW/+pX6OMi2PG6fOo4uOx7RSB2/vvY+bnV35O/Fsg+IdrVxB8W+jUTN26dR851r17d86cOcNbb71Fw4YNWbNmDU2bNtWpXRnDI9+pniPi4uIYOXIku3fvZvDgwURFRXH16lXCwsIAMDIywtra2sBeloyFCxcybdo07t69S7169Zg9ezZt2hQvSKu4BZHu3r3LRx99xPbt28nMzMTf359FixbRrt39boALFy5k6rRpxMXdxdHTn6w6QeRdOouIX4XIzcHI2BgTE2MsLSyY+9/xzJvzJb7hrbF2cy2ao0dYUyb07g9A+H8nPuLvoJZtGNOlBzn5eXT75vNHzg8Pj2B4h04kZaQzYPrkR86/+UI3Brdqx62kRIbOnf7I+fd79qNnk2ZcunOb0Use7er+af8XiQhtSNSNa4xfufSR85OHDKNlnbocvXieST+ufuT87BGjaFCjJrujT/P1xnWPnF8y+m1qe3rx29HDrPvle9LNLckxM8MxN4dmt2/iEtKIRs1bcQZYlJPL3KlfP3T9hgmTcLGzZ9XeXazav/uR+bd/8iVW5hYs/GMr648eeuT8/q+mADD9t41sjTz+0DlLMzN2fPo/AP73y4/sORuNOiOD6Nib1MnJxcTVFc/p07Bq0uSRefWGIhtOLNcKhJwkbYnl8I/Ap3mZpl11bhUAw4OHF2u8s7MzP/30E+vXr6dXr168/vrrfPbZZ5iV53bLc8zpnbEANOzsozcbcm7Vc0Jubi4DBw5kzpw5+Pv7M2nSJP73v/9x6tSpIqGwf/9+GpR3RHYZ+Pnnnxk3bhyTJk3i9OnTtGzZkq5duxIbG1us6wsLIp06dYqTJ0/SoUMH+vTpw5kzZ4rGpKWl0apVK4QQbNu2jQsXLjBv3jzc3NwAUKo1/HfWUt5+Zxyq4N64Dp2N2qUWubu3ULtjG9q8+ybtPpmAvbcn3Ya/wvHjx9m7dy+SkRHR369HmZurl9emsmGmUpFTULxIo1yHydIAACAASURBVFAQFncbz8x0AFItLNlZszauAYGGdLEIVUoq+Zcvk3/xIkEqDS9HdMFv/c/lJxIU2VpxMDsEdn0G1UNg5E54ZXOZRQLAgdsHOHD7QImvGzRoEFFRUURFRdGsWTPOnj1bZl9knk3M2SRizpa88FeJEEJU2a+wsDAh83S6du0qxo4dK8aNGycmTZokcnNzDe1SsWnatKl47bXXHjoWEBAgPvroo1LP6ejoKBYvXlz0+OOPPxYtW7Z8aIxSpRYHLyeID3+JFqFf/inMqgcKx4ZdxLs/nxZ7LtwT+Ur1M/3IzMwURkZG4vfffy+1r5UdRX6eEEIIjUYjFo36j9g6Z2rRuXvXrwq1WmUo1x6LMjlZ3P3yS3G+bj1xsVGYSFyyVKjL8/8lL1OIQ7OEmFJDiM/thFjTV4jYv3VuZviO4WL4juGlvl6j0YgVK1YIFxcX8e233wqVqmL9Hqsav06PFL9Oj3zoGHBS6PC9VN56eM7Zvn27Qe1PnjyZyZMfXSZ/kB07djyynaBQKIiMjHwktbNz584cPXq0xH48qSDS5s2b6dKlC4MGDWLXnn2Y2TljVi8Co3pdsDE3oUOgE2cTrjF/5lcMGaRdjfn4+5XY+Xo/1Y/MzEw0Gg2O5RnsVoH4c/EcEm/G8J9vZyFJEh1fG4O9q3vRefcaNQ3o3cNo8vNJWbOG5CVL0eTm4jh4EC5jx2Li7Fw+DuRnwYllcHQe5CRDQIQ2BsG7HLc5SoAkSYwYMYIOHTowcuRIfvvtN1avXk1gYMVYEZIpObJQkDEob7zxBoMGDXrqGE9Pz0eOJSUloVarcXd3f+i4u7s7u3c/uj/9JJ5WEEmtEVy7dp258xfg2rwvlr0+g+QY4ncu5vVQD2Z8NpGUxHjmq9V4eVQvmvPY5YskqxRk3Ut8ot1x48bRoEEDWrTQbcBZReXSscNEbt3E4C+nYGxigk9wKE4eXgghkCSJWk0q3usghCBj23YSZ85EGReHTXg4bh9MwLxmOYmY/Ew4XiAQclMgoJM2BsFLZ8HsesXX15ddu3axcOFCWrZsyeeff87YsWMxMpJ3vCsbslCQMShOTk5lKgf77wI2hW88xeVxBZHmff8bF/Pt2X7uHgqVGkuPWvR740N61K9OeG03/veFBZt+XYvFN5Oe6AfiMccKeO+99zh8+DCHDx/G2Fj/nd8MQVr8PSK3baJZ38HYODphYmaKqaUluRnp2Dg5E9Q63NAuPpWcyEjip0wl78wZzIOC8Pnma6zLS9TlZ8LxpXB0/gMC4WPwCisX8+Ym5s8eVEyMjIx466236Ny5M8OGDWPz5s2sWLECX19fndl43jEx07/wei6FQmJiIps3b+bs2bOkpqaSmZlpMF8+/PDDR2r/V/V2wOKB2h2l3XpwcXHB2NiYe/fuPXQ8ISHhkVWGp2FmZkZAQAA3krKxa/sKyl/+5PUPv8Sz17t0qOPGTXd3unVqzoIh94uZBAUFMWfOnKf6oczJwfcxfrz77rusW7eOffv24e/vX2w/KzpqlZIbpyNxrO6Js5c3KkU+5/btxr9RU2wcnagZ1oyaYc0M7eYzUdy8ScL0GWTu2oWJmxvVJ0/GvncvpPIQdHkZWoFwbD7kpkKtF6DdxHITCIUsjlis8zkDAwM5fPgw06dPp3HjxkydOpXhw4dX+XtdedDzbf0HoD83QiEvL481a9bwyy+/cOLECbp06ULz5s1xcnLC1tbWYH+wtWvXfuRYbGwsQ4cOJSEhAVNTUz7//HP69ev3xDkWLFjAokWLAG0xpWXLlhn8k2qvXr04dOgQHTt2ZMOGDU8cV9qtBzMzM8LCwti1axcDBw4sOr5r1y769+9fLB/zlGr+/OcePx2P5a/rKRgbSVibGRHobcO2zzphbW5C+va2XLty5aHrLl++XPSJ6El+pF6PoeWo0Q9dN27cONatW8f+/fupU+fxpX8rE3nZWeRlZuJQrToqhZKts/+PRt160/blETh7+TDmux8wNbcwtJvFQp2WRtKiRaT8+BOSqSku77yN8/DhGFmVQyGsvAw4vgSOLbgvEMIngmf5CgR9Y2xszMSJE+nWrRtDhw5l06ZNLF26lGrVqhnaNZlnocvIyIr2VZj1kJOTIzp37iwiIiLEhg0bRHZ2dvHCSQ1EXFycOH36tBBCiPj4eOHl5fVEnxMTE4W/v7/Izc0VGo1G9OjRQ2zZskXvPu7bt098/vnnTzy/d+9e8fvvv4v+/fvrzYd169YJU1NTsWzZMnH+/HnxzjvvCGtraxETE/PU6y7dyxBf/H5OuLYeJNyH/J9oPPEH8fF3W8Xb704QkiSJ7du3F409fvy4MDExEV9//bW4cuWKWL9+vbCzsxPz589/oh+127YSJmZmD/kxZswYYWtrK/bs2SPu3r1b9JWZman7F0aPKPPzi35ePu518ev/fVH0+N71q0KlVBrCrVKjzs8XSStWiotNmorzQXVF3KefCkV8fPkYz00XYv9UIb710WYx/DBIiNuRz75OzyyKWiQWRS3Sq438/Hzx6aefCnd3d/Hzzz/r1VZV5/jW6+L41usPHUPHWQ8GfzPX51dYWFiRSBgyZIhQVrKbWCH169cXN2/efOy5+Ph44ePjI1JTU4VCoRAdO3YUx48fF4mJicLX11cIIYRKpRKhoaE6TVN6llAoHKNPoSCEEAsWLBC+vr7CzMxMNGrUSBw4cOCh8ytXrhSAOH/pivj5RKzou+Cw8J24VQRM2iZqt+kh3D28hJmZmXB1dRUdO3YUf/zxxyM2tm7dKkJCQoS5ubmoVauWmDNnjtBoNCXyA3js17New4rE3lVLxYrxo4ue+9WTf4u4KxcN7FXp0Gg0In3HH+JKRCdxvnYdcXPkqyL34qXyMZ6bJsT+KQ8IhMFC3DlVPraLQVnTI0vC33//LerUqSNefPFFkZSUVC42qxpyeqQOGDlyJC4uLqxevRqTcmotq0tOnjyJUqnE2/vxDW7c3NyYMGECPj4+mJqa8tJLL9GkoPBLSkoKoF3yq1atGjdu3CAgIKDcfC8PxowZw5gxY554/u/oC7h412Tg2stkKQX+rtZ80i2Ifo08cf6meG1yu3fv/ki1xpL6of3frVxcP3WCYxt+ZNDn32JqboFXnXpY2NigUasxNjGhZljlLNWbGx1N/JSp5J46hXmtALyXLcWmmNU8y0ReOvy1GP5aoP25djdo9yF4NNS/7QpK06ZNOXXqFJMmTSpqX/2s/zWZ8qfyvXOWAJVKxfbt24mLi6uUIiE5OZlXXnmF5cuXPzGGIjU1lW3bthETE4OlpSVdu3Zl//79hIeH4+joSHJyMk5OTty6dQsXF5en2vviiy/44osvnjqmffv2pKamkpWVRVZWFps3bwZg48aN1CyvtLFnkJmn5PfoONYdv8XOdZtw6/ganYM9eLGpD038HPUejzJ+xRIAZo8c/YyRFYvM5CQit22iQeceOFSrjomZOSZm5mSnpeHgXo1azVpSq5luGgwZAsXtOyTOnEnG9u0Yu7hQ7asvcejXD0nf94bcNPh7Mfy1sEAgdC8QCJWnCqo+sbS0ZNasWfTu3ZsRI0awadMmZs6ciZ2dnaFdkymg8r17loC0tDReeOGFSte/ACA/P5++ffvy8ccfP5IV8SC7d++mZs2aRSmG3bt35/jx44SHh1O9enXu3r3L+vXradOmDWlpaQwYMICIiAiuXLlC06ZN2bp1KytWrCA7OxtJkoiJiWHUqFG88MILXLhwge++++4he/v27QO05Z7379//TGFRXgghOH0rjXXHY9kSfZdcpZo61WxZunEnfRp4Ym9lWm6+RMVcLzdbZUGjVnPzzGmsHZ1w8/NHaDRE7dxO9VpBOFSrjk9wCD7BIYZ2s8yoMzJIWrKE1DVrwdgY5zffwPnV1zC20fN9ITcN/lqk/cpPhzo9tAKheqh+7VZSwsPDOXPmDO+//z4hISGsXLmS9u3bG9otGaq4