Skip to content

Instantly share code, notes, and snippets.

@santiago-salas-v
Last active March 17, 2022 10:27
Show Gist options
  • Save santiago-salas-v/472c23103f5d8cd22193079d689e8f9e to your computer and use it in GitHub Desktop.
Save santiago-salas-v/472c23103f5d8cd22193079d689e8f9e to your computer and use it in GitHub Desktop.
uses also \require{cancel}
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ü 5.1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Für die Reaktion $A \\rightarrow R$ ist k = 0,02 $min^{-1}$. Es sollen in 10 h 4752 mol R produziert werden, $U_A = 0,99$. Die Rüstzeit beträgt 1,16 h, $c_{A,0} = 8 mol/L$. Welches Reaktions-\n",
"volumen wird für einen diskontinuierlich betriebenen Rührkessel benötigt?\n",
"\n",
"dnA/dt = (-1) r Vr\n",
"\n",
"dnR/dt = (+1) r Vr\n",
"\n",
"(nA0 - nA)/nA0 = UA = 1-nA/nA0\n",
"\n",
"nA = (1-UA)nA0\n",
"\n",
"\n",
"-nA0 dUA/dt = (-1) r Vr\n",
"\n",
"\n",
"dUA/dt = k (nA/Vr) Vr/nA0\n",
"\n",
"dUA/dt = k (1-UA)\n",
"\n",
"d(1-UA)/dt = -dUA/dt = -k (1-UA)\n",
"\n",
"1/(1-UA) d(1-UA) = -k dt\n",
"\n",
"ln(1-UA) + ln(1-0) = -k tau\n",
"\n",
"1-UA = exp(-k tau)\n",
"\n",
"UA = 1-exp(-k tau)\n",
"\n",
"\n",
"tau = -ln(1-UA)/k\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$A \\rightarrow P$\n",
"\n",
"$V_R = (t_R - t_V)\\frac{\\dot{n_p} (-\\nu_a)}{U_A S_P C_{A0} \\nu_P}$\n",
"\n",
"$S_P = \\frac{\\dot{n_P} (-\\nu_A)}{(n_{A,0}-n_A)\\nu_P}$\n",
"\n",
"$U_A = \\frac{n_{A,0}-n_A}{n_{A,0}} = \\frac{n_{A,0}-n_{A,0}-\\nu_A\\xi_1}{n_{A,0}} $\n",
"\n",
"$A_P = \\frac{n_P/\\nu_P}{n_A/(-\\nu_A)} = U_A S_P$\n",
"\n",
"==>> $V_R = (t_R + t_V)\\frac{\\dot{n_P} (-\\nu_A)}{\\left(\\frac{n_P/\\nu_P}{n_A/(-\\nu_A)} \\right)} = (t_R + t_V)\\left( \\frac{\\dot{n_P}}{n_P} \\right) \\left( \\frac{\\dot{n_{A,0}}}{c_{A,0}} \\right)$"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tR = 3.83764h\n",
"tV = 1.16h\n",
"UA = 0.99\n",
"Vr= 299.859L\n",
"nbatches=2.00094\n"
]
}
],
"source": [
"import numpy as np\n",
"ua = 0.99\n",
"tau = -np.log(1-ua)/0.02 # min\n",
"tv = 1.16*60\n",
"ndotp = 4752/(10*60.0)\n",
"vr = (tau+tv)*ndotp/(8*0.99) # L\n",
"nbatches = 10*60/(tau+tv)\n",
"print ('tR = ' + '{0:g}'.format(tau / 60.0) + 'h')\n",
"print ('tV = ' + '{0:g}'.format(1.16) + 'h')\n",
"print ('UA = ' + '{0:g}'.format(ua))\n",
"print ('Vr= ' + '{0:g}'.format(vr) + 'L')\n",
"print ('nbatches=' + '{0:g}'.format(nbatches))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ü 5.3\n",
"\n",
"$A(g) \\rightarrow 3 B(g) \\hspace{2cm} -r_A = (0,6min^{-1}) C_A$\n",
"\n",
"$\\dot{V_0} C_{A,0} = 9mol/min$, $C_{A,0}=0,5mol/L$ , $U_A = 0,667$ \n",
"\n",
"==>> $\\dot{V_0} = \\dot{V_0} C_{A,0}/C_{A,0} = (9/0,5) L/min$\n",
"\n",
"**Mit Volumenveränderung**\n",
"\n",
"$Z=\\frac{P V}{n R T}$\n",
"\n",
"$\\frac{\\dot{V}}{\\dot{V_0}}=\\left(\\frac{\\dot{n}}{\\dot{n_0}}\\right)\\left(\\frac{T}{T_0}\\right)\\left(\\frac{P_0}{P}\\right)\\left(\\frac{Z}{Z_0}\\right)$\n",
"\n",
"$\\frac{\\dot n}{\\dot n_0}=\\frac{n_0 + (\\sum_i{\\nu_i})\\xi_1}{n_0} = 1 + \\frac{(\\sum_i{\\nu_i})\\xi_1}{n_0}$\n",
"\n",
"$U_A=\\frac{n_{A,0} - n_{A,0} - \\nu_A \\xi_1}{n_{A,0}} \\rightarrow \\xi_1=U_A\\frac{n_{A,0}}{(-\\nu_A)}$ \n",
"\n",
"$\\frac{\\dot n}{\\dot n_0}= 1 + \\frac{(\\sum_i{\\nu_i})}{(-\\nu_A)}\\frac{n_{A,0}}{n_0}U_A= 1 + \\frac{(\\sum_i{\\nu_i})}{(-\\nu_A)}x_{A,0}U_A$\n",
"\n",
"$\\epsilon_A \\equiv \\frac{(\\sum_i{\\nu_i})}{(-\\nu_A)}$\n",
"\n",
"Vorausgesetzt, dass das Zulaufstrom und Auslassstrom konstant bleiben (somit auch das Volumen des Reaktors). Im zeitunabhängigen Zustand sollen beide Ströme folgende Werte vertreten: Zulaufstrom $\\dot{V_0}(1+\\epsilon_A U_A)$, Auslassstrom $\\dot{V_0}(1+\\epsilon_A U_A)$. Wie ist es dazu gekommen, dass das Zulaufstrom wächst, ohne dass die Temperatur ansteigt?. Vielleicht sind variabler Druck oder variable Temperatur im Zulaufstrom für diesen Ansatz notwendig. Sonst müsste man ein unterschiedliches Volumen im Zulaufstrom eingeben, als man im Auslassstrom hinauszieht: $\\dot{V_0}=18L/min$, $\\dot{V_0}(1+\\epsilon_A U_A)=42.012L/min$.\n",
"\n",
"$\\frac{d n_A}{d t} = 0 = \\dot{n_{A,0}} - \\dot{n_A} + \\nu_A \\times r \\times V_R$\n",
"\n",
"$0 = \\dot{V} C_{A,0} - \\dot{V} C_A + \\nu_A \\times r \\times V_R = \\dot{V_0} (1 + \\epsilon_A x_{A,0} U_A) U_A C_{A,0} + \\nu_A \\times r \\times V_R$\n",
"\n",
"$V_R = \\frac{\\dot{V_0} U_A C_{A,0} (1 + \\epsilon_A U_A)}{(-\\nu_A)k C_A} = \\frac{\\dot{V_0} U_A }{(-\\nu_A) k \\frac{1-U_A}{1 + \\epsilon_A x_{A,0} U_A}}$"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vr= 140.25L\n",
"tau= 7.79168min\n"
]
}
],
"source": [
"vdot0 = 9/0.5 # L/min\n",
"vr = 0.667/(1-0.667)*(1+(+3-1)/(-(-1))*0.667)*vdot0/(\n",
" -(-1.0)*0.6) # L\n",
"tau = vr/vdot0\n",
"print 'Vr= ' + '{0:g}'.format(vr) + 'L'\n",
"print 'tau= ' + '{0:g}'.format(tau) + 'min'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ü 5.5\n",
"$4 PH_3(g) \\rightarrow P_4(g) + 6 H_2(g)$\n",
"\n",
"A: $PH_3(g)$\n",
"\n",
"$-r_{PH_3} = \\nu_{PH_3} r_1 = 10 h^{-1} C_{PH_3}$\n",
"\n",
"Hagen: $\\dot{n_A} = (\\dot{n_A} + d \\dot{n_A}) - r_A dV$\n",
"\n",
"Vorgeschlagen: $\\dot{n_A} = (\\dot{n_A} + d \\dot{n_A}) + r_A dV$ \n",
"\n",
"$\\hspace{2cm} 0 = (\\{\\text{Zulaufstrom}\\} - \\{\\text{Auslassstrom}\\}) + \\{\\text{Durch chemische Reaktion verwendete oder gebildete Stoffmengenstrom}\\}$\n",
"\n",
"$\\frac{d \\dot{n_A}}{dV} = \\nu_{A1} r_1$\n",
"\n",
"Sonst wäre Abbildung 5-8 gar nicht möglich, denn die Steigerung $\\frac{d U_A}{dV}$ wäre negativ.\n",
"\n",
"$\\frac{d \\dot{n_A}}{dV} = \\frac{d \\dot{n}_{A,0}}{dV}(1-U_A) = -\\dot{n}_{A,0}\\frac{d U_A}{dV} = - 10 h^{-1} c_A$\n",
"\n",
"$c_A = \\dot{n_A}/\\dot{V} = (\\dot{n}_{A,0}/\\dot{V}) \\times (1-U_A) = (\\dot{n}_{A,0}/\\dot{V_0}) \\times \\frac{1-U_A}{1+\\epsilon_A x_{A,0} U_A}$ \n",
"\n",
"$\\int_{0}^{V_R}dV = V_R = \\int_{0}^{U_A} \\frac{\\dot{n}_{A,0}}{k_1 c_{A,0}} \\times \\frac{1+\\epsilon_A x_{A,0} U_A}{1-U_A} dU_A $\n",
"\n",
"$= \\frac{\\dot{n}_{A,0}}{k_1 c_{A,0}} \\times(-(1+\\epsilon_A x_{A,0})ln(1-U_A)-\\epsilon_A x_{A,0}U_A)$"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAA1BAMAAAA63GscAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAIpmJdu8QRM1mu90y\nVKvMIHo8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIsklEQVR4Ae1aS4hcRRS9mZl+0/Npe3ChmIAM\nJgsjmgwxiKJgM4660SQqRI2KzxglKKSz0JWgo4g2fuIsRPxsohAwqwSMEohKu1QX04KK4MJRR9CF\nOMGQDxj01ufWq6pXVV01022ySMH0q3c/55x7+/Vj+vUFuLAiOrCxHRF0IcTVgabLeMEW04EfYoIu\nxLg6sMllPNe2bN3v7XOtIcDP5e2ceT0Q8r+6sgOHFd+T7flcnZx/GyYv+3T8ZP+VfXV3FEd1QYVd\nAV+rfe834wcmVwbK5A1Mjm9bGUpU9tmoqHpHhT0EW9S+DxuNaVnoTF6lM7Qgk2uNEMq3IWc333Dc\nlf1cTkDZcTj4OJ304VgwLQucy2tOjL6Vi/Q+tm6wuImFpN5YOB8cPzVXnPV8pzEtC5vJq7Tnv5TJ\nfWxddTJK4L6ZayCb+fmpzQDP3jndz9a9EKXHH8TkDS9+u15GqNYNztwBsGrtuu1UBwtQH9jNM22Z\n0P3AQeDizfPFTSyQlJ3OmxOPwnuNo4Egy5WiBlMv3nRrjqXdEXHv5aEWm++UWrfqM2gBPD1RXQKt\nDmrdmk511odQsnOQ4bvgUF5yOQy1k1Cfug5uzr9xON2mJDUAKOUNVtpo93uvCHWzlqzUusoU/AnZ\n/TCwH7Q6qHX3wEVRlxCDFyCPzcGVJTKXYWAWmlM5vIK++r+4llxBpi1FDWailKu4qlkTxnHGQy17\n9uoxXEfbQh5JHGy1Xr2v1VrA4I05vgychLEGiDoArm+1Pm619gk7vkYuAYJ4H0Ul4B3xOXxbTkQF\n8yAkSFoo5QgvbaprGg/tGiUD6Krbwc4r+6HZxqOqQ151aI9fGIwgOyA7FZVTn2Nv2/g/LHgY7xnd\nV2V/9xg9AqX8AxVUtVe3Ovc81OkRRkOgbF32N/M1p+AnPIg6mEG2Du3xi4MgXm0pKqe+Fz/h3w8t\nwW0YHvXNOkkN3kC4FFlaWFJ31bpAuurOANSg2YEPaxNUB9LI1uGVAZ0wa+HlIJechdHZqBv/RXOj\nk8NnR5dWIQdEfbNOUoOt41JEaYVK506EOl3SqAuk1m2A7GqoNkY+H1R1YLRs3cAC7GyHEHUfB4EX\n4b2FKd3s22fr1kO2eNv0OyzguC9KtyepwUQuRajSYVz7rqp1gdS6wRvexDdo8abLb1d1ILZsHVz7\nTsPF5LRxENhzyxeLe53+gHH4xJY84CZXihrM4VKEKkLwHbupNgRS69xg1Dq3t+fWoU+GJnsO2ktA\nQ2A2EYJ+JOTsvW+0MTLbe9QeIp5rgf4LvbIX72PGSrjs/bAGYvSJi7osMBquJ4H+Gut5pWNSuPSb\nEerMD6tCkjYu6rLAJMgVB/trHMvftdBd+q0QOvXDUkTa0UVdFpiGudJof43jv9r/z7j0e/j9sJ6E\nLmYXdVlgF5DCjV9rca3wuVdKjS79hRxjlwKrJ/pqSqDW4fq6T6kxQX8KbEx9CdQIx56oeJdFt5s9\nijn2WpckEw0htIc1/BmTGVCcMbbi0U1Q2VICbEHAdixTX0IRs0RSKzgdpY/7lMsj4a1PgY2pLoE6\nBu5Gfql9HhPqj0mpMUF/CqwuzldTArUO19d9So0J+lNgY+pLoI6B60lMSo0J+lNgY+pIoI6BC8Xw\nB27egJEJ5UqpMUF/CTZakFJmbBKoMU8fnTFgIDCvQUmrA+kI9rMCVDU+8YCy+Takn0jKcUpZCTZa\nUAGq0xA18+r2IprvaLKmumA51Gm9o7b2RiY9D+BL/y4H2K3Sioc17Ccjx6ptV0b16MYHjb+jSWUl\n2GhBis2oQFEzt58e5K+7JEOCaY0PzGuIpJHJogqZXmvwTfbLXzn+QydOuIVerN+UJd2eDY6fvFKU\nCViHIEngF6TeB1JIR4teVsa8NFljNUhrXWBeQySN4c3MSlcEW3O85reRDHUkVjIQ3ZCjdRY0hWJq\nSZmEdQhSWR5BpQpImbcyvCQOiyBLhqICCHxvFUlrylUYrYOXlQ7aECudE52rdQnKJKxDEBEAa51D\nkON9kNoselUZfpQnRYg2OsMMRBWe12BJANP4Z6UrAq70CoZorOridAd2bbn0loYwE52rdRY0hbqU\ncVinIMoSrSsLEhUYGuWJRa8qU5M19ugMUQXnNXgSwEH8TFqTN4qAt+7tkqTmS9nxbGrkyNiscBGd\no3U2NIW6lDFYBHQIoizRurIgUUFJp7+yYrLGHp2RVGyKRFbngOVJAJ/hD7nW5I3Zuh9LuT/l8Pdg\nPniyhrdJtqgyR+ts6JAyBotoDkFEIFpXFiQq4FrMF5ueKisma7TRGf3hAZsimTKxtDOeBHAvjqzM\nqskb4xGJUDqv5YjtlfjLfAbV/fxMe1bhaJ0BXYQ6lTFYhLQFFVngEyQqEOKMV4Nee/izUU3W4C3P\nGJ2R71IlOK8hk1CpnU7vjU/pCzCM/0fUG6SSLgpH62zokDIBy1rnyfK3TiaQIHW0gagynFE5JYJw\nJAH76Bo5YaMoniWS2OfDTicC0bpnSvln2PwRzLfJEWidDS1DnZMkAtYliAh8gmQFpKc42vSyMm1G\nxRidwUQSyEdRCiBzx5P4XdlON1tXviufwtG3Wr4VhnKBSJU5rjobOqSMwSLgQXwv9VEgNBGBaF1Z\nkEgQYoxXG4haV0zWGKMzBVV4XoMlYSzOANnpZuvWGmLYyR/wAd4gDsFl0kOVOVpnQ8tQpzIGi8sh\niAhE68qCeAVSjHGw6amyYkbFGJ3BXEkVntdgSbjw82inE8GGh/fhZfCaIYad7Jyegz0zu9aza4Qt\nSTfw2+k/hKF4taFDyhgsLocgap1PEK+gIC12Nj1V5p9RIaoCw78bmyj5iIA7Vh0u+W1DAl1EqEOQ\nkRUhyBaozo3KlFXfGA8PdIdjz75tWyvTu+n6+m/FJ9BFhDoEGVkRgix9xalRWWFe7u79cOLusLsP\n3vNOkLfG1V4Pd3QpJJy8LO95J8hbxQqfZ3txl+34PwX9B9lXvMqY3xieAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$\\frac{a x + c}{b x + d} = - \\frac{a d}{b \\left(b x + 1\\right)} + \\frac{b x \\frac{a}{b}}{b x + 1} + \\frac{c}{b x + d} + \\frac{a d}{b \\left(b x + 1\\right)} = \\frac{a}{b} + \\frac{- \\frac{a d}{b} + c}{b x + d}$$"