UChsm1zZEEIwfPhwOnTowNChQx8617FjR9asWVOUCeDt7c2xY8fIy8vD1NSU/fv3M2rUKAA8PDz46aef2LdvH7t27WL37t0MGjSIUaNG0aVLF0aPHk1GRgYJCQlcvXqV0NBQoqOj6d+/P6NHj2bYsGHl/txLSlqOgk2n77Du+C0uxWdiZWZM7wba1YNQL3s5/epfKHJzyE5LxbG6JxqNhq1zphDUOpyI18Zi5+rG2O9+wtSicmQqPAuhVJL683qS5s9HnZ6Ofa9euL47HlN9R9nnphYIhMUPCISJ2p4MlQAHcweD2ba1tWXp0qXs2LGDoUOHMmDAACZPnoxVeWSfVFIsbPT/IajKCgVJkswkSaJbt+LtQ1ckjhw5ws8//0xISEjR0v7atWsJDg7m6tWrDxUoat68OV27dqVhw4YYGRnRsWNHevXqBUD16tX5/fff2bt3L9bW1kRHRzN06FAyMjIICgoC4MqVKwQGBrJx40aGDh3K2rVrGTp0KEKIMqVYRkREEB0dTXZ2Nl5eXvzyyy86q0IohODvGymsOx5bUBRJQ6iXPd/2q0/PUA+5ffO/UCmVmJhqbybrv5qEqbkFg7/4P0xMTRn0+f/h7Hk//qUqiAQhBFn79pEwbTqKGzewatYMtw8/wLJePf0azk2FYwu12wz5GZVOIBQyq/0sQ7tA165dOXPmDG+//XZR++pmzSp+HQ5D0HV0fb3bqMp3VCdjY+NKue3QunVrNBrNI8cvXLhA//79sbS0fOj4N998wzfffPPI+AULFjz0+MaNG/j5+XH48GFCQ7XLn2q1GlNT06Jzhd+vXr361JiD8PBwwsPDn3i+JGWUi0t2voqfjsfy4/FYridmY2thwotNvHmxiQ91PeT9zMdxZP0P/LN/N6/PX45kZESrwUMxNb9fea8i9VTQBbn//EPClKnkHD+OWY0aeC1ciE37cP2uLOWkaOMP/l6iFQhBPbUCoZr+b+BVGScnJ3744Qc2bNhA7969efXVV/n888/l9tUGQKqM0djFQZKkOubm5hfy8vIM7YpMGUnPVbLmaAzLj9wgLUdJY19HXmzqQ/f61bE0q3glkEctmgvA0jffKXfbsefOcOinVfT7+EssbWy5fvoEdy9fpGmfgZWm+FFpUN69S+Ls2aT/9jvGjo64vDUWx0GDkEz1uCybk6ItkvT3ElBkQlCvAoEQrD+b5cDsyNkAjA8bb2BP7hMfH8+oUaOIiYlhzZo1RR90ZODYpmsAtOh7X/RLkhQphNBZU5CqvKJgKu9PV26Ss/JZceQGa47eJDNfRUSQG2PbB9DQp2J3XCxPgZCdlsqp7b8R1DocFx8/zCwskCSJ7NQULG1s8W/YBP+GFbPLoC5QZ2WT/N0yUlauAiFwfu1VnEePxtjWVn9Gc1K0ZZb/XlqlBEIh0YnRhnbhEdzd3dm8eTNr1qyhU6dOjB8/ng8//LBSZrPpmnvX0/VuQ36VZSoc8Rl5LDt4nR/+jiVPpaZb/eqMDQ+QtxcAodEQ+88ZzK2sqVazFpKREZHbf8OhugcuPn5UCwhkyNczDO2m3hEqFWkbfyVx3jzUSUnYde+O67vvYub1aLlvnZGdrBUIx5eCIgvq9tFmMbjrOfZBBtD2wBk2bBjt27dn5MiR/P7776xevfqxZfBldIssFGQqDLdTc1h84BrrT95GrRH0buDBmPAAAtxsDO1aidD11oNSkU9WchKO1T0RCLbPm45PcCjd3/kAKzt7xnz3I2YWls+eqIqQdegQCVOnkn/lKpaNGuG+YD6W+lyKfkggZEO9PtD2Q3Cvqz+bMk/Ex8eHnTt3smjRIlq3bs1nn33GW2+9Jbev1iMGEQqSJI0BPgCqA/8A44UQh54y3gz4FBgKeADxwHQhxNxycFdGz9xIymbhvqtsOn0HSYIBYd682a4mPs6VMyXq8t07ZZ7jwUyFzVO+JC8rm6FT5mBkZEz/SV/hWN2jaOzzIhLyLl0iYeo0so8cwdTHB8+5c7Dt1El/gYrZyXBsnnaLQZkD9fpqVxDcgvRjT6bYGBkZMXbsWDp37szw4cPZvHkzO3bswNxcdy2yZe5TbKEgSdI8IAo4A5wTQuSWxqAkSYOBOcAY4HDB9x2SJNUVQsQ+4bKfAG9gFHAFcAeej7tjFebSvUwW7LvK1jNxmBob8Z/mvoxu5091++f7V3tiy6+c3PIroxauwtjEhKa9ByG4H3Ts5ld12lMXB2VCAolz55L+6yaMbG1x//gjHF96CUlf0e/ZSXB0HhxfphUIwf20Kwhulb/jZ3Fwty5+m3ZDU6tWLQ4ePMivv/763K4o2DjqXxwVO+tBkqTuQAgQChRG7fyDVjicEUJsKeY8fxeMf/2BY1eADUKIjx8zvjPwC1BTCJFULGe119W3sLA4k5tbKj0jo0fO3k5n/r4r/PlPPNZmxvynhS+vtfbH1bZqfBoI/+9EAPZ/NaVY4+MuX+TA2uX0GD8RW2cXYs9FcyMqkub9BmNuVfnSe3WFJieH5JUrSV6+AqFU4jRkCC5vvoGxg54KAmUnwdG5cPy7AoHQH9p+8NwIBJmqg8GyHoQQ24BtDzhijlYwhAIdgGcKhYIthDBg+r9O7QSeVKe4D3ACeE+SpFeAXGAHMEkIkVVc/2UMz8mYFObtvcqBy4nYWZgwrmMtRrTyw8Hq+cqLzsvKInL7b9Rs1IRqAYGYW1mjUijITkvF1tkFn+BQfIKf3/QvoVaTvvk3EufMQZWQgG3nzri9/x5mvr76MZiVqBUIJ74DZS7UH6AVCK5ykJyMDJQiRkGSJAtgOOAKnAfWCiGUxbzcBTBGG2PwIPFAxBOu8QdaA/lAf8ABmIc2VmHAY/wbhXaLwlKtVhfTLRl9IYTg6LVk5u29wl/XU3CyNuPDLrUZ2twXW4vy679QnjT419aAEII7F//ByNgYj8AgjEyMObn1VyysbagWEIizlzdDp8wxkLcVi+xjx4ifMpX8ixexCA3Bc/YsrBo10o+xrEQ4OgdOLAdVHgQXCoRA/dirJEw5rl0Jm9h0ooE9kSkOh9ZfBqDNIP393ZYmmPFntHECF4G2wJeSJA0UQlwowRz/3u+QHnOsEKOCc0OEEOkAkiS9BfwpSZK7EOIh0SGEWAoslSSpvrGx8ZkS+CSjQ4QQ7L2YwPx9Vzkdm4a7nTmf9ajLS029sTKr2sk2s0eORqVUkhJ3BycPbbreH4tm4+zpTd+Jn2NmYcmbS9ZiZlk5gzX1Qf61ayRMnUbWgQOYenjgMWM6dt266SdQMSsBjhQIBHU+1B+oFQgutXRvqxJyMeWioV2oUHzzzTds376dqKgocnJyKlzL+KRb+l9YL80du4YQonfhA0mSQoClQHEauicBauDfXVnceHSVoZC7wJ1CkVBAoSjxecp1MgZAoxH8+c895u29yvm7GXg5WvJ1n2AGhHlhYVrxqijqErVKibGJdpVk25wpJMXeZOScpUiSRK/3JmHvdv/PXhYJWlTJySTOn0/a+l8wsrTEbcL7OA4dipE+otcz4wu2GAoFwqACgRCge1syVYb8/Hz69etHeHg4kydPNrQ7BqE0QiFTkqQQIcQZACHEGUmS7ItzoRBCIUlSJNAJbYBiIZ2AjU+47AgwUJIkmwdiEgrXWG6W3H0ZfXHpXiaTNp0l8mYq/i7WTB8YSu8GHpgaV/1o5OhdOzj00ypGL1zNiCXzsMnJ5cPho0AIkKTnLlPhWWjy8khZvYbkpUvR5OXhOHgwLm+NxeSBhmc6IzNeu4JwcjmoFRAyGNpMkAVCFSUnJ4cxY8awYcMGrK2tGTduHEePHsXFxYVVq1aVeL6vvvoKgA0bNujY08pDaYTCKOBnSZJ2AWeBOkBMCa6fCayVJOk4WhHwBtp4g8UAkiStARBCvFIw/kfgM2ClJElfoI1RmIM2SyKhFP7L6Jg8pZp5e6+w5MB1bC1MmDYghH6NvDA2qroltBNv3mDfqqVEvD4WJw8vXH1rUK9dBEpFPreTtck5/o2qbunk0iI0GjK2bSNh1ixUcXex6dABtwkTMPevoXtjmfcKBMIKUCu1AqHtBHCuWo2wZB5mwoQJ7Nq1i40bN+Lp6cmXX37JwYMH6devHwBvvPEG33///VPnOH/+PD4+PuXhbqWgxEJBCPGPJElhaLMRgoCrwOcluP5nSZKc0RZQqg6cA7oJIQpXB3z+NT5LkqQItAGMJ4BUYDPwUUl9l9E9R64m8cmms8Qk59C/kRefdA/CybrqZTEo8nI5vWMLnnXq4hUUjIWNLbmZGeSkpeHk4YVHYB08AuU0uqeRc+IE8VOmknfuHBZ16+Ix+Vusm+uhdXDmPTg8GyJXagVC6IvQ5n1ZIBQTXzs9ZZeUA1lZWSxfvpwVK1bwwgsvALBy5Uq8vLyKxnz11VdMmDDhqfN4eHg89XxFwsFd/9uYpcl6aAD0BZKBg8DZkhZfEkIsBBY+4Vz4Y45dAjqX1FcZ/ZGSreDrbef59dQd/Jyt+OG1ZrQKcDG0Wzrl7tVLqJVKvIKCMTYx4cSWjWg0aryCgrF1dmHY9AXPnkQGRUwM8dOnk7V7Dybu7lT/v2+x79ULSdcFcjLuwpHZELmqQCC8BG3fByd526ckfNHyC0O7UGquXbuGQqGgRYsWRcdsbGyoX/9+y283Nzfc3NwM4Z5eaP8f/X9AKc3Ww+/At2jTHAcD30iS5CqEkDf8ngOEEGw8dYdvtp0nM0/FW+0DeKtDQJUIVNSo1aTF3yvKVNi1dD7mVtYM/uL/MDYx5fX5KzG3koMQi4sqNZWkhYtI/eknjMzMcB0/DqdhwzCy1HHlzYy4ghWEVaBRQYOXtCsIskB47ihORoK89VBySiMUbgshFuncE5kKz42kbD7ZdJaj15IJ83Xk2371CXTXYzvfckCtUmFc0Kp255K5xESfYvSi1UhGRnQd+x62zq5FY4srElo851sQGoWC1O9/IGnxYjRZWTgMGIDr229h4ur67