],
"text/plain": [
" a a⋅d \n",
" b⋅x⋅─ - ─── + c\n",
"a⋅x + c a⋅d b c a⋅d a b \n",
"─────── = - ─────────── + ─────── + ─────── + ─────────── = ─ + ─────────\n",
"b⋅x + d b⋅(b⋅x + 1) b⋅x + 1 b⋅x + d b⋅(b⋅x + 1) b b⋅x + d "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"simplify back\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAM0AAAAzBAMAAADGCpEzAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAIpmJdu8QRM1mu90y\nVKvMIHo8AAAACXBIWXMAAA7EAAAOxAGVKw4bAAADSUlEQVRYCe1XPWhTURT+mtfcpD+hoYu4SNAO\nrUgN6iI4hDSioFZ08KcqPEototC4CLrYICIBi3YQEVyCOOjUgsWlKnFwcTAR3JshCA5Ci5BSaNH3\n3n33/dyc9xNf3bxDe+53vu98576E+06AMCu2GYYVncNWo9cIUyFVCsOKzlEy0Wv4V5gcnwMbOl73\nZ0XOsnf9Ldyo1tTIlfwLxDL9i9iNT/6s6Nl4vbuBKxg3K6Vy0UuSFYrp3qfTa3g9zbMd+XRCjldr\nd3C5f3P+H/skmt9GcPdUXvZRCifJ8ztB6Txde4bOOdN+sZB2vUe5nTd44KiKqfEdYzkjJ8jgTd1K\nJ0PfKkIaz+Jnm0/iDB6DZXuW+kouH94Uu4hYRdZcW9bXHPBbLI2hlMsPL5TLDS3cr2p/5HV1Hnuh\nqEorlTZS7qZiLfTlZInXXkgnKIJmvgSGZEVPtjUVr6BY1TNe63bJzpg+7JcN2dEEmP76GMiZkLup\nYhYrNpeInHeokG4AKZmqmaf0D7pWNTPupop1vDIfqKzk+2TdxoXPKNg+G+UR20Jv6WtKPY1u1UAE\nmTeVzPV8UGSNcz/AP1WXVDn8xEnh8X08b2Rn6wvYyffChzfFmkd2HWsX2chs4bu1EVILcAYzYx+b\nN2cKUyPzHBVksimnkMcn1LwFMsfZLNArED5eeQl/iWcSEnLr3RTZwXmMhiwcmkb6tLT3zzYv0udt\nT2WbbUD6fDm43Ta0j5+LdovpK+PHIXLkeQheJMhxw0aq4yE2XjCrPCnOMyDeOn7/TY1V1lfkJgsf\nSxsUKMb7cLkRxJPyHftI+rDb/z5hn5TGu37JIrtuWAduEXjw+awE8G2Q4BGpArxwYItWBAg8VFI1\nx3ck0aJ93IVkgZdKwh0yZZH0CRB4qCDhDp9khvQJECSb+TqlM3BiKh88VCP5CBAUH7A1ykfHialc\nm9YXVIqPAMGKCnKM1XFiKtem9WHSBgGCYdDjso7TU/kb2idAcA8J9xfSrMJxYipn67RPgGAD2k8T\nYnGcmMqNab1zwTq0R04sHW+fyvm0TtCBAMEPvCBlOk5M5ca0/jeCyTx5HOg4MZUb0zrp07GArOK4\nD8h8G9ixgFdg6bZK/oBb8Ae78FXOwG86hQAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\frac{a}{b} + \\frac{- \\frac{a d}{b} + c}{b x + d} = \\frac{a x + c}{b x + d}$$"
],
"text/plain": [
" a⋅d \n",
" - ─── + c \n",
"a b a⋅x + c\n",
"─ + ───────── = ───────\n",
"b b⋅x + d b⋅x + d"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAAyBAMAAADGhDMEAAAAMFBMVEX///8AAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv3aB7AAAAD3RSTlMAZnaJIhC7RM0y75nd\nVKu+STY0AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAIv0lEQVRoBaVaXYhkxRU+M923p3ume3rMQwhE\n2WYGEVlwZkcDLpFsrxB8ULTRRWSEmUbyIP5g41NchGkTkrRsWPphyYMIM8Ff8Idd98UfdEeTB41x\naSQhsCxMO/ogojhm3aiEzeacqjr1c++53bd7CvbWOd/5vqo6t+69U1W9AFLJtSRUxrJyV2V5NnR8\n8cTCDUEXPw+8wU5W7lR7cDsDo+OLb4C7/XnK9Qf2EwRF7p9eCjja+YmAZYbGFU+0obTp9XKu4TmC\nWXnOgTL3kiNYq7BkzdGNccUzmwDfuO6iF5wtWavvXLSwzJ1yBMuE6BVnj2xlFH8sNfyhAwsnnS1a\nk27kMje3JenOSWBWLJs4mVrpKviP62N7yPMIXmoytyjenPJenshs4kRqpSeOHPyvS01PYP70a89B\nNP/Zo8suYiwvNW+yMag0cOvyRi+hQaDyrYRmxGRxfJA2teX5rmr4aBcK/7ZdTOgRHK0Xd+EuuLL2\nvo2w4VIzXA4ozdSz8EiDkaAO70MQGu6I4vggObXbesU2NZnHtMrf2cbLTTKjP8NME34Ghxr/sBE2\nXGqay7jWrMzB64yE9T4545CU5knixCA5tWdgVj04s/hVmN60TW60yJy5COUaNOD3FneGS01zOaI1\nZxrwF0bCeq0W+iN5kjgc5I2dzt86nePYKuK6VNsAa0vGAXhTWdNNWOui5R5US/A+I5rLEa15HiL3\nCHBI1fohCaDsjiRODNLMGuK6rJ0EWGzYTl5VFua6jUbpB4s7w82a5nJEaaILUNllJKwn9/IdkcSJ\nQZrU7ETRVLtHqKT/eK/14P5K/Z+Tu3B1OD70bGqGywSl+eUlKLST7ydx8t66gDWZa0mcGKRJrToH\n0KOWC32YbdouzN0p1ibO5qYuFXbzSIsVm1rsTioN/Aau7C/FFMYNJ1nmpKKCODFIk9pMH+7tUkP5\nd4+85RosbCo72jl4+zXRztX7r3AhY8188f0n2jRcZigNrC6c2GkxFNYPhS57h9kQ64m6hgVxYpAm\nNbj+ipoWVQ4YNbn2FdSxgddRuNTQIbqUPo/Nab4Jd79MEangJuIzjSuxRPEwTs2DPJM+KlnLKFxq\nc5+azZV+2H6xDnA8hDzvEtyjPS32IoJ5RMActFFzdmBVkoFULgtjd1Hz8d0Oyk/Ri+2CnA43Ebma\nog/tLGhUcrZ7EoqYkFoql5twQ1SInuV4an8FiO+CnA43EdGmJ1bmmJd93RShkFoql5twQ1RItU9V\nLLX8FkB8F+R0RXw//kAq0GJljnlZrKcIhdRSudwEDzE3fy1B1SZdMbVoeaEFU5+emkdgEgdf3Nnf\ngzuvu2WhRgQA1ulNhP5+a7GOj3c9VE/RCamlcrkJM8T8R9AhaLpNV0zt6TrcB+uN8lwN3Tlc5/0u\n+jZamnivrAg2NbOJ0AcjWgy4UsRyjBoateDqVi5CaqlcbsGkNr0EXxE0vUVXTA0XPxvdL2GW/HIP\nYLsBF3KN3MVKHQEsRreiNxHnFabFysx2ueyVXZJ8rXUxONfp/PHFTqePwaoKKZbm3vN3Kk8CeBoK\nu5U434LyJuGFfgk/iNWlN3Vq0y3AXVB0IYJik8KhDm8CbChYi5XJF6/DpMkkV5vUHMCWMGupXNaY\nu/+88Tm1Cm4Nqs07uis4YUCpHYMpyraW0KlNRGpqTM9Y8x1O0IXUUrks1qnhZkCX8hbVZtZO3rx8\nkFx6IL9RW6yNLvlUrE5tIh5XmBbDTeoZOaugES+pnwYhtVQu92lmDVf8FYLsZ+QlgPXWvzSLPiPf\nwcpcpbEIkw2NmdTMJiL4jGjCWNdFe+ticiG1VC5LTWrvQPQGQdNNuhaa8FQXfgu/fuwEubmTAJ/A\ng7DeewQOE4DF6Mwm4rTCtFiZWS+xA//UpZqQWiqX+zZDzB34kUKqmAWUvv5fPX/6Fy0oXr6MswdT\nWwD37p+D1fk7T80pmk3NbCKeVKgSm3jGKnbgv92yunA