ItLQkYcHJ4FkatBqLUrCG3eByc9xDs8R3xx9Avt90q4shAQEICpqSl//fUX/v5aoZidnc25c+eoWVO79VTVth72fa9NZ9XnykJphMIuSZJeE0J8p3NvZCokCpWGpQevMXfvVcxNjPi6TzBDmvpgVMmDFS8c3s/u7xby2rzvsLS1IySiCzUbN0MIgQS4+pbuDefb/4zQraOVBCEEmX/8QcKMmShv38a6TRvcPpiARaCOC8EUCYRVIDTQYIhWIDj66dbOc8rNjMqbTGZjY8Orr77KxIkTcXV1xcPDg6+++ooHi++VdOshNjaWlJQUYmJiAIiKigK0osTGxvCdbdPic/RuozRCoSEwVJKkT9AGF0ZTgl4PMpWLyJspfPzrWS7HZ9G9fnU+71kXNzsLQ7tVKlLi7rB35WLavDQMd/8AnL18CGrTHpVSAYBHoNwVsLTknD5NwpSp5EZFYR4YiPd332HTupVujaTf0QqEU6sLBMLLBQKh8gbfyeie6dOnk52dTd++fbGysuLtt98mOzu71PP997//ZfXq1UWPGzZsCMC+ffsIDw8vq7uVgtJkPfQCkCTJBm2vh2C05ZdloVCFSM9VMvWPi/zwdyyeDpYsH9aYjkGVp6scgEqh4PSfW3Hz9cc3pAGWdnZkJiWSk6Gt3eXm50/Eq2/q3G7/qV8DsPHDT3U+d0VDcesWCTNnkrnjD4xdXaj+9f+w79sXyViHMSvptwsEwhqtQGj4H2j9niwQZB6LtbU1a9asYc2aNUXHevToUer5Vq1aVar6C1WJ0vZ66ATkAeeFEH/p3CsZgyGEYPvZe3yx5R+Ss/J5tXUN3usUiLV55Si7nBBznfzsLLzrhWBsYkLkts3UadVOKxRsbBkxa7HefUjOytS7DUOjzsggadFiUr//HoyNcRkzBudXR2JkrcNul+m34dBMOL1WW7iq4X+gzXvgIAeZyciUJ6W5+28CrqPNeEiWJMkF7dZDe516JlPu3EnL5b+bz7HnYgLBnnasGNaE+l7FKrppMDQaNWn37mcq7F25GEVeHq9MmYtkZMSImYue61bNukYolaT+tI6kBQtQZ2Rg37cvruPewdRdh6tNabfg8Ew4tVb7uNFQ7QqCg7fubMg8kTpOz3cwbmXDxVv/cRKlEQoeQoiukiS1EkI0kCRpNFC51qRlHkKl1rDqaAwzd11GCPi0exDDW/phUkFLLz+YqbB/9Xf8c2APY777AWMTUyJeHYOVvUPRWFkk6AYhBFl79pAwbTqKmzexatEc9w8/xCJIh3EdabEFKwgFqWuNXoHW78oCoZypil0jt27damgX9IY+u0YWUhqhUFhcSSFJkpkQYokkSfuBr3Tnlkx5ce5OOh/9eoZzdzLoUMeNr3rXw8ux4tYKuHryb/5YMJNXps3DzsWNeu06PlQR0cXHz3DOVVFyz54jYcoUck6exKxmTbwWL8KmXTvddXZ8UCBIEoQN0woEe69nXysjI6N3SiMU5kiS5IS2qdNiSZKO8a+yyzIVn+x8FbN2XWbFkRs425izYEgjutWvpp+2vmUgIymBPcsX0aRnf7zqBuPs5U2tZq3QqDUAuPsH4O5fsWp9dawfamgXdIIyLo6EWbPJ2LIFYycnqn3+XxwGDkQy0VG8SupNODQDon6UBUIF4qND2ur4/9fm/wzsiUxx2LXiHwA6jaynNxulyXr4qeDHaZIkvYI266H3Uy6RqWDsv5TAJ5vOcSctlyHNfJjYpQ72lqaGdgvQVkeM2rkNezd3aoY1w9LGjrR7d8nJ1GYqOFbz4IU33jGwl0/ns4FDDO1CmVBnZZG8dBkpq1eDEDiPGoXzqNcx1lXOeGrMAwLBCMKGFwgET93ML1Mm4rPjDe2CTAnISs3Xu40yfTQQQqx59iiZisR3h67z9bYL1HKzYcMbLWjsp4e2viUk+c4tspKT8Q1pgGRkxOk/tuBdL4SaYc0wtbAol0wFGRAqFWkbNpA4bz7qN1NM/AAAIABJREFU5GTsevbE7d3xmOqqSl1qDBycDtE/gWQMjUdCq/GyQJCRqeCUtSnUObRNoRJ17ZiMbtFoBJO3X+C7wzfoGlyNWYMbGKw/gxCCtHtxOFbXvkEcWLuclLjbvDpnGZIk8fI3s7CoABXPSkvXrz8DYMen/zOwJ8VDCEHWgQPaQMVr17BsHIb74kVYPtBIp0yk3IBD0yF6XYFAeBVajwe7ylMmV0bmeUZuCvUckK9S8/76aLaeucvwln581qMuxuVcflmjViMZGSFJEkd+/p6TW39lzLIfMLO0ot1/RmJmZVUUH1GZRQJArkJhaBeKTd7Fi8RPmULOsb8w9fXBc95cbCMidBOrknIdDs7QriAYmUCT17QrCHbVyz63jIxMuVEaoXBLbgpVeUjPVTJ67Un+up7CpG51eL2Nf7kHLN48G8XW2VN48cspOHv5ULtlGxyrexRV73P2kmNhyxtlfAKJc+aQvmkTxnZ2uE+ahOOLg5HMzMo+efI1bQxC9DowNoWmo6DVOFkgVBJCXatGMO7zQjV//de6KbZQkCRpDtq+DgckSXpVCLFcf27J6IK4tFxGrDzB9aQs5rzYgN4NymcvOCc9jd3LF1K/fWdqNGyMs6c3/g0bayPbAVcfP1zlNEaDoMnJIXn5CpJXrACVCqfhw3F5YzTG9jq42SRf08YgnPlZKxCajdYKBNtqZZ9bptwYHzbe0C7IlIAWfWvq3UZJVhR2AiFAbaCPJEkTgZPAWbRxClW3okUl5OK9DIavOEF2vorVI5rSMsBFb7aEEJzZ/QeWdnYENmuFubUNKXduF/VUsHFyputb7+vNvsyzEWo16Zs3kzh7DqrERGy7dsHtvfcw89ZBMaPka3BwGpxZXyAQ3oBW78gCQUamilBsoSCE2AZskyTplBCibkHPh3pAKDAOkIVCBeHYtWRGrT2JlZkx699oQVB1O53bSLt3l7R7cfg1CEOSJM7s+QOHah4ENmuFsYkJw2cs1LnNykKPsKaGduEhso4cIWHqNPIvXcIyNBTPuXOwKuiAVyaSrmoFwtn1YGxeIBDGga1cqLUy8+6+dwGY1X6WgT2RKQ47lpwFoOtoHQUfP4aSbD30QlszwVqSJB8hRCwQCURKkjROXw7KlIwt0XG8vz4aH2crVo9siqeDpU7m/XemwuF1a7h1/ixvLF6DZGTEwE+/wVyXDYEqMRN69ze0CwDkX7lC/LRpZB88hKmXF56zZmLbpUvZY1SSrhQIhF+0AqH5GGj5jiwQqghp+WmGdkGmBORlKfVuoyRbD9FANcAFWC1Jkh9wF4gD9O+pzDMprJHQ1M+JZa80xt6qbEWUNBo1kqTNVDi55VcO/biaN5auxcrOnpaDXsbYxBTJSNsPorJnKlQlVElJJM6dR9qGDRhZW+P2wQc4Dv0PRmUNVEy6AgemwrkN9wVCq3Fg46Ybx2VkZCokJdl6uAkslSTpohDiIIAkSZ6AN3BeT/7JFAONRvD1tgusOHKDbvWrMXNQ2Wsk3L1yic3T/kefDz6jeq3a1GzcHHNra0xMteLDyUMus/skwv+rbaqz/6sp5WpXk5tLyurVJC9dhkahwPHll/+/vfuOq7r64zj+OoAMBQdLcCtuwZGaaZbmSHPkSrNlWv0ybWhqadOGprhHpWllakvNrCzLJmplKU5w5wREhiAKKOPe8/vjezFCEC5wuSCf5+NxH8p3nXO/0b1vz/cMvMeOwalataJdOO6o0YKQFRA6Pmm0IEhAEKJcKMzwyMNKqdeBdK31dCCqmOskrHAlw8TEdfv4bn80o26txyt9m+NQiDkS0lJT+Pn9d2l0c0ca39KZajVqUrt5EI5Xg0HNq0s5i9JFm81c3LiR2PkLyDx3Dvce3fGdOBGX+vWLduG4I5YWhPVQwc0SEMaBu0/xVFwIUSYUJiisA1YBz2JMthQIjNRaTyrWmol8JaVm8L/Voew4mcBLfZrx2G31rXr+fGDLLzg4OtKsc1ecXd04HxVBzaTmALhWcqff+BtvudkbTcqOHcQGz+LKgQO4tmhBjVnBVLq5iJ0pcwaEW5+Bjk9LQCgnOvh3sHcVhBVqNS1ii2EBFCYouGmtP1BKPQWgtQ5XSnUr5nqJfJy9cJmRK3ZwMj6lwHMkXIyP43zEaeq3aQdAeMhPOFVwplnnrigHBx6aubDUrR4pcpd24iSxc+aQ/OuvOPn7U2P2LCr37Xu1z0ihxB6GrbMg/EuoUNHof9Dpaahku6G1ovR5otUT9q6CsEL7vkVsOSyAwgSFGKVULUBn2+ZaTPURBVDQORK01iTFnKOqnzEj3l9ffs6RP7cyZvmnOFWowN0TX8K10r+dECUklH6ZiYnEv/0OiWvW4ODigs+zz+L58AgcXIvwv2DsIaMF4cAGIyB0Hm+0IFTyKr6KCyHKrMIEhWeBjwBfpdR9wJ3A4eKslMjbn8fjGb1qFxVdcp8jQWsNWqMcHNj/8w/8/P47PLb4A6r4Vqf93UNo12/w1Q6Jbu4e9ngLN7xhnW4r9mua09JI/Phj4pe+hzklharDhuLz1FM4eRfhX/sxB40WhANfgXMlY6nnjk9JQCjnnvjZaFFY2kNWbS0LNi7eC0D/p1vbrAyrg4LW+h+lVB9gIBCEMTvjiuKumLjWN/vOMmntPup6VeSjXOZIiD9zivUzX6PXE+Oo17IN9Vu3pfsjY3CpaMxvUM1PVusrCWN79yu2a2mtubhpE3Hz5pMRFUWlLrdT/bnncGlYhDXYYg7ClmA4+BU4u8NtE4yAUNH+S44L+0vLTLN3FYQVMtPNNi/DmgmXqmutYwC01unAWstL2JjWmve3nWT6pkPcXN+T5Q8ZcyRkpKfxy/tLqN0iiBZdulPFz58ajZri7GoEiMo+vrTu1dfOtS9/UtOuAFDRpWhP5FJ37yEmeCZX9u3HpWlT6nz4AZU6dSr8BWMOWALC1+DsAbdNMkYySEAQQlyHNS0K0UqpGOAQxvoO