9blOLHtgyFI9rEBdTgEnNBP1jCoQehiPn\na1jjQiteAh0tV7DYrbPy1CXWmwtA6QG8ixOxA39/FXrcI0NUZ6/YN5bPNZCNKT+2Eg/4lSZ2jv+A\nlsexEuhyNRUNxIYf9uY3Uu3h6c9mcOAP/rzjB1kqJFPF5zLEMeMHVbCcjj7A147YhXpASjhmUxOI\nDcmORPveZK83NPSh1xyvdRCKr8eZxTLwuIkYA34dflHvWl5QHxfcig4sv9LRUKwxOxLteqndREh4\n4A8zu5qG1/h6nANKRo7HTcQY8OuUP/H8XfSpzuYDBElsR6LpXmrHENEH/u5wf4KPJ8163PVhrePz\nb2vb43LQxhjwa16V+FhmWxJTb27o/DcDf3u4lt6lo+rA3x3u0/rOFFqPs+3V0feNtbryPa6Ju5gn\nYJNO4Mcuklj15oZuUztaL+AEmQN/73D/Vdv7Nq7HreOMykVc22rXcU3YizkBW7GzPYaz1ZJY9eYN\n3TyQEf5e0QYwB/7e4f4Z2xWtx63jDJTx3xjHNWEv5gRsFbbYGqOWxKo3HrrbaNBPAXjvq23zx9A+\nLOst7livx9mzNe7p13vac1wT9WKWb421mjVHNySx6c0O3cwaLsnWMAk6iVls4NfEHu6XEdFFr8fZ\nszUeO59BBRXH1T54MYN4FfUzdpHEujc3dJMaPlPb2A/dDNzueYf77rNH63FhKNUWPsy6OK4BvFhS\nmXgzk5R0RBKr3ryhc2rq9wrcPNGBf3C4T2tWVWg9LpTZOffjvOUanh+LS+XfbOOsFF8UU2/+0E1q\n+rcHc+AfHO7jh1EXWo8LJXrtlEUt1yB+zJKMgW/G+EUUU2/+0E1q+rcH3CMeqMc6FFuJcdgdhSv/\n7xluaUidSWxSS28qb78o6RyOjMCV//cMNzSkziYONgxii+dFVAazc90LKrc0EN2T2Gt5pu85Q8zs\n3B8PaWlgeE9iv+Ud3xliZ+VOtYc0NCi8J3HQ8EwrcAc6Wbmr/N0d2FpKcBzx/wEXnKgbkFlXxQAA\nAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\frac{\\partial}{\\partial x}\\left(\\frac{a x}{b} + \\frac{1}{b} \\left(- \\frac{a d}{b} + c\\right) \\log{\\left (b x + d \\right )}\\right) = \\frac{a x + c}{b x + d}$$"
],
"text/plain": [
" ⎛ ⎛ a⋅d ⎞ ⎞ \n",
" ⎜ ⎜- ─── + c⎟⋅log(b⋅x + d)⎟ \n",
"∂ ⎜a⋅x ⎝ b ⎠ ⎟ a⋅x + c\n",
"──⎜─── + ────────────────────────⎟ = ───────\n",
"∂x⎝ b b ⎠ b⋅x + d"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import sympy\n",
"from IPython.display import display\n",
"from sympy import UnevaluatedExpr\n",
"from sympy import oo\n",
"sympy.init_printing()\n",
"x, a, b, c, d = sympy.symbols('x, a, b, c, d')\n",
"display(sympy.Eq(sympy.Eq(\n",
" (c+a*x)/(d+b*x), c/(d+b*x) + UnevaluatedExpr(\n",
" a/b)*b*x/(1+b*x) + UnevaluatedExpr(\n",
" a/b*d/(1+b*x) \n",
" )-a/b*d/(1+b*x)), (c-a/b*d)/(d+b*x) + a/b\n",
"))\n",
"print('simplify back')\n",
"display(sympy.Eq((c-a/b*d)/(d+b*x) + a/b, \n",
" sympy.simplify((c-a/b*d)/(d+b*x) + a/b)))\n",
"display(sympy.Eq(\n",
" UnevaluatedExpr(sympy.Derivative(\n",
" (c-a/b*d)*1/b*sympy.log(d+b*x)+a/b*x,x)),\n",
" sympy.simplify(sympy.diff(\n",
" (c-a/b*d)*1/b*sympy.log(d+b*x)+a/b*x,x))\n",
"))"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vr= 7.39804L\n"
]
}
],
"source": [
"ca0 = 4.6*1e5/101325.0/(0.08207*(650+273.15)) # mol(A)/L\n",
"ua = 0.80\n",
"nadot0 = 2.0 # mol(A)/h\n",
"k1 = 10.0 # h^-1\n",
"eps_a = (-4+1+6)/(-(-4.0))\n",
"vr = nadot0/(k1*ca0)*(\n",
" -(1+eps_a*1.0)*np.log(1-ua)-eps_a*1.0*ua)\n",
"print('Vr= ' + '{0:g}'.format(vr) + 'L')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ü 5.6\n",
"Gasphasencracking bei 800°C, 6 bar:\n",
"\n",
"$C_2 H_6 \\rightarrow C_2H_4 + H_2$\n",
"\n",
"A: $C_2H_6$\n",
"\n",
"B: $C_2H_4$\n",
"\n",
"Bedingungen: Reaktion 1. Ordnung, k = $3,07 s^{–1}$ (800 °C). Es sollen 300000 t Ethylen/Jahr (1 Jahr = 300 Tage) hergestellt werden bei einem Umsatz von Ethan= 0,80.\n",
"Berechne das notwendige Volumen eines Strömungsrohrreaktors für die genannte Reaktion; es gilt die ideale Gasgleichung.\n",
"\n",
"**Lösung**\n",
"\n",
"$Z=\\frac{P V}{n R T}$\n",
"\n",
"$\\frac{\\dot{V}}{\\dot{V_0}}=\\left(\\frac{\\dot{n}}{\\dot{n_0}}\\right)\\left(\\frac{T}{T_0}\\right)\\left(\\frac{P_0}{P}\\right)\\left(\\frac{Z}{Z_0}\\right)$\n",
"\n",
"$\\frac{\\dot n}{\\dot n_0}=\\frac{n_0 + (\\sum_i{\\nu_i})\\xi_1}{n_0} = 1 + \\frac{(\\sum_i{\\nu_i})\\xi_1}{n_0}$\n",
"\n",
"$Z=1$, isothermisch, isobarisch\n",
"\n",
"$\\frac{\\dot{V}}{\\dot{V_0}}=\\left(\\frac{\\dot{n}}{\\dot{n_0}}\\right)=1+(\\sum_i{\\nu_i})\\left(\\frac{\\dot{n}_B - \\dot{n}_{B,0}}{\\nu_B \\dot n_0}\\right)$\n",
"\n",
"$\\frac{d \\dot{n_B}}{dV} = \\nu_{B} r_1 = \\nu_{B} k_1 c_A$\n",
"\n",
"$c_A$ als funktion des Stoffmengenstromes $\\dot n_B$\n",
"\n",
"$c_A = \\frac{\\dot n_A}{\\dot V} = \\frac{p_A}{R T}$, \n",
"$c_B = \\frac{\\dot n_B}{\\dot V} = \\frac{p_B}{R T}$\n",
"\n",
"$c_A + c_B + c_C = \\frac{p_A}{R T} + \\frac{p_B}{R T} + \\frac{p_C}{R T} = \\frac{P}{R T}$\n",
"\n",
"$c_A = \\frac{P}{R T} - \\frac{\\dot n_B}{\\dot V} - \\frac{\\dot n_C}{\\dot V}=\\frac{P}{R T} - \\frac{(\\dot {n}_B+\\dot {n}_C)}{\\dot V_0}\\times \\frac{1}{1+(\\sum_i{\\nu_i})\\left(\\frac{\\dot{n}_B - \\dot{n}_{B,0}}{\\nu_B \\dot n_0}\\right)}$\n",
"\n",
"Nach Ersatz:\n",
"\n",
"$\\frac{d \\dot{n_B}}{dV} = \\nu_{B} k_1 \\frac{P}{R T} - \\nu_{B} k_1\\frac{\\dot {n}_B+\\dot {n}_C}{\\dot V_0}\\times \\frac{1}{1+(\\sum_i{\\nu_i})\\left(\\frac{\\dot{n}_B - \\dot{n}_{B,0}}{\\nu_B \\dot n_0}\\right)}$\n",
"\n",