4Vl/aq2TbVE5YcyR8OZ3B1nxxyn6Bvkzpm4yETu2UKVrD5wqOJNwNgKvWsZ8/RWcXej/7BQ711j0mT4VKPw8CulnzhA7dx6XNm/GyccH/+nTqTJwwNXVNq12LtwICIe+MQLC7c8ZkyVJQBBCFIA1QWEBcDvwM3AKY4GoAUCgUkprrW3f9fIGN2PGDL788kuOHDmCi4sLN9/cgaodhhAVf5lHenbl5b7N+Hr2G1y+dJHArj1QSnHfm3OkE+INwpSURPySpSR88gnKyQnvp57C65FROFSsWLgLnguzBISN4FIZbn8ebhkjAUEIYRVrZmacoJTyB17C6MA4TWs9BUApJb3iikFISAhjx46laYP6mF0rM2z0syTMfJoXe9/G891H4uCg6D32WRmpcIPR6ekkfvYZce8uwXzxIlUGD8LnmXFUqF7ImQ+j9xsB4fC3RkDoMtkICG62H28tyr4utbrYuwrCCvWCbD982arOjFrraOAppVRt4BXLUtPPaq3DbVK7ciJrpMLmzZs5/McWvls0m9+DRuLa8xnSw4bRoN8QnN2MfgduHsW/EqSwD601l376idi5c8k4fYZKnTrhO/l5XJs0KdwF/xMQqkCXKXDLExIQhFVGBo60dxWEFdrcWcfmZVjTmTEIaGJ5NQPqA86WnyUoFNKFmHN8Me0lujz4KI06dKJGsyBONezBmVRH5g9uxIA5Zuo2biotBzeYy2FhxAQHczl0F84NA6i97D0q3XZb4f47R++DkGA48p0RELq+YCz57Fa1+CsuhCh3rF09cj+wBpgBHNZamwpTqFJqLPAc4A8cAMZrrbcV4LzOQIil7MDClG1vZrOJXz5Ygm+9BrTq2YfK3j5Ub9AIF8vjhJV7zrPR1Ih5w1rx8cwJtG7dmo4dO9q51sIaI7v2yHNfRlQUsfMXcPHbb3H08sLvtdeoes8QlFMhpjQ5u9doQTiyCVwlIIjiMeqHUQCs6C2j3suCDXN3AzBo4k02K8OaT6dngRbA3cB4IFIplTX6IVxr/UNBLqKUuhdYCIwFfrf8+b1SqrnW+sx1zquGscbEL0CZWp3o+K4dpFxIoGX33jg4OJIYfZaKVYwPcwdHx6sjFXafSWTBL8e4u1UNtq2ey++//87vv/+OY2F7uwu7GNmt5zXbTJcucX7ZMhJWrgKl8HpiNF6P/Q9H90rWF3B2j9GCcPR7IyDc8RJ0GG38XQghilm+QUEp1VRrfVhrvTDH9npAIMakSw8CBQoKwATgI631csvPTyulegNjgBeuc94HwEpAAfcUsCy7SL2YRPSxIwS0NRbnOfzHFmJPnSCoWy+UUgx9Zfo1TczJaZmM/3wvfpVdMf35Eeu+WMtvv/1GgwYN7PEWRBHEX0wCwLtyFXRGBonr1hG/+G1MiYlUGXA3PuPHU8Hf3/oLR+02WhCO/gCuVeGOl6HD4xIQhBA2VZAWhT1KqWXAVK31hayNWutTGMMkvy1oYUopZ6AtMCfHrh+BPGeSsTyq8AOGAq8UtLySdDE+Dg9PL5SDA3s3f8v29Z/zxNJVVKpajW6jRuNSsdLVcJDbc+ipXx8gMjGVm899wxebviIkJISmTZuW9NsQxeCeOW+Bho139CZ2zhzST5ygYvv2+E6ejFtgC+svGLXLaEE4ttkICN1ehptHg6t0bBVC2F5BgsLNwHzgH6XU68C7he2bAHgDjkBMju0xQK4Pdi2dKKcCt2itTfl19lJK7QfMQAWTyajm559/TlRUFBMnTixktXOnzWaUgwMndu9kQ/DrDH9jNjWbNCOoWy8C2na4+nghv5EKG/edZf3uSNJ/mcYX+3fTYtggHl3+NgANfP1Z+tR43N3deXzJIo5GR/3n3Nb1GrDgkdEAPLhwNpHn4/+zv2Pjpsx40HjmOGTWNM4nX/rP/u5BrXhl6P0A3DXtFS6np/9nf7+2NzNpwBAAur567bLTwzrdxtje/UhNu3J1oqHsRnbtwchuPYm/mGR8geYwplcf7r21CxHxcTy0KGd+hIn9B9O/fQeOREUy+r3F1+x/echwerRqw96Txxm/Ytk1+9+6/2E6NW3On4cP8uKnK6/Zv2DU47SuH8DP+/Ywbf3n1+x/b/TTNKlZi407/2buxi+v2b/6mUnU9vZhzR9bWLJ5EwB7jx+jabqJyHXf4FyvHrXeeRv3bt2s76gYuQu2zIRjPxojF7q9Ajc/LgFBCFGi8g0KWuswoIdSaiAwGxijlJqotf6+COXqHD+rXLahlHIBPgcmaa1PFvDaW4ArwCpHR8f96enpTJkyhU8//bQI1f2vlAuJrHn9BToMHEqLLt2p2bQ5t90/kio+xrh3Dy9vPLwKNrY16sJlXtwQRps6Vfkq9C8A9n+85ur+7UDDK5m89tprxVZ/YRs6PZ2MyEgan79A33QT1V9+mWr3DkNZFuEqsMhQCJkJ//wkAUGUuF71etm7CsIKDdsWcr4VKyitr/l+zvtg49HBs8CLwB/ABK11gVeOtJyfCtyntV6Xbfs7QKDWukuO4+sBJ4HsLRgOGMHCBPTRWv+Y45yaGFNLD3J1dQ1ZtGgRX3zxBZs3by7w+8xJa03Iqvep7O1D274D0Vrz3aLZtLi9G/XbtCv0dU1mzX3L/uLHHWu5o6kvG56/XhcNUVqZU1I4/8EHnP9wBZhMVBvxEN6jR+NY2cov9oidRgvCPz+Dmyd0esoICC4yn5kQouCUUru01oX/csrB2jFZFYFdGJ0KnwT2K6WWAq9orZPyO1lrna6U2gX0BNZl29UTWJ/LKVEYnSWzG2s5fhBGH4mcZUQppT4BRmqtmT59eqFaE07v30tidBSte/VFKcWFc2fJajlWStFv3PNWXzOnJSH/sONUAjWraBKTL+R/gihVtMnEhfXriVu0GFN8PJX79MFnwgSca1k5KCdih9GCcPwXIyB0nwo3/08CgrCLy5mXAXBzcsvnSFEaZKQb/46u4Gy70XEFGfUwHmhveQUA6cBejCGOe4EHgINKqcFa678LUOY8YLVSagdGq8QTQA1gqaW8VQBa6xFa6wxyTOaklIoF0vKZDXImcNBkMtGkSRM6FWDFvbTUFCIPhRPQtgMAR//+nRN7QmnZ0xjSOPD5V4t10qO9EReY//Mx+reqQdhBl2K7rigZydt+J3bWLNKOHcOtTRuqv/M2bq1aWXeRiB0QMgOO/woVvaDHa9D+f+Dint+ZQtjM2J/HAjKPQlnx7eJ9gP3nUZiI8ah8CfAXsMuyzHSWVZapnD/EmGfhurTWa5RSXsDLGBMuhWM8QjhtOaTI81FaWhW+y8zMvG/q1Gs72GVJuZCIq7s7jk4VCPv1R7as/oBHF71P1ep+dL7vYbqNegIHByOlFWdISE7LZNzne/Cr7Mq0gYEMOFRslxY2duXoUWJnzSbl99+pULs2NRcswKPXndb9fpz52wgIJ36zBITXof1jEhCEEKVSQToz1i7AdVYA13Zpz/ua7wLv5rGvaz7nvga8VoBiXqtcufJ9OVsTskYqRB4KZ83rLzBkymvUa92WZp27UqNx06sdEt3cbdfs+9o3B4hISOXzxztSxc3Kjm7CLjLj4ohbtJgL69fj4O6O7+TJVHvgfhycnQt+kTN/GY8YTvwGFb2h5xvQ7lEJCEKIUq0Q88bmKg7oVkzXKhZa66Pt2v3blyMtNYU1UycT2K0XN93VH7+Axtw69AE8axo5qFLValSqavvFc77df5YvdkXydLeG3FzfWO63Y2OZL6G0Ml++zPkVKzj//gfojAw8H3oQ7zFjcKxqxTTJp7cbLQgnt0AlH+j5JrR/FJwLMSujEEKUsGIJCtoYOrGlOK5VnFISE/h7w1o6DBqGS8VK+NStj7un8eXs5OzMLUOGl2h9oi5c5sUvw2hduyrPdG90dXvWPAei9NBmM0lff0PcggVkxsTg0bMnvpMm4ly3bsEvcvpPowUhKyDcOQ3aPSIBQQhRphRXi0KpZDKZuBBz7urPdz1VvBMuWVUXs+bZNXsxmTULh7emgqOD3eoiri/lr7+ICZ5F2qFDuAYFUXPuHCq2s2Kk0ak/jGGOJ7dCJV+4c7olIFS0XaWFKCYDGg6wdxWEFZp2LMR08Fayah6FsqZdu3Y6NDTU3tUA4J3f/mH25iPMGdqKe9rW+s++IbOmAbD++ZftUTVhkXbiBLGzZpMcEoJTDX98n51A5b59UA4FDHWnfjdaEE5tMwJC5/HQdpQEBCFEibL3PAqiEPZFXGD+T0fp19KfITddO8Y+57TKomRlJiQQ//bbJK5Zi4ObGz4TJ+A5YgQOLgUctpo9ILhXh14zoO1ICQiiTEq8kghANVfb99kSRXc52RiE6OZuRcdqK0lQsLEUy1BIXw8Xpg8MKtZhlqJozGlpJKxaxfn3lmG+fJlq9w7D+6mncLL0Y8nXyW1GQDj9O7j7Qe+ZRkCoIBPViLJrQsgEQOZRKCt+eM+YUsje8yiIInh94wHOJKTy2f9uoUpFGQpZGmizmYvfbSJ2/jwyz0bjfscd+E6aiEtAQAFO1kbLQUhwtoAQDG0floAghLghSVCwoU1h0awNjeSpOxrSoYGXvasjgNRdu4iZGcyVsDBcmjejxltvUemWW/I/UWujc+KWYDj9hxEQ7poFNz0MFVxtX3EhhLATCQo2cvbCZaas30+r2lUZ16PRdY/tHmTl1L/CaumnTxM7Zy6XfvoJp+rV8Z8xgyoD7s6/o2JWQAiZCWf+BA9/uGs23DRCAoIQolyQoGADJrNmwlrLUMh78x8K+crQ+0uoZuWP6cIF4pcsIeHTz1AVKuD9zNN4jRqFg1s+jwm0NuY/CJkJZ7aDRw3oMwfaPCQBQQhRrkhQsIH3th7nrxMJzL6nJfW8ZXIdezCnp5P4yafEL1mCOTmZqkOG4P30U1TwzWftdq3hRIgRECL+koAgyp17m9xr7yoIKwR2sXK12kKQoFDM9kdeYN6PR+nb0v+a+RLycte0VwD4/uU3