"$V_R = \\int_{0}^{V_R} 1 dV = \\int_{0}^{\\dot {n}_B} \\frac{1 - \\frac{\\sum_i \\nu_i}{\\nu_B}\\frac{\\dot {n}_{B,0}}{\\dot {n}_0}+\\frac{\\sum_i \\nu_i}{\\nu_B}\\frac{\\dot {n}_{B}}{\\dot {n}_0}}{\\nu_B k_1 \\frac{P}{RT} \\times \\left(1+\\frac{\\sum_i \\nu_i}{\\nu_B}\\frac{\\dot {n}_{B}}{\\dot {n}_0}-\\frac{\\sum_i \\nu_i}{\\nu_B}\\frac{\\dot {n}_{B,0}}{\\dot {n}_0} -\\frac{RT}{P V_0}\\dot{n}_B -\\frac{RT}{P V_0}\\dot{n}_C \\right) }d \\dot {n}_{B}$\n",
"\n",
"$V_R = \\frac{R T}{P}\\frac{1}{\\nu_B k_1} \\int_{0}^{\\dot {n}_B} \\frac{\\left(1 - \\frac{\\sum_i \\nu_i}{\\nu_B}\\frac{\\dot {n}_{B,0}}{\\dot {n}_0}\\right)+\\frac{\\sum_i \\nu_i}{\\nu_B}\\frac{1}{\\dot {n}_0}\\dot {n}_{B}}{\\left(1-\\frac{\\sum_i \\nu_i}{\\nu_B}\\frac{\\dot {n}_{B,0}}{\\dot {n}_0}\\right)-\\left(1-\\frac{\\sum_i \\nu_i}{\\nu_B} \\right)\\frac{1}{\\dot {n}_0} \\dot{n}_B - \\frac{1}{\\dot {n}_0} \\dot{n}_C }d \\dot {n}_{B}$\n",
"\n",
"$\\frac{\\sum_i \\nu_i}{\\nu_B}=\\frac{-1+1+1}{+1} = 1$\n",
"\n",
"$\\dot {n}_{B,0}=0$\n",
"\n",
"$\\dot {n}_{C,0}=0$\n",
"\n",
"$\\dot {n}_0=\\dot {n}_{A,0}+\\dot {n}_{B,0}+\\dot {n}_{C,0}=\\dot {n}_{A0}$\n",
"\n",
"$U_A = \\frac{\\dot {n}_{A,0}-\\dot{n}_A}{\\dot{n}_{A,0}} =\\frac{\\dot {n}_{A,0}-\\dot{n}_{A,0} -\\nu_A \\xi_1 }{\\dot{n}_{A,0}} = \\frac{(-\\nu_A)}{\\nu_B}\\frac{\\dot {n}_B - \\dot {n}_{B,0}}{\\dot{n}_{A,0}}$\n",
"\n",
"$\\Longrightarrow \\dot{n}_{A,0} = \\dot{n}_{0} = \\frac{(-\\nu_A)}{\\nu_B}\\frac{\\dot {n}_B -0}{U_A}$\n",
"\n",
"$\\dot {n}_C=\\dot {n}_{C,0} + \\nu_C \\xi_1$\n",
"\n",
"$\\dot {n}_B=\\dot {n}_{B,0} + \\nu_B \\xi_1$\n",
"\n",
"$\\Longrightarrow \\dot {n}_C=\\frac{\\nu_C}{\\nu_B} \\dot {n}_B$\n",
"\n",
"$V_R = \\frac{R T}{P}\\frac{1}{\\nu_B k_1} \\int_{0}^{\\dot {n}_B} \\frac{1+\\frac{\\sum_i \\nu_i}{\\nu_B}\\frac{1}{\\dot {n}_0}\\dot {n}_{B}}{1 - \\frac{\\nu_C}{\\nu_B}\\frac{1}{\\dot {n}_0} \\dot {n}_B }d \\dot {n}_{B} = \\frac{R T}{P}\\frac{1}{\\nu_B k_1} \\left( -\\frac{\\sum_i \\nu_i}{\\nu_C} \\dot {n}_B - \\dot {n}_0 \\frac{\\nu_B}{\\nu_C}(1+\\frac{\\sum_i \\nu_i}{\\nu_C} ) \\times ln(1-\\frac{\\nu_C}{\\nu_B}\\frac{1}{\\dot {n}_0} \\dot {n}_B) \\right)$\n",
"\n",
"$V_R = \\frac{R T}{P}\\frac{\\dot {n}_B}{\\nu_B k_1} \\left( -\\frac{\\sum_i \\nu_i}{\\nu_C} - \\frac{(-\\nu_A)}{\\nu_C} \\frac{1}{U_A}(1+\\frac{\\sum_i \\nu_i}{\\nu_C} ) \\times ln(1-\\frac{\\nu_C}{(-\\nu_A)}U_A) \\right)$\n",
"\n",
"$V_R =\\frac{R T}{P}\\frac{\\dot {n}_B}{\\nu_B k_1} \\left( -1 - \\frac{1}{U_A}(1+1) \\times ln(1-U_A) \\right)$"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vr = 6053.86L\n",
"ca0 = na/V = P/RT = 0.0672482mol/L\n",
"na0 = nb/U_A nua/nub = 516.7mol/L\n"
]
}
],
"source": [
"nb = 300000.0 * 1e6 /(12.0*2+1.0*4) / (300.*24.*60.*60.) # molB/s\n",
"ua = 0.80\n",
"p = 6.0 # bar\n",
"r = 8.314/100.0 # L kPa/(mol K) * 1bar/(100kPa)\n",
"t = 800 + 273.15 # K\n",
"k1 = 3.07 # s^-1\n",
"nub = +1.\n",
"nua = -1.\n",
"nu = +1.+1.-1.\n",
"vr = nb * r * t / (p * k1 * nub) * (\n",
" -1 - 1/ua * (1+1) * np.log( 1 - ua)\n",
")\n",
"print ('Vr = ' + '{0:g}'.format(vr) + 'L')\n",
"print ('ca0 = na/V = P/RT = ' + '{0:g}'.format(p / (r * t)) + 'mol/L')\n",
"print ('na0 = nb/U_A nua/nub = ' + '{0:g}'.format(nb/ua) + 'mol/L')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ü 5.7 [5]\n",
"\n",
"Die irreversible Zersetzung von Di-tert.-Butylperoxid wird in einem isotherm betriebenen Strömungsrohr ohne Druckverlust betrieben; $A \\rightarrow B + 2 C$. Der Einsatzstrom besteht aus reinem Peroxid und inertem Stickstoff. Das Reaktorvolumen ist 200 L, der Eintrittsstrom beträgt 10 L/min. Die Reaktion verläuft bezüglich A nach 1. Ordnung, $k = 0,08 min^{-1}$.\n",
"\n",
"a) Ermittle den Umsatz als Funktion des Reaktorvolumens für einen Zulaufstrom von reinem A mit einer Konzentration von 1,0 mol/L. Vergleiche den \n",
"Umsatzverlauf, wenn der Zulaufstrom nur 5 % A enthält, der Rest besteht aus Stickstoff.\n",
"\n",
"b) Vergleiche die Ergebnisse für eine Reaktion $3A \\rightarrow B$ mit der selben \n",
"Geschwindigkeitskonstante, alle anderen Bedingungen bleiben gleich."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Lösung**\n",
"\n",
"$\\frac{d \\dot {n}_A}{d V} = -k_1 c_A$\n",
"\n",
"$\\dot {n}_A = \\dot {n}_{A, 0} (1-U_A) = n_{A,0} + \\nu_A \\xi_1$\n",
"\n",
"$\\dot {V} = \\frac{R T}{P} \\sum_i{n_i} = \\frac{R T}{P} \\sum_i(n_{i,0} + \\nu_{i,1} \\xi_1) = \\frac{R T}{P} (n_0 + \\frac{\\sum_i(\\nu_{i,1})}{-\\nu_A} U_A n_{A,0} ) =\\dot {V}_0 (1 + \\frac{\\sum_i(\\nu_{i,1})}{-\\nu_A} x_{A,0} U_A )$\n",
"\n",
"$\\epsilon_A \\equiv \\frac{\\sum_i(\\nu_{i,1})}{-\\nu_A}$\n",
"\n",