bVm1ckFrzaXNPxI7dy4ZERFU6twZ3+eew7VJ4/xONNZgCAk2AkLlmtB3rhEQnGR1T1F+9K7f295VEFZo1K66zcuQoFCMjKGQe/H1cOEtK4ZCXk5Pz/8gka/L+/YREzyLy7t349KoEbWXL8f9ts7XP0lrY5nnLcEQ8TdUrgV950GbByUgiHLpXIoxm61fJT8710QUxKWEKwB4eNquxVOCQjF6Y+NBTp1PkaGQJSw9MpK4efO4uOl7HH288XvzDaoOHoxydMz7JK3h+C9GC0LkDiMg9JsPrR+QgCDKtRe2vQDIPAplxc8rDgIyj0KZ8H1YNGtCI3jyjgBukaGQJcJ08SLx771H4qrV4OiI99gxeD36KA6VrtMvRGv45xdjLYbInVClNvRbYAkItpvZTAghyioJCsUgOukyU74Mo1WtKozvkc+zcFFkOiODxDVriX/7bUxJSVQZMACf8eOo4HedplKt4Z+fjU6KUaFQpY4EBCGEKAAJCkVkMmsmrNlHhsnMwuFtCrUqZL+2N9ugZjcerTXJv/1G7Ow5pJ88ScUOHag++Xlcmze/3klw7CejBSFqlxEQ+i+EVvdLQBBCiAKQoFBEy7edYPuJ88wqwlDISQOGFHOtbjyXww8QO2sWqTt24NygAbWWvIt71655dxjVGo79aLQgnN0NVetA/0XQ6j4JCEIIYQUJCkUQFpnEnM1H6BPkx9ACDoUU1smIjiZuwQKSvv4Gx2rVqP7qK1QbOhRVIY/OolrD0c1GC8LZPVC1Lty92AgIjtLBVIj8PNziYXtXQVihdc86Ni9DgkIhpaYbq0L6eLgwY1DLIq0K2fXVyQCEvBFcXNUr80zJKZx/fzkJKz4CrfH632N4Pf44jh4euZ+gNRz9wWhBiN5rCQhvQ6vhEhCEsELX2l3tXQVhhfotvW1ehgSFQnrz20OcPJ/Cp4/JUMjipDMzubD+S+IWL8YUH0/lvn3xefZZnGvlMfuY1nDke6MFIXofVKsHA96BlvdKQBCiEE4mnQSgfpX6dq6JKIjEcykAVPOz3SzAEhQK4eyFy3y+8wyjOtWnY4AMhSwOWmtStm0jdvZs0o79g1vbtlR/9x3cWrbM6wQ4ssloQTi3H6rVhwHvQsthEhCEKII3tr8ByDwKZUXIJ0cAmUeh1Fm/KxKtYdSt9exdlRvClSNHiA2eRcqff1Khbh1qLlqIR8+euT/O0RoOf2fMpJgVEAYugaBh4Ci/zkIIUdzkk9VKZrNm3a5IOgV4Uduzor2rU6ZlxMQSt3gRSeu/xKFyZaq/+ALVhg9HOecyKsFshiNZASEMPBvAwKUQNFQCghBC2JB8wlrpr5PnOZOQyoSexTex0rBOtxXbtcoCc2oq5z9cwfkPPkBnZuL58MN4j3kCxypVcjnYDIe/hS2zICYMPAMkIAghRAmST1orrQuNxMPVid6Bxbdgytje/YrtWqWZNplI+upr4hYuJDM2Fo9evfCdOAHnOrkM7zGb4fBGS0AINwLCoPcg8B4JCEIIUYLkE9cKF69ksCksmqHtauFa4ToLDlkpNc1Y/auii+1W/7K3lO3biQmeRdrhw7i2aknNBfOpeFMunW/MZjj0jREQYg+AV0MYtAwCh0hAEKIEPN7ycXtXQVihXZ96Ni9DPnmtsHHfWdIyzQxrV7tYr9tn+lTgxpxHIe2ff4idPYfkLVuoULMmNefNxeOuu67tqGg2w6GvLQHhIHg1gsHLjYDgUHyhTAhxfR1rdLR3FYQVajfztHkZEhSssHZnBE39PAiqmcuzdPEfmefPE7d4MRfWfYFDxYr4PjeJag8+iINLjiWczWY4+JUREOIOgXdjGPw+BA6WgCCEHRxOOAxAU8+mdq6JKIi4iEsA+NTOYzK6YiBBoYAOn7vIvsgkXu3XvEizMN7ozFeukLByFeeXLcOclka14cPxfupJnKpVy3GgyRIQZlsCQhMY8gG0GCQBQQg7Ct5htGzKPAplw+9rjwEyj0KpsC40kgqOioFt8pghsJzTZjMXv/2W2PkLyIyOxr17d3wnTsSlQY7Z3cwmOLABts6GuMMSEIQQopSToFAA6ZlmNuyJomfz6nhWkpUHc0rduZOY4FlcCQ/HtXlzasycSaUOOZbOzgoIW2ZB/BHwaQr3fAjNB0pAEEKIUkyCQgH8ciiGhJT0Yu/EmGVk1x42ua6tpZ08SezcuST//AtOfn7UCJ5J5f79UQ4O/x5kNkH4l7B1FsQfBZ9mcM8KS0BwyPviQgghSgUJCgWwNjQCv8qu3NbIxybXH9mtp02uayuZiYnEv7uExM8+w8HZGZ/x4/B8+GEc3Nz+PchsgvD1RgvC+WPg2xyGfgTNBkhAEEKIMsQuQUEpNRZ4DvAHDgDjtdbb8jh2MPAE0AZwBQ4C07XW35REXc8lXWHL0TjGdm2Io4NtOjHGX0wCwLty6R5NYU5PJ3H1x8QvXYo5JYWqQ4fi8/RTOHlnW+b0moDQAoauhGZ3S0AQogwYd9M4e1dBWOGWgQE2L6PEg4JS6l5gITAW+N3y5/dKqeZa6zO5nNIF+BV4GUgAHgA2KKW65hUuitP63ZGYNQxtV8tmZdwz5y2g9M6joLXm0g8/EDt3HhmRkVS6/TaqP/ccLo0a/XuQKdMICFtnwfl/oHogDFsFTftLQBCiDGnt29reVRBW8A+w/T8w7dGiMAH4SGu93PLz00qp3sAY4IWcB2utc8bb15VSfYGBgE2DgtaataER3NLAk7petlvruzRL3bOH2OBZXN67F5fGjan9wfu433rrvweYMiH8C6MFIeG4BAQhyri9sXsBCQxlRfRxo0XaloGhRIOCUsoZaAvMybHrR6CTFZfyABKLq1552XEygdPnUxnXvVH+B99g0iMiiJ03j0vf/4Cjjzf+096kyqBBKEfLCAVTJoStM1oQEk5A9SC492No0lcCghBl2MLdCwGZR6Gs+Our48CNNY+CN+AIxOTYHgMUqOu/Uupt/H1sAAAcUklEQVRJoBawOo/9jwOPA9TJbbEhK6wJjcDDxYm7Av2LdJ2yxJSURPzS90j8+GNwcsL7ySfxemQUDpUsLSqmTAhba8yDkHAC/ILg3k+gSR8JCEIIcQOy16gHneNnlcu2ayilhgCzgeFa69O5XljrZcAygHbt2uV7zbxcsiwANfimWrg53/jj/HV6OomfryH+nXcwXbxIlUGD8Bn3DBWqVzcOMGXC/jVGQEg8CX4tYfinRkCQmSqFEOKGVdJBIR4wATnXaPbl2laG/7CEhNXAiJIY8fDt/miuZBT/AlC5GdOrj83LyIvWmks//0zcnLmknz5NxY63UP3553Ft1sw4wJRhCQhzsgWEz6DJXRIQhBCiHCjRoKC1TldK7QJ6Auuy7eoJrM/rPKXUMGAl8LDW+gvb1tKwNjSCxtXdaVXL9j1K7721i83LyM3lsHBig4NJDQ3FOSCA2u8tpdLttxtrWZgyYN/nsG0OJJ4C/1Zw3+fQuLcEBCGEKEfs8ehhHrBaKbUD+ANjjoQawFIApdQqAK31CMvPwzFaEiYBW5VSWa0R6VrrBFtU8FjMJfacucDLfZuVyAJQEfFxANT2ts2ETjllnD1L7PwFXNy4EUdPT/xem0rVe+5BOTn9GxC2zoYLp8G/Ndy3Bhr3koAgRDkw+ebJ9q6CsELnYbbvbF/iQUFrvUYp5YUxL4I/EA70ydbnIGcPxCcw6rnA8sqyBehqizquDY3AyUExqIQWgHpokTEIxNbzKJiSkzm/bDkJK1cC4PX443g9/j8c3d2NgLB7lfGI4cJpqNEG+syGRndKQBCiHJHlpcsWWy4vncUunRm11u8C7+axr+v1fra1DJOZL3dH0aNZdbzcXUqyaJvRmZlcWLeOuMVvY0pIoPLd/fEdP54KNWpAZjrsWmk8YrhwBmrcBH3mQKOeEhCEKIe2n90OQMcaHe1cE1EQEYeMhvXazTxtVoas9ZDDL4diOZ+SzrD2tpuJsaRorUnesoXY2XNIP36ciu3a4fvee7gFBVoCwkewdS4knYGabaHvPGjYQwKCEOXYsv3LAAkKZUXoplOABIUStS40guqVXbjdRgtAlZQrhw8TExxM6va/cK5bl1pvL8a9e3eUKQNCV8C2eZaA0A76zYeG3SUgCCGEuIYEhWxiLl7htyOxPNElACfHsjl5UEZMLHELF5K0YQOOVapQ/aWXqDb8XpTSsCsrIEQYAaH/fAiQgCCEECJvEhSy+XJ3lGUBKNvPnZDdxP6Di3wNc0oK5z/4kPMrVkBmJp6jRuH9xGgcK7rAnlXw+3wjINRqD/0XQkA3CQhCCCHyJUHBYsuWLbzy5IukRB2lQXA8K1asYOTIkSVSdv/2HQp9rjaZSNqwgbiFi8iMi8Pjrt74TpiAs78v7FkN2+bDxUiodbMEBCGEEFaToGCx58Q5MirXZOyIESx5/dkSLftIVCQATWpa14Ey+Y8/iJ01m7QjR3Br3ZqaixZSMai5Mcxx3Xy4GAW1O8CAxdDgDgkIQoh8vdrxVXtXQVih6wNNbF6GBAWLKPem1Or5CG8+24P33pxYomWPfm8xUPB5FNKOHSNm1mxStm2jQq1a1FwwH49uXVB7P4ZFD1gCwi0w4B1o0FUCghCiwOpXqW/vKggrVPOrZPMyymaPvWKWnJbJd2HR9G9Vg4rOpTc7ZcbHE/3qVE4MGMjlffvwff55Gny9nsrVzqAW3wSbJkHVOjDia3jkBwiQVgQhhHVCIkIIiQgBYNasWSilrnm9+qq0OpQWJ/fHc3J/PADr1q3DxcUFwDlrv1JqoVLquFKqemHLkKAAfLf/LKnpphLvxFhQ5suXiV+6lON39uLCl19S7YEHCPjua7xapOOw9Gb4/jmoVg9GfAOjvpdWBCFEoa08sJKVB4zZW8eMGUN0dPTV18SJE/Hz82PEiBF2rqXIsvenM+z96QwA99xzD0FBQWDMeoxSahJwH9Bba33dhRevR4ICsDY0koa+7txUp6q9q/If2mwm6euvOX5XH+IWLKTSrZ1osGEdft09cVrVFb5/HjwbwMMbYdQmaNBFAoIQoth4eHjg5+eHn58fK1eu5LPPPiMkJISGDRuycOFCatWqRevWrWndujXPPfecvatb7imleOuttwC8lFJTgKlAX631Mcv+cUqpKKXUXqXUPqXUCqWUd37XLb3t7CXkn9hkdp1O5MU+TUtkAaiCSvl7B7HBwVw5eBDXwEBqzniTiioMvh4AyeegbmcYvBzq32bvqgohbnAzZszg7bff5rfffqNx48YAhIeHs2DBAu655x47105kd+eddwKkAtOA/lrrndl2BwKTtNafKeMLbyqwHBh0vWuW+6Cw7uoCUPabsvnlIcOv/j3txEli58wh+ddfcfL3p8aMaVT2PYf64xFIjoF6t8GQ9yUgCCFKxPTp01m6dClbtmyhYcOGV7eHhYVJK0Ip9OuvvwK4WX7M+bghCFgMoLXWSqkZQKJSykFrbc7rmuU6KGSYzKzfHUW3pr64qQz27j0EgNls5syZM+zduxdPT0/q1Mm5oGXx6tGqDZmJiZx7cxqJa9bg4OKCz7in8GyeicPOF2CfJSDc8yHU62zTugghRJY333yT5cuXExISQkBAwNXtWmuOHDnC0KFDUUrRokULPvnkEzvWVADs27ePwYMHA5wBdgMzgF4AlhaExsCRbKdkYOQANyAlr+sqrbWNqmx/7dq106GhoXnuH79yDUt/+okm1T0YUK8ubz5z7fwJ1VsG0nRAHyb2H0z/9h04EhV5dThjdi8PGU6PVm3Ye/I441csu2b/W/c/TKemzfnz8EFe/HTlvzvMZqpdSOLh3WE0SbpE1SGD8OnkgVPYckiJhfq3Q5cpUO/Wwt0EIYSwwrmUcwB8sOAD5s+fzzfffEODBg2u7q9atSrR0dEMGzaMnTt35nUZUUIuJVwBIOFSDJ06dWL06NFMnTp1FzAS2A9001qHKKXqA5u01s2yzlVK1QW2a61rXK+Mct2isOaPLWSmn6dqRU9a3NQGrTUR8XE8tGiO7QvXkJlwnozISFLT0jjcsD533d0El5Or4a84S0D4SAKCEKJE+VXyQ2vNrFmzuHjxIrfe+t/PoJ9//pnU1FSaN29upxqK7Dw8XUlISKB3797069ePV199lalTp6K1DldKrcNoVeiI0T/hQI7THwW+yK+MctuiEHvpCnXHPIV/FTdOvHNtC4Etpe7eTUxwMFf27celSWOq92tCpQtfQkoc1O8CXadA3U4lWichhAD44eQPAPSu3zvPY9566y0cHR2ZPHlySVVL5OFYqNENoVG7f6dJUErt0lq3y36cUupFwEVrPdXyGGIwRojorLWOvV4Z5bZFYcPuKDTg4+FSYmWmnzlD7Jy5XPrxR5x8ffAf1ZUq+kdUVIgx90GXKVBX1oAXQtjPmiNrgOsHhfDwcO67776SqpK4jvAtUcB/g0IeAoHblFL9AIXRh6FbfiEBymlQ0FqzNjSCnu2Hs2JUe5uXZ0pKIv7dJSR8+inKyQnvAe3wqvwnDpf3GWswdJ0CdW6xeT2EEKI4fPrpp/augrCS1vr+wp5bLidc2n0mkeNxKTzUqQnelavYrBydnk7CypX8c2cvElavpuotAQQMuICP2zc41GkJj/wII74qdEjImq7z9OnTV7eNGzeOgIAAYmIKPQmXEEIIcVW5DAprd0ZS0dmRxMSDfPTrT8V+fa01F3/8keP9+xMzYyZuNd2p3/8y/jV/pUJAa3j0J3hoA9Qp/PLS8O90ndOmTQNgzpw5fPbZZ/zwww9Ur17oab2FEEKIq8rdo4eUtEy+3X+Wfi39+ex3o/lsZLeexXb9y/v3ExM8i8u7duFSoxq1e6bj7rUTGvYw+iDULr5HHVnTdfbt25eAgACmT5/Or7/+SqNGjQBYuHAhs2fPxtvbm4sXL9K9e3eWL19ebOULIYS48ZW7oPBdWDQp6SaGtavNjv3Fd92MqChi583n4nff4ejhil+ndKrWOoBq3NPog1CrXf4XKYQ777yT9u3b8/LLL7Nx40bat/83iISHh7Nw4UKGDBlCWloaPj4+zJgxA2/vfKf2FkKUU/O6zrN3FYQVeo8OtHkZ5S4orAuNoIFPJdrWrVbgc7TWZGZm5rrPdOkS599/n4TVH4M24RmYjlfDszg260Hm7c9DrZuMAzMyCl3nChUq5Lnv119/Zd++fWitr3ncEBYWxpQpUwDYvXs3tWvXxtPTs9D1EELc+Kq5FvyzUdifm7tz/gcVUbkKCifiktl5KpEpd11/Aajo6GjWr1/PF198waFDh7hw4QImk+nac7QGs9n4U2G8DitQDsA3llfRKKUICQmhU6dr51XImq5z8eLFfPfdd7zwwgts3rzZUjVjitUhQ4aQmppKQkICW7duxcGhXHZLEUIU0Ff/fAXAwIYD7VwTURCH/owGoFknf5uVUa6+NdbtisTRQTG4Tc1c9+/YsYMuXbrQvHlzduzYwcSJE9mzZw9JSUlkZmaSkZFBeno6CZt/5HCP7uxv2Ih/bm/Ixae9yPh4GBlndpGRaSYjwzi2OF7p6em5hoTTp0/Tp08fJkyYwCOPPMLrr7/OTz/9REhICACnTp0iICCAvXv3cvToUaZMmcLs2bNteXuFEDeAr//5mlE9Rtm7GqKADm+Pptdg2y4SWG5aFDJNZtbviuSOJj74VnYFYNNLr1/d/9dff3H33Xczd+5chg0bhovLtRMxXTl4kJgZb5G6cxfOlc3Uui0R9653oO6YAjXalNh7yTldJ0BgYCBDhw7lhRdeYPv27YSHh9OkSZOr5wQFBWWtKiaEENd14fQFe1dBWCEi5rhNr19ugsKWo3HEXkpjaLvaV7dVdDECQ1ZIWLlyJXfdddc152acO0fc3NkkfbsJR2dN9ZuSqNanC6rb5BINCFk8PT05dOjQNdvXrFlz9e9hYWFXg4LJZOLjjz+me/fuJVZHIYQQN4ZyExTWhkbg7e5Mt6a+V7e9+8O3mE0mZo5+kg8//PCakGBKTuH80rdJWLkaTJl4NUnGa8CtOPZ6AWq0Lum3YJXw8HC2bdvGhg0bUErRs2dPxo0bZ+9qCSGEKGPKRR+FuEtp/HIolsE31aKCowPDhw/nypUrrP1zG++vXYOXlxfJycl8/vnnAGiTicRPVnK8W2fOv/8RHv6XaPB0IL5LvsNx1JpSHxLAmGI1IiKCPXv2sHv3boKDg3FyKje5UAhhhcTEREaNGkXORQLnzZvH1q1b7VQrkZcVK1bw1Vdf/WdbcnIyDz74oE3KKxdB4as9UWSaNcPa1QIgJSWFDz74AIC4Q0cYNGgQkyZNomHDhiT/8j0ne3bm3JszcXZOot5jTai5ciPOY74A/1b2fBtCCGETVapUYdeuXWzatIl3e7wLQExMDNOmTSMgIMDOtRM5NWjQgEmTJpGZmUm/p43vpXfeeQeTyWST8m74ZaZ37tzJnfO34uHqxJdjjXXVQ0NDGdC7N/43t2b/L9t43L8GxzwqsbyRLykHo6ngnolv38Z4PDED5d/Szu9CCCFsb/369cycOZMdO3bg4ODAxIkTSU9PZ9GiRfaumshFt27dGDFiBCNHjkQpha+vL7/99hvNmzfPdZnporjhWxT2RlzgWGwyw7J1YmwUHU3jjAyijx1Ho/kiKpLHLiWTciQK3161CNiwlsqvfychQQhRbgwaNIi0tDQmvzcZgA8//JDJkyfbuVYiL1OnTmXatGns+eUUAHfccQfNmze3SVk3fFBYGxqBWwVH+rb8dzKK2PkLGFutGrFnogBFMxcXAl3dcPL0wWvhT6jaJT+SQQgh7MnBwYGpU6fy4bwPAXjwwQepWTP3OWeE/XXp0oU6derw7ttLAHjllVdsVpZdgoJSaqxS6qRS6opSapdS6rqzRSiluliOu6KUOqGUeqIg5Zi1ZuO+aPoE+ePhapkGOTWBzLNnCXR1I9DBkcz0dMZa1j7IjE8o4jsTQoiya9CgQZgzzADSmlAGTJ06lQ+/ngNAixYtbFZOiQcFpdS9wELgLaAN8CfwvVKqTh7H1wc2WY5rA8wAFiulhuRXVtLlDJLTMrm3fW1IOQ8/vw4LgnCqaKzbMNbbm7aubgS6ugHg5G+7KTCFEKK0c3Bw4ObRN+NazVVaE8qALl260Pe2+/Dzqp3/wUVgjxaFCcBHWuvlWutDWuungWhgTB7HPwGc1Vo/bTl+ObASmJRfQYkpGbTyzKT9P4tgYUv4fT40uhPfiZNQrq50ruTO6rp1AVCurvg+O7543qEQQpRR/q39Gf7pcHtXQxTQqLsn8O4LX+V/YBGU6MB6pZQz0BaYk2PXj8C1CxoYOlr2Z7cZeFgpVUFrneeyjB7psXxxZTTqjysQOBhufx58m1IFoHINYucvIDM6Gid/f3yfHU+V/v0L98aEEEKIG1SJDo9UStUAooAuWuut2ba/CjygtW6SyzlHgY+11m9k23Y7sAWoobWOznH848Djlh8DgfBifyMiJ28g3t6VuMHJPbY9uce2J/e4ZDTRWnsU18XsNVVfznSictmW3/G5bUdrvQxYBqCUCi3OsaQid3KfbU/use3JPbY9ucclQykVWpzXK+k+CvGACfDLsd0XiMnjnHN5HJ8JnC/W2gkhhBDiP0o0KGit04FdQM8cu3pijGrIzXagRy7Hh16vf4IQQgghis4eox7mASOVUo8ppZoppRYCNYClAEqpVUqpVdmOXwrUUkotsBz/GDCSaztE5mZZMddd5E7us+3JPbY9uce2J/e4ZBTrfbbLWg9KqbHA84A/RmfDZ7M6NyqlQgC01l2zHd8FmA+0AM4CwVrrpSVbayGEEKL8uaEXhRJCCCFE0dzwaz0IIYQQovAkKAghhBAiT2U6KJTU4lLlmTX3WCk1WCn1o1IqTil1SSn1t1Lq7pKsb1ll7e9ytvM6K6UylVIysVg+CvF54ayUesNyTppS6oxS6pmSqm9ZVIh7fL9Saq9SKlUpdU4p9bFSKudweGGhlLpdKfWNUipKKaWVUiMLcE6QUmqLUuqy5bxXlVIqv/OyK7NBoSQXlyqvrL3HQBfgV6Cv5fhNwIaCfumVV4W4z1nnVQNWAb/YvJJlXCHv8WdAb4yZXpsAQ4H9Nq5qmVWIz+RbgdUYa/e0AAYCzYFPSqTCZZM7xgCAccDl/A5WSlUGfsKYp6g98AzwHMaaSwWntS6TL+BvYHmObceAGXkcHwwcy7HtfWC7vd9LaX1Ze4/zuMYOYK6930tpfhX2PgNfAlOB14Bwe7+P0vwqxOfFnUAS4G3vupeVVyHu8STgdI5to4Bke7+XsvACkoGR+RwzBrgIuGXb9jLGUgqqoGWVyRaFbItL5VwsqjCLS7VTSlUo3hqWfYW8x7nxABKLq143msLeZ8sQYz9gmu1qd2Mo5D0eCOwEJiilIpVSx5RSi5RS7jasaplVyHv8B+CvlOqvDN7AcIyWSFE8OgLbtNbZWx82Y8xdVK+gFymTQQFjYRFHrp32OYZrp3vO4pfH8U6W64n/Ksw9/g+l1JNALYzmRZE7q++zUioIoyXhAa21ybbVuyEU5ne5AdAZaAUMAZ7CeAzxkW2qWOZZfY+11tuB+zAeNaQDcRjr+Dxsu2qWO3l972XtK5CyGhSy2GxxKXGVtffYOMjo+zEb48vstC0qdoMp0H1WSrkAnwOTtNYnS6JiNxBrfpcdLPvu11r/rbXejBEWhiilqtuwjmVdge+xUqo5sAh4E6M1ojfGl9d7tqxgOVTk7z17rR5ZVLK4lO0V5h4DV0PCamCE1vob21TvhmHtffbH6PC1Qim1wrLNAVBKqUygj9Y6Z/NveVeY3+VoIEprnZRt2yHLn3Wuc155VZh7/AKwQ2s92/LzfqVUCrBNKfWS1jrCNlUtV/L63gMrfofLZIuClsWlbK6Q9xil1DDgY4xONl/YroY3hkLc5yggCGid7bUU+Mfy9zz/25RXhfxd/gOokaNPQmPLn9JClkMh73FFjHCRXdbPVg3fE3naDtymlHLNtq0nxlIIpwp8FXv33CxCj897MZ5rPQY0wxiWkwzUtexfBazKdnx9IAVYYDn+Mcv5Q+z9XkrrqxD3eDiQgTF0xy/by9Pe76U0v6y9z7mc/xoy6qFY7zHGMLQIYB3G0L1bMYalrbP3eymtr0Lc45GWz4sxGH1CbsXoQLrL3u+ltL4sv5dZ/0BIBV61/L2OZf8M4Jdsx1fBaFX4HAgEBmOMgphoVbn2fuNFvGljMVJRGkaavT3bvhAgJMfxXYDdluNPAk/Y+z2U9pc199jys87lFVLS9S5rL2t/l3OcK0HBBvcYY+6EHy0fyFHAO4CHvd9HaX4V4h4/DRyw3ONo4FOglr3fR2l9AV3z+Iz9yLL/I+BUjnOCgK3AFcs9nooVQyO11rIolBBCCCHyVib7KAghhBCiZEhQEEIIIUSeJCgIIYQQIk8SFIQQQgiRJwkKQgghhMiTBAUhhBBC5EmCghBCCCHyJEFBiHJEKTVUKZWmlKqbbdtCpdRxWexICJEbmXBJiHJEKaUwpsndo7X+n1JqEvA8cKvW+ph9ayeEKI2kRUGIckQb/zJ4ERiplJqCMZ1r36yQoJQap5TSSqlWWecopeZZtvlf79pKqXpKqQGWv/dTSi223Tu5WsbbtixDCCFBQYhyRxvLUO8EpgHDtNY7s+0OBMIw1jlAKVUDY42UWK11dD6X7mU5H6AlsK84652LkihDiHJPgoIQ5YxSqhvQCmMp35xr0gcBa7AEBeAlYANwKNv5jZRS3yqlQpVS25RSfkqpLhgr141USu0F2gMBSqk/lVKRSqmbsp1/v1Lqb6VUmFJqs1KqomX7RqXUG0qp7dnPUUq1sFwn3HJMRculWgH7i/n2CCFykKAgRDlieaTwJcaqfV9hfLln7VMYy/1+AzRVStXBCA6nMFoZUEq5AEuBsVrrdsBK4Emt9RaML+07tdatgabASa11J+AtYFC2amzWWnfQWgcBx4Gelu2BQJTWumPWOUopV2CtpYxA4CjG8sRZx4cX060RQuTByd4VEEKUDMtIh03APK31h0qpHcB+pVRXrXUIUA9jOeXDQH3gFYzHE9359wt5INAM+MbIFThjrHWP5fxTli/3ClrrZZbtjsD5bFV5VCk11HJubeBrpZQH4KC1fi/HOQOBn7XWeyzbDwM1LGUorXVKkW+MEOK6pEVBiHJAKeUJ/AB8q7V+A0BrHQ6s499WhUAgTGudgfElHmDpz5DVbwGMFobntNatLa/mWus3lFK1gHOWzpKBQGi24oOwBA2l1MNAc+B2rXUrIB44aDlnZy7nNMtWdtb2rOMPFPG2CCEKQIKCEOWA1jpBa91Maz06x/Z7LU39kO0LHQgGxlv+nr2J/xzQ0/KYAqVUkGV7beCs5e+t+O+Xe8tsPwcC27XWl5VSowEfrXWEZfu+XM45y78dK1sCPTAejUj/BCFKiAQFIUSWq4FAa71Oa71fKVXZ8vNFyzErgCrAIUunxVGW7QeBukqpMOB+/u3ToABfrXVWp8nVwBSl1FbAn/+2VOzP5ZzVGP0lwoAlGKM00jCChAQFIUqATLgkhBBCiDxJi4IQQggh8iRBQQghhBB5kqAghBBCiDxJUBBCCCFEniQoCCGEECJPEhSEEEIIkScJCkIIIYTIkwQFIYQQQuRJgoIQQggh8vR/Wzqq5HQKAOIAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x23bf1d4d6d8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"import locale\n", | |
"from scipy.optimize import root\n", | |
"from matplotlib import pyplot as plt\n", | |
"from IPython.display import Latex\n", | |
"locale.setlocale(locale.LC_ALL, '')\n", | |
"%matplotlib inline\n", | |
"plt.rcParams['font.size'] = 14.0\n", | |
"\n", | |
"p = 101.325 # kPa\n", | |
"x1d = 0.991\n", | |
"x1b = 0.02\n", | |
"z1f = 0.75\n", | |
"q = 1\n", | |
"rlv_faktor = 2.8\n", | |
"\n", | |
"# Antoine\n", | |
"a = np.array([7.20587, 7.19621])\n", | |
"b = np.array([1582.271, 1730.63]) # °C\n", | |
"c = np.array([239.726, 233.426]) # °C\n", | |
"\n", | |
"v = np.array([40.73, 18.07]) # cm^3/mol\n", | |
"delta_lambda12 = 54.04 # K\n", | |
"delta_lambda21 = 236.3 # K \n", | |
"\n", | |
"t0 = 90 # °C (Erster Schätzwert)\n", | |
"x1 = 0.1\n", | |
"x2 = 1-x1\n", | |
"t = t0 + 273.15\n", | |
"def opt_fun(t, xi):\n", | |
" global p1, p2, err, p1_s, p2_s, gamma1, gamma2\n", | |
" x1 = xi[0]\n", | |
" x2 = xi[1]\n", | |
" p1_s, p2_s = 10**(a-b/(c+t-273.15)) # kPa\n", | |
" lambda12 = v[1]/v[0] * np.exp(-delta_lambda12 / (t))\n", | |
" lambda21 = v[0]/v[1] * np.exp(-delta_lambda21 / (t))\n", | |
" ln_gamma1 = -np.log(x1+lambda12*x2)+x2*(\n", | |
" lambda12/(x1+lambda12*x2)-lambda21/(lambda21*x1+x2))\n", | |
" ln_gamma2 = -np.log(x2+lambda21*x1)-x1*(\n", | |
" lambda12/(x1+lambda12*x2)-lambda21/(lambda21*x1+x2))\n", | |
" gamma1 = np.exp(ln_gamma1)\n", | |
" gamma2 = np.exp(ln_gamma2)\n", | |
" p1, p2 = [x1 * gamma1 * p1_s , x2 * gamma2 * p2_s]\n", | |
" y1, y2 = [p1,p2]/sum([p1,p2])\n", | |
" err = (sum([p1,p2])-p)/p\n", | |
" y1, y2 = p1/p, p2/p\n", | |
" return err\n", | |
"soln = root(lambda t: opt_fun(t, [x1, 1-x1]), t0+273.15)\n", | |
"t = soln.x\n", | |
"y1, y2 = p1/p, p2/p\n", | |
"print(\n", | |
" 'x1=' +\n", | |
" locale.format('%0.4g', x1) + '\\t' + 'T= ' +\n", | |
" locale.format('%0.4g', t-273.15) +\n", | |
" '°C' + '\\t' + 'err: ' + \n", | |
" locale.format('%0.3g', err*100) + '%' + '\\t' +\n", | |
" 'y1= ' + locale.format('%0.4g', y1) + '\\t'\n", | |
" 'y2= ' + locale.format('%0.4g', y2)\n", | |
")\n", | |
"print('')\n", | |
"\n", | |
"x1 = np.linspace(0,1,20)\n", | |