"$-\\frac{d U_A}{d V} = -k_1 \\frac{\\dot {n}_A}{\\dot {V}} = \\frac{\\dot {n}_{A,0}}{\\dot {V}_0}\\frac{1 - U_A}{1 + \\epsilon_A x_{A,0} U_A}$\n",
"\n",
"$V_R = \\frac{\\dot {V}_0}{k_1}(-\\epsilon_A x_{A,0} U_A - (1+\\epsilon_A x_{A,0})ln(1-U_A))$\n",
"\n",
"$0 = k_1\\frac{V_R}{\\dot {V}_0} +\\epsilon_A x_{A,0} U_A + (1+\\epsilon_A x_{A,0})ln(1-U_A)$ ... solve for UA\n",
"\n",
"$A \\rightarrow B + 2C$\n",
"\n",
"$\\epsilon_A = (-1+1+2)/(-(-1)) = +2$\n",
"\n",
"$3A \\rightarrow B$\n",
"\n",
"$\\epsilon_A = (-3+1)/(-(-3)) = -2/3$"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"100% A\n",
"UA = 0.609151\n",
"5% A\n",
"UA = 0.782528\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXl8VNXd/99nsu/7QvYFQlgCAYIE\nwyIiqxgs2spStVhF6wb4VB98qkCt+iD4s+ojItQKthWwSsXUXQpqQbAEDFsgLCFASMi+78mc3x9n\nskFCQDKZkJz363Vf986555z7nTsz9zNn+36FlBKNRqPRaC6HwdIGaDQajab7o8VCo9FoNB2ixUKj\n0Wg0HaLFQqPRaDQdosVCo9FoNB2ixUKj0Wg0HaLFQqPRaDQdosVC0ysRQlgLIY4KIY53Yp0eQggp\nhCg3bSVCiA+FEI7XWK+dEOLPQogzQogyIcSPQohpbeRzEUK8KIQ4acp3WgjxhhDC51qur9GAFgtN\n7+U3gC8QKYRw6qQ6Y4ECKaWzlNIZiAYSgLsvV0gIsVwIsfwyWayBc8B4wA14Fvi7ECKsRR3uwL9N\n15wmpXQBxgI2QOhPfD8aTRNaLDS9DtODdRnwKNAADL7K8qKdU7HAkcYXUsps1EPe5qdZ2lRPhZRy\nuZQyQ0pplFJ+ApwGRrTI9kegELhTSnnCVC5TSvmglDL5Wq6v0YAWC03v5FnglJRyE3AcGHKlBYUQ\nY4HPhBD2bZwehkksTN1cdwHBwN+v3eRWNvgBUS2uFYxqvfxOSmnszGtpNI1YW9oAjaYrEUJEoFoU\nU0xJR7gKsQB2AblAkhAiUUpZ3eJcLNBXCDEXcASqgdullLnXbrlCCGEDvAe8K6U8Zkq+BciTUu7u\nrOtoNBejWxaa3sYqYJuU8hvT6yPA0IszCSGmmgarW22obqt7gEmocY/G/HbAAGCclNIdcABWAO+2\nZYQQ4hMhRLEQohhYAixpfC2E+KSdMgbgr0AtSvAa8QPOXvkt0GiuHqG9zmp6C0KIMahB4FKgypTs\nABillB5XWIcBWA/0AWZKKatM6SOA7wEXKWWtKS0B2AE4SSnrLlPncgAp5fLL5BHAO0AYML3xuqZz\nc4GVQIjuhtKYC92y0PQKTA/bV4C3gP6oLqNYYDLgLoQIucKqElD/5Ge2fGCjxisOtRCKPsDvgKTL\nCcVVsAbVcrntousCNLZEVgghXIUQNkKIGNN0Wz1tVtMpaLHQ9BbmoR7yT0opLzRuwH+AMq5w3EJK\n+W/U1NSLH9ixQGzj+grU2MYRYP61Gi6ECAUeNF3jQot1HPNMNpUCN6MGvU8ABcBmIEdKmXet19do\nQHdDaTQajeYK0C0LjUaj0XSIFguNRqPRdIgWC41Go9F0iBYLjUaj0XRIj1nB7e3tLcPCwixthkaj\n0VxX7Nu3L19K2eEU6x4jFmFhYSQna39pGo1GczUIIc5cST7dDaXRaDSaDtFiodFoNJoO6THdUBqN\nRtNjkRIq8qH4DBRlQPHZ5q3kHHiEwbwPzGqCWcVCCDEVeA2wAt6WUq646PwfgQmml46Ar8ljJ0KI\nBuCQ6dxZKWXi1V6/rq6OzMxMqqurO86s6TLs7e0JCgrCxuaaYgJpND2L2kqTGJgEoSijWRyKzkBd\nRev8jl7gFgw+0RAwzOzmmU0shBBWwGqUK+dMYK8QIklKmdqYR0q5uEX+x1DO2BqpklLGXosNmZmZ\nuLi4EBYWRvvBzTRdiZSSgoICMjMzCQ8Pt7Q5Gk3XYWyA0qy2haAoAyouCnti4wQeoarVED5e7T1C\nwT0U3EPAzrlLzTdny+IG4KSUMh1ACLEZmAmktpN/DirUZadRXV2thaKbIYTAy8uLvDzt307TA2mo\nh5KzUJgOBelQeMp0fEp1GRlbOCAWVuAWqEQgaopJDEybeyg4eUM3enaZUywCUfGHG8kERrWV0eRV\nMxzY3iLZXgiRDNQDK6SUW9sotwBYABAS0raHaS0U3Q/9mWiua4wN6sFfmN4sBIUmYSg601oQbJzA\nKwL8Y2BgYmsxcAsCq+unK9acYtHWE6E9F7ezgQ+llA0t0kKklFmmMJjbhRCHpJSnWlUm5TpgHUBc\nXJx2n6vRaDoHKVWXUf5xKDjZWhiKMi4VBM8I8BsEA24Dz0jwilR7Z99u1Tq4FswpFpmoYPWNBAFZ\n7eSdDTzSMkFKmWXapwshvkGNZ5y6tGjP4P777+eJJ55g4MCBZrvGRx99xKxZszh69CjR0dFmu45G\nc91QX6MEIP845J8w7U3HLQeUbRyVIPhGQ/StzWLgGQEu/j1GEC6HOcViL9BPCBEOnEcJwtyLMwkh\n+gMewO4WaR5ApZSyRgjhjYpOttKMtpodKSVSSgyGtpe2vP3222a3YdOmTYwZM4bNmzezfPlys19P\no+k2VBa2EIIWwlCUAS0j0boFg3c/GH632ntHgVdfcOnTKwThcphNLKSU9UKIR4EvUVNn35FSHhFC\nPAckSymTTFnnAJtl6yhMA4C1QggjauHgipazqK4XMjIymDZtGhMmTGD37t1s3bqVtLQ0li1bRk1N\nDZGRkaxfvx5nZ2duuukmXn75ZeLi4nB2dmbhwoV88sknODg48PHHH+Pn50deXh4PPfQQZ8+eBeDV\nV18lISGBb7/9loULFwJqPOC7777DxcWllS3l5eXs2rWLHTt2kJiYqMVC0zMpz4PcVMg7ZtqbxKEy\nvzmPlZ0SAP8hMPhO8OmvhMGrL9g6Wc72bo5Z11lIKT8DPrsobelFr5e3Ue57IKaz7blr7e4O80wc\n4MuCcZFN+e8cEcTP44IprKjlN3/b1yrv+w+O7rC+tLQ01q9fz5tvvkl+fj7PP/8827Ztw8nJiZde\neolXXnmFpUtb3RIqKiqIj4/nhRde4KmnnuJPf/oTzzzzDAsXLmTx4sWMGTOGs2fPMmXKFI4ePcrL\nL7/M6tWrSUhIoLy8HHt7+0vs2Lp1K1OnTiUqKgpPT0/279/P8OHDO7Rfo+mWVBVB7rEWwnBUHVcW\nNOdx8ADv/hA9Xe29o5QouIeAwcpytl+n6BXcZiY0NJT4+HgA9uzZQ2pqKgkJCQDU1tYyevSlgmNr\na8uMGTMAGDFiBF9//TUA27ZtIzW1uYFVWlpKWVkZCQkJPPHEE8ybN49Zs2YRFBR0SZ2bNm1i0aJF\nAMyePZtNmzZpsdB0f2rKIC/NJAZHm8WhLLs5j61L81iCzwDwHQC+A3vU4HJ3oFeJxZW0BNrL7+lk\ne9XlAZycmpu1UkomTZrEpk2bLlvGxsamaXqplZUV9fX1ABiNRnbv3o2Dg0Or/EuWLOHWW2/ls88+\nIz4+nm3btrUawC4oKGD79u0cPnwYIQQNDQ0IIVi5cqWexqrpHhiNUHQacg7DhUNw4TDkHlFTVBux\ndlBdRhE3KUFoFAa3IC0KXUCvEgtLEx8fzyOPPMLJkyfp27cvlZWVZGZmEhUVdUXlJ0+ezBtvvMGT\nTz4JQEpKCrGxsZw6dYqYmBhiYmLYvXs3x44dayUWH374Iffccw9r165tShs/fjw7d+5k7Nixnfsm\nNZqOqK1QrYQLB5Uo5ByGnCNQW67OCyvVXRQ0Eobfo1oJPtFqfYLuPrIYWiy6EB8fHzZs2MCcOXOo\nqakB4Pnnn79isXj99dd55JFHGDJkCPX19YwbN4633nqLV199lR07dmBlZcXAgQOZNm1aq3KbNm1i\nyZIlrdLuuOMONm7cqMVCYz6kVN1FFw4rYcg5rI4LTtK05MrOFfwGQ+w88B+sFq/5DACbS8fdNJZF\ntJ6EdP0SFxcnLw5+dPToUQYMGGAhizSXQ382PQwplffTrBTITmnetxxwdg9VYuAfowTCP0YNNusu\nJIsihNgnpYzrKJ9uWWg0mqujSRh+bBaF7APNwmCwVq2D/tPAf6hqMfgNAns3y9qtuSa0WGg0mvaR\nUg0yt2wtZKVAVaE63yQM0yEgFvoMU8Kgu5F6HFosNBpNM5WFcH4/nE+GzGQ4v6+1MPgOUFNUtTD0\nOrRYaDS9lfpayDkEmfuaxaGw0f2aMAnDdBVYJ2AY+Gph6M1osdBoegNSqmA7ja2FzL2QfRAa1Kw8\nnP0hKA6G/VLtA4aBncvl69T0KrRYaDQ9kfoaNeh8dg+c+0FtFaaAU9YOqhvphgeUMASNBNdAPSup\nm1JRU092STUXSqq5UFrNhZIqskuqGR7iwR0jgqioqcfO2oC1VdtOSjsLLRbdgKSkJFJTU1myZAlb\nt24lKiqqTVflaWlpPPjggxQXF1NTU8PYsWNZt24dKSkpZGVlMX369Evqa4uMjAxmzJjB4cOHO7St\nuLiYjRs38vDDD3eY98knn+Szzz5j+vTpPPXUU8yYMYPa2lpef/11vZ7D3FQWKkFoFIfz+5tbDR7h\n0PcWJQpBcWqR23UUdKc38P3JfOxtrRge4oHRKJm/YS/ZJlEoq66/JL+Xky0ejrYAONpaUVNvxNrM\n6xW1WHQDEhMTSUxMBJTDvxkzZrQpFo8//jiLFy9m5syZABw6dAhQK7mTk5ObxKJlfddKcXExb775\n5hWJxdq1a8nLy8POzo7NmzcTHR3Nu+++2yl2aFogpYrBcG5PszjkH1fnDDbQZ6hqNQSPgpB45SNJ\n0+XUNRjJKa0mu6SarOIqzhdXkVVcRVaxeh3k4cjb96rlDc9+fJgoPxfW/HIEBoOgwSgJ83JidIQX\n/m4O9HGzx9/NngA3B3xd7bC3aVYGIUSr1+ZCi4UZycjIYOrUqYwZM4Y9e/YwdOhQ5s+fz7Jly8jN\nzeW9997jhhtuYMOGDSQnJzN37lySkpL49ttvef7559myZQuRkZFN9WVnZ7dyEhgTE0NtbS1Lly6l\nqqqKnTt38vTTT1NVVUVycjJvvPEGOTk5PPTQQ6SnpwOwZs0aAgICmupIT0/njjvuYN26dTg6OjJ/\n/nxqa2sxGo1s2bKFZ599llOnThEbG8ukSZNYuXIlTz31FJ9//jlCCJ555hnuuusuEhMTqaioYNSo\nUcyZM4fVq1dTVVVFbGxsm/6sNFeB0aj8JGXsVNvZPc0ut+3dIDgehs5W+8DhYKPvtbmRUlJeU4+L\nvWqhfZ2aQ1ZxFffeGAbAve/8h3+fyMN40ZpnD0cbAtwdCPZ0JCawed3Jm/NG4O7Y3Nr72/1tRqC2\nKL1HLD5fohyUdSb+MTBtxWWznDx5kg8++IB169YxcuRINm7cyM6dO0lKSuLFF19k69bm0OI33ngj\niYmJzJgxgzvvvPOSuhYvXszNN9/MjTfeyOTJk5k/fz7u7u4899xzTeIAsGHDhqYyjz/+OOPHj+ej\njz6ioaGB8vJyioqKANWtNXv2bNavX09sbCyPPfYYCxcuZN68edTW1tLQ0MCKFSs4fPgwKSkpAGzZ\nsoWUlBQOHDhAfn4+I0eOZNy4cSQlJeHs7NyUz8/Pr5VNmqvA2KC+q2d2QcYuta8uVufcQ6DfpOZW\ng3d/aCegluanYzRKcstqOFdUSWZRJeeLqjhvahE0bnVGSdofpiKE4OvUC+w6WdAkFuOjfBga5EaA\nu0OLzR5H27Yfuf39u/9kgt4jFhYiPDycmBgVmmPQoEFMnDgRIQQxMTFkZGRcVV3z589nypQpfPHF\nF3z88cesXbuWAwcOXLbM9u3b+ctf/gIoD7Zubm4UFRWRl5fHzJkz2bJlC4MGDQJg9OjRvPDCC2Rm\nZjJr1iz69et3SX07d+5kzpw5WFlZ4efnx/jx49m7d2+ndXv1Shrqle+kM7tUy+HMbqgpUec8wmHA\nDAgbC6EJ4B58+bo0V4SUkrzyGtwdbLG1NvBDegFbU7J4buYgbKwMLP/nEf6y+0yrMt7OtgS4OxDp\n48yYft4EujtQb5TYWAl+nzgYO+tm0b5vTHhXvyWz03vEooMWgLmws7NrOjYYDE2vDQZDk+vxqyEg\nIID77ruP++67j8GDB1/RIHVbuLm5ERwczK5du5rEYu7cuYwaNYpPP/2UKVOm8PbbbxMREdGqXE/x\nJWZRjA1qplLGv5u7lWpK1TnPSBh0O4SNUeLgFmhZW69TpJQUVdZxrrCSzKKqphbCucIqMotUWk29\nkU8eG8PgQDfOFFTy1ZELLLqlH36u9kyP6UOUnwtBHqrLKNDd4bLjAg62Pd8bbu8Ri+sEFxcXysrK\n2jz3xRdfMHHiRGxsbLhw4QIFBQUEBgaSkZHRbpmJEyeyZs0aFi1aRENDAxUVKgi9ra0tW7duZcqU\nKTg7OzN37lzS09OJiIjg8ccfJz09nYMHDzJ06NBWdY8bN461a9dy7733UlhYyHfffceqVas6/0b0\nJKSEwnRI/0Ztp79r7lbyjoLBdzSLg2sfS1p6XVFd14BRShxtrTlXWMnb/07nl/Gh9PNzIelAFgs3\np7TK7+5oQ5CHA1F+Ltwc7UuQhyO+LurP28/jgvjFyOZWW3yEF/ERXl36fro7Wiy6GbNnz+aBBx7g\n9ddf58MPP2w1wP3VV1+xcOHCprCpq1atwt/fnwkTJrBixQpiY2N5+umnW9X32muvsWDBAv785z9j\nZWXFmjVr6NNHPZCcnJz45JNPmDRpEk5OTqSmpvK3v/0NGxsb/P39Wbp0KZ6eniQkJDB48GCmTZvG\nypUr2b17N0OHDm0KoOTv7991N+h6oTxXiUL6Dkj/VjneA3ANgugZKoBP+Dhw8bOkld2e4spazhRU\ncqawkrMFFU3HZwoqyCmt4feJg7j3xjBq6o38Y/95xkX50M/PhWHBHiy7bSBBHo4EeTgQ5OHQNBjd\nFjoIWMdoF+Uai9DjPpuacjjzfXPrIfeISrd3V6IQMR4iJoBnhF781gZGo+SDfeeI8HFmZJgnF0qq\nmfzHbym9aI2Br4sdoV6OhHg6EeblyE39fYkJcmvqHtUP/aunW7goF0JMBV4DrIC3pZQrLjr/K2AV\ncN6U9IaU8m3TuXuBZ0zpz0sp9YR9TfdBShXt7eTXcHKbGpQ21oGVHYSOhphlqvXQZ2ivj+5mNEou\nlFZzOr+C9PwKTudVcKaggjOFlQwLdmfVz4diMAhe+PQoibEBjAzzxNvZlpmxgSZhcCTUy4kQT8d2\nxwa0SJgfs4mFEMIKWA1MAjKBvUKIJCll6kVZ35dSPnpRWU9gGRCHCqm1z1S2yFz2ajQdUlWsWg0n\nt8HJf0FZlkr3HQTxv4HIm9V01l66zqG4spaiyjrCvVXc+af/cYgfzxaRUVBBdZ2xKZ+DjRWhXo5E\n+jgxuMVag68Wj8fbWa1KtrYy8IfbB3ftG9BcFnO2LG4ATkop0wGEEJuBmcDFYtEWU4CvpZSFprJf\nA1OBTVdrhJRS/+voZlw3XZ9GI1w40CwO5/4DsgHs3CDyJuVCo+8t4BrQYVU9hcraek7nV6gtr4Li\nqjqenaG8DSx+P4ULpTV8vnBsU95AdwfG9PUm3MeJcG8nIryd8XO1a/M36e+mPdp2Z8wpFoHAuRav\nM4G2liXeIYQYBxwHFkspz7VT9pI5hEKIBcACgJCQkEsqtre3p6CgAC8vLy0Y3QQpJQUFBU2D9N2O\n6lI49S84/qUSiUbne31iYcziZh9LVj1/bsjh8yXszSjkZG456XlKIC6UVrfKE+juwNPTorG2MrBg\nXCR1Dc0tiNdmD+tqkzVmxJzf+Laezhf/pfwnsElKWSOEeAh4F7j5CssipVwHrAM1wH3x+aCgIDIz\nM8nLy7ta2zVmxN7evpXbEotTlAFpX0DaZ2qQ2lgHDh7NLYfIm3ukf6X6BiNnCiub1hB8deQCq785\nxeYH4nGwtSLpQBbrvkvH1d6aCB9nbuzrRYS3E+HezoR7OxHm7dhqRfLoSD3VtCdjTrHIBFouNw0C\nslpmkFK2iObOn4CXWpS96aKy31ytATY2NoSH97yVlJprxNig4joc/1yJRN5Rle4dpcYe+k+DoBt6\nTOuhqraBU3nlnMor52Ru85ZRUEFdg+T9BfGMivDCxsqAi501JVV1ONhacf/YcO4fG46Pc9vdRpre\nhTl/DXuBfkKIcNRsp9nA3JYZhBB9pJTZppeJgOlXy5fAi0IID9PryUDrBQQazdVQU6bGHY5/ASe+\ngsoCFSY0ZDQMfxGipoJXZMf1dGPqGoykXSjDz9UeHxc7kjMKWfR+CueLq2gcJjIICPVyItLHmYkD\n/Ojr60yEjzMAE6J9mRDd3ILydemmXYUai2A2sZBS1gshHkU9+K2Ad6SUR4QQzwHJUsok4HEhRCJQ\nDxQCvzKVLRRC/AElOADPNQ52azRXTEW+6lo6+k81i6mhVq176DdJiUPfW8DB3dJWXjX1DUYyCipI\nu1BOWk4ZMYFuTBroR25ZDTP+byd/uH0wd8eH4uNix7AQD34+Ipi+vs709XUmzNsRO3MHPtD0SHr0\nojxNL6TkPBz7FI4mKcd80qg8tQ5IVN1LwfHXTfeSlJLMoiqO55SRllPG8QtlpOWUcyq3nFrTQLJB\nwANjI3h6+gCklHx++ALDQzz0zCLNFdMtFuVpNF1CwSnVejj6Tzhv+sPgEw1j/wsG3Ab+Q66bVdMf\n/ZgJwM+GqQkA0177N+U1ahVzgJs9/f1dGBflTX8/F6L8XOjr69zk4E4IwfQY7VtKYx60WGiuP6SE\n3NRmgcgxed4NGAYTl0L0beATZVkb20FKtZr5aHYpqVmlHM0uo6qugXd+NRKALfvOU9dg5GfDghBC\n8PLPh+LjYks/PxdcL+PbSKMxNz9ZLIQQNlLKus40RqO5LLnH4Mg/4PA/oOAEINQA9ZT/VTEf3C9d\na2NpTudXsP9MkRKH7FKOZpdSVNn8swn1cmRwoFvT4tE1vxyOs13zz3LqYO2kUdM9uCqxEGr+3ATU\nrKbbAO0yU2NeCk41C0RuKiCUO+/436gupm62/mHfmULe33uO52+PwdbawLvfZ7Dh+wzsrA1E+7sw\nZZA/AwNcGdDHlWh/l0s8oV7OM6pGY0muSCyEEKNQAvEzwBN4BHjSjHZpejNFZ+DIR0oksk2RAENG\nw7RVMHCmxd16V9c1kJpdyuHzJRzMLOHw+RJW3jmEIUHunC+u5l9Hc3ns5mqCPR25LyGceaNCCPd2\nwtpKhz/VXL9cViyEEC8AvwDOovwyNU571R5gNZ1LWY6pBbEFMk0zpgNHwOQXVOQ4N8us+K6pb+BI\nVmthOJFbToNRzSL0crJlcKAbppfcGtOH24b0aVrEFuLlaBG7NZrOpqOWxQIgDVgDfCKlrBZC9Iy5\nthrLU1sBRz+Bg++rIEHSCP4xMHEZDPoZeHb96vua+gY+3JdJtL8LI0I9OZVbwaw3vweaheGWAX4M\nDnRjSJAbfdzsW61utjJcH7OuNJqrpSOx8Eetnp4DvCqE2AE4CCGspZRXH0BaozE2qAVyB99XQlFX\nAW4hMOYJGHJXl81iklKSXVJNyrliUs4V4+tix/1jI7A2GHjx06PMuSGEEaGe9PNz5q1fjmhTGDSa\n3sRlxUJK2QB8DnwuhLAHZgCOwHkhxL+klHMvV16jAdRU1wsH4eDf4dAHUJ4D9m4w5OdKIILjwWDe\n/vzymnoOZiphSDmr9rllNQDYWhtIHKrcjFsZBDt+exM+ptjMNlYGPSNJo6HjMYsnLkqSwFbg94D2\nP6y5PKXZcHAzHHhfOesz2EDUFCUQ/SaDjXlWGUspySurwddV1f/oxv18dii7aVwh3NuJhL7exAa7\nExvszoA+rthaN4tVYzmNRtNMR91QLm2khQG/QwmGRtOa+lrlrO/Hv6mQo9IIwaPg1lfUOISjZ6df\nsrbeyJGsEmIC3bC2MvC/nx/jvT1nOLBsMtZWBkaFexLp40xsiDuxQe54ONl2ug0aTU+no26oNgXB\nFPZ0Gz8hcp2mh5KTqgTi4Gbl0dWlDyQsgth54N23Uy9VUlnHvrOFJGcUkXymiAPniqmpN/LJY2MY\nHOjGlEH+hHo5Um+UWFvB3aPDOvX6Gk1v5Cet4DZ5hdUjfb2dqmI4/CH8+B5k7VfdTNHTYdjdEDGh\n0xz2lVTWsSMtlx9OF7LvTCHHc8oBsDYIBgW4Mm9UKCPDPJqmqY4I9WBEqMflqtRoNFfJT/o1CyFu\nBoo62RbN9YCUkPFv2P8X5Zepvhp8B8HUFRDzC3C69mhpNfUNfHYom74+LsQEuZFRUMGi91NwsbNm\neKgHtw0JIC7Mk6HBbq0itWk0GvPR0QD3IS4NZ+qJinh3j7mM0nRDKgshZSPsWw8FJ9VspmG/VFuf\n2Gvy6nq+uIo9pwqwtTZw29AADELwP/84zLxRIcQEuTEowJVPHhvDgD6ueh2DRmMhOvpbNuOi1xIo\nkFJWmMkeTXdCSjj3AyS/A0e2QkONGqwe+1u1qtrG4SdVm1Nazc4T+exOL+CH0wWcK6wCYFS4J7cN\nDcDGysAXi8YS5KG6laytDAwOdOu0t6XRaK6ejga4z3SVIZpuRHWJmu66b71y3mfrAsPvgbj54Dfo\nJ1W5J72AL49cYOeJfE7kqjEHd0cbRoV7cl9COKPCvYj2b558F+rl1ClvRaPRdA66w1fTzPn9qhVx\neAvUVar4ELe9DoPvADvnq6rqVF45Xx65wEPjIjEYBEkHstiyL5Mbwj25c0QQCX29GdjHFYPuVtJo\nrgu0WPR26mshdSv88Bac3wc2jhDzc9WKCLiydZdSSk7nV7DzZD4T+vsS7OnIgXPFrPoyjckD/enr\n68x/TYpi6YyBTVHdNBrN9YUWi95KWY7qZkp+R7nf8OqnXIAPvUsNXndAdV0Du9ML+OZYLjvS8jhb\nWAnAS3cYuMszhCmD/JnQ37dpAZyXs51Z345GozEvZhULIcRU4DXACnhbSrniovNPAPcD9UAecF/j\nOIkQogE4ZMp6VkqZaE5bew3n98EPa1UwIWOdcrsx6kGIuLlD/0znCivZkZbLjmO5fH+qgJp6I/Y2\nBhIivXlgbDjjonyaxhqc7Kxx0vqg0fQYzCYWQggrYDUwCcgE9gohkqSUqS2y/QjESSkrhRC/AVYC\nd5nOVUkpY81lX6+ivhZSPzZ1NSWrAeuRv4YbFoBXZLvFauobyCmpIcTLkZr6Bib/8Tuq6hoI9XJk\nzg0hTIj2ZVS4p+5a0mh6AeZsWdwAnJRSpgMIITYDM4EmsZBS7miRfw/wSzPa0/uoKIDkP8Pet1VX\nk2ckTFsJQ+eAvWubRarrGpqjuG6AAAAgAElEQVQe/ve/m0xhRS2fPj4WO2srXp0dS5SfC+HeeqaS\nRtPbMKdYBALnWrzOBEZdJv+vUe7QG7EXQiSjuqhWSCm3XlxACLEAFaCJkJCQaza4x1BwCnavhpT3\n1ArryIkwc7Xat9HVlFVcxbajOXx1JId9Z4r44XcTcbW34YGxEdQ1GJvyTRmkXXVrNL0Vc4pFW3Mi\n24yyJ4T4JRAHjG+RHCKlzBJCRADbhRCHpJSnWlUm5TpgHUBcXJyO4Hf2B/j+dTj2KVjZKFfgox8F\n3+hW2aSUpOWU8dWRHL5OzeHQ+RIAIryduOfGUOrqlUCMi/Lp8reg0Wi6J+YUi0wguMXrIJSbkFYI\nIW5BuTwfL6WsaUyXUmaZ9ulCiG9Q8TNOXVy+12NsUOLw/f9B5n/A3h3G/pcaj3Dxa5U1t7Sat3ee\n5ovDF5pmLw0Lcee/p0YzaaAffX2vbi2FRqPpPZhTLPYC/YQQ4cB5YDbQKrKeEGIYsBaYKqXMbZHu\nAVRKKWuEEN5AAmrwW9NIXZXqZtq9GgrTwT1UTX0dNg9s1ZiClJJD50swSogNdgdgw/cZjI7w4qHx\nkdwywFcH+tFoNFeE2cRCSlkvhHgU+BI1dfYdKeURIcRzQLKUMglYBTgDH5g8njdOkR0ArBVCGAED\naswitc0L9TaqS9Wg9e7VUJEHgSPg5+/CgNvAYKViSxdXEeCu/DY9snE/kT7ObJh/A76u9vz47CSc\n7PTyGo1Gc3UIKXtGV39cXJxMTk62tBnmo6IAflgDP6yDmhI1WD32CQhNACE4mVvO1h/Pk3Qgi9Lq\nOvb+7hZsrAwczCwmxNMRd0cdHU6j0VyKEGKflDKuo3z6L2Z3p+Q87H4D9m1QXU8DblMiETCM3LJq\n/rkrg60/nufQ+RIMAhL6ejNjSB+Mpj8BQ4LcLWu/RqPpEWix6K4UnIJdr0LKJhXHeshdMGYRlW6R\nfHUkh4+++A//PpGHUUJMoBtLZwxkxtA++LroMQiNRtP5aLHobuSfgO9WwaEPVJjSEb/COPpRyhwC\ncXOwISOrlEXvpxDo7sDDN/Xl9mEB9PV16bhejUajuQa0WHQX8k/CdyuVSFjbw+hHYPRjSGdfpr/2\nbwYFlPD/fjGUAX1c2PpIAkMC3bR7b41G02VosbA0Bafg25Vw6O9gZUf9qIfZ4TmH7ZlGXnT2RQjB\n7JHB+Lup2U1CiKZpsBqNRtNVaLGwFAWnVHfTwffByo6iIQ+wnkT++p9KiirPEOBmT25ZDX6u9vwq\nIdzS1mo0ml6OFouupvC0akkcfB9pZUtG31+xsnwyn/9gxMaqlEkD/fhFXDBj+/lgpbuZNBpNN0GL\nRVdRdkGJxP53kQZrUgJm82zezRw+5ECAmy1PTgnlrpHBeOsgQRqNphuixcLcVBXBzleRP6wFYx1i\n+L3Uj/kvfvPmMfr5ObNuZig3R/tibXX5wEMajUZjSbRYmIvaChVsaNdrUF3KIY9J/L78dt6fNgcb\nKwNfP+GLi72Npa3UaDSaK0KLRWdTXwv738X47SoMFTlUh0/CfspyKiv7cHtOGUaTdxUtFBqN5npC\ni0VnYTTC4S3U/+s5rEvO8iMDeLHmIRL7zeJe/zDigfgIL0tbqdFoND8JLRadQcYuaj57GrvcAxyX\noayqfwr76Cn8z7hIRoR6WNo6jUajuWa0WFwL+Scp//R/cD79JYXSkz8aH8ZhxByWj40k1EvHqdZo\nND0HLRY/hYoC+HYFxr3vgNGaV+Vd1MQ9xG8nDNSO/DQaTY9Ei8XVUFdN3r9ew2v//2Goq6Akei7v\nOczl7pvj8NLrIzQaTQ9Gi8