"y1 = np.zeros(len(x1))\n", | |
"t = np.zeros(len(x1))\n", | |
"for i in range(len(x1)): \n", | |
" t[i] = root(lambda t: opt_fun(t, [x1[i], 1-x1[i]]), \n", | |
" t0+273.15).x - 273.15\n", | |
" y1[i] = p1 / p\n", | |
"\n", | |
"# Verstärkungsgerade bei (L/V)_min als\n", | |
"# y = mx + b\n", | |
"m = (np.interp(z1f, x1, y1)-x1d)/(z1f-x1d)\n", | |
"b = x1d - m * x1d\n", | |
"nu_min = x1d/b - 1\n", | |
"\n", | |
"# Verstärkungsgerade bei (L/V)_min als\n", | |
"# y = mx + b\n", | |
"nu_arbeit = rlv_faktor * nu_min\n", | |
"b_arbeit = x1d/(rlv_faktor * nu_min + 1)\n", | |
"m_arbeit = (b_arbeit-x1d)/(0-x1d)\n", | |
"\n", | |
"\n", | |
"\n", | |
"# plot\n", | |
"fig = plt.figure(1, figsize=[8,9])\n", | |
"ax = plt.subplot2grid([2,1],[0,0])\n", | |
"ax.plot(x1,y1)\n", | |
"ax.plot(x1,x1)\n", | |
"ax.set_xlim([0,1])\n", | |
"ax.set_ylim([0,1])\n", | |
"ax.set_xlabel('$x_{Methanol}$')\n", | |
"ax.set_ylabel('$y_{Methanol}$')\n", | |
"\n", | |
"str_nu_min = r'$\\frac{x_D}{\\nu_{min}+1}='+ \\\n", | |
" locale.format('%0.4g', b) + '$'\n", | |
"str_nu_unendlich = r'$\\nu=\\frac{\\dot L}{\\dot V}=\\infty$' + \\\n", | |
" 'bei min. Bodenzahl'\n", | |
"str_nu_arbeit = r'$\\frac{x_D}{'+ \\\n", | |
" locale.format('%0.4g', rlv_faktor)+\\\n", | |
" r'\\nu_{min}+1}='+ \\\n", | |
" locale.format('%0.4g', b_arbeit) + '$'\n", | |
"ax.plot([z1f, z1f], [0, np.interp(z1f, x1, y1)], '--')\n", | |
"ax.plot([x1d, 0], [x1d, b], '-o')\n", | |
"ax.plot([x1d, x1d], [0, x1d], '--')\n", | |
"ax.annotate(s='$z_{F}$', xy=[z1f,0], xytext=[z1f, 0.1],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax.annotate(s='$x_{B}$', xy=[x1b,0], xytext=[x1b+0.1, 0.05],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax.annotate(s='$x_{D}$', xy=[x1d,0], xytext=[x1d, 0.1],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax.annotate(s=str_nu_min, xy=[0,b], xytext=[0.1, b+0.3],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"\n", | |
"x_min_stufen = [x1b]\n", | |
"y_min_stufen = [x1b]\n", | |
"x_boden = x1b\n", | |
"for i in range(6):\n", | |
" y_gleichgewicht = np.interp(x_boden, x1, y1)\n", | |
" x_min_stufen.append(x_boden)\n", | |
" y_min_stufen.append(y_gleichgewicht)\n", | |
" ax.text(x_boden, y_gleichgewicht ,str(i+1))\n", | |
" x_boden = y_gleichgewicht\n", | |
" x_min_stufen.append(x_boden)\n", | |
" y_min_stufen.append(x_boden)\n", | |
" \n", | |
"ax.plot(x_min_stufen, y_min_stufen, '--',\n", | |
" color='xkcd:dark blue green')\n", | |
"ax.annotate(s=str_nu_unendlich, \n", | |
" xy=[x_min_stufen[4], y_min_stufen[4]], \n", | |
" xytext=[x_min_stufen[4]+0.1, y_min_stufen[4]],\n", | |
" arrowprops=dict(arrowstyle=\"->\"))\n", | |
"ax.annotate(s=r\"$q=\\frac{\\dot L' - \\dot L}{\\dot F}=1$\", \n", | |
" xy=[z1f, z1f], \n", | |
" xytext=[z1f+0.1, z1f-0.2],\n", | |
" arrowprops=dict(arrowstyle=\"->\"))\n", | |
"\n", | |
"ax2 = plt.subplot2grid([2,1],[1,0])\n", | |
"ax2.plot(x1,y1)\n", | |
"ax2.plot(x1,x1)\n", | |
"ax2.set_xlim([0,1])\n", | |
"ax2.set_ylim([0,1])\n", | |
"ax2.set_xlabel('$x_{Methanol}$')\n", | |
"ax2.set_ylabel('$y_{Methanol}$')\n", | |
"ax2.plot([z1f, z1f], [0, z1f*m_arbeit+b_arbeit], '--')\n", | |
"ax2.plot([x1d, z1f, x1b], [x1d, z1f*m_arbeit+b_arbeit, x1b], '-o')\n", | |
"ax2.plot([x1d, x1d], [0, x1d], '--')\n", | |
"ax2.annotate(s='$z_{F}$', xy=[z1f,0], xytext=[z1f, 0.1],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax2.annotate(s='$x_{B}$', xy=[x1b,0], xytext=[x1b+0.1, 0.05],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax2.annotate(s='$x_{D}$', xy=[x1d,0], xytext=[x1d, 0.1],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"ax2.annotate(s=str_nu_arbeit, xy=[0,b_arbeit],\n", | |
" xytext=[0.1, b_arbeit+0.3],\n", | |
" arrowprops=dict(arrowstyle=\"->\", \n", | |
" connectionstyle=\n", | |
" \"angle,angleA=0,angleB=90,rad=10\"))\n", | |
"\n", | |
"x_stufen = [x1b]\n", | |
"y_stufen = [x1b]\n", | |
"x_boden = x1b\n", | |
"for i in range(12):\n", | |
" y_gleichgewicht = np.interp(x_boden, x1, y1)\n", | |
" x_stufen.append(x_boden)\n", | |
" y_stufen.append(y_gleichgewicht)\n", | |
" ax2.text(x_boden, y_gleichgewicht ,str(i+1))\n", | |
" x_boden = np.interp(y_gleichgewicht, \n", | |
" [x1b, z1f*m_arbeit+b_arbeit, x1d],\n", | |
" [x1b, z1f, x1d])\n", | |
" x_stufen.append(x_boden)\n", | |
" y_stufen.append(y_gleichgewicht)\n", | |
" \n", | |
"ax2.plot(x_stufen, y_stufen, '--',\n", | |
" color='xkcd:dark blue green')\n", | |
"ax2.plot([z1f, 0], [z1f*m_arbeit+b_arbeit, b_arbeit], ':')\n", | |
"ax2.annotate(s='q=1', \n", | |
" xy=[z1f, z1f], \n", | |
" xytext=[z1f+0.1, z1f-0.2],\n", | |
" arrowprops=dict(arrowstyle=\"->\"))\n", | |
"\n", | |
"\n", | |
"Latex(str_nu_min + r'$\\quad\\Rightarrow \\nu_{min}= '+ \n", | |
" locale.format('%0.4g', nu_min) + r'\\\\'+\n", | |
" r'\\text{Verstärkungsgerade: } \\nu='+\n", | |
" locale.format('%0.2g', rlv_faktor)+r'\\nu_{min}= '+ \n", | |
" locale.format('%0.4g', rlv_faktor*nu_min)+'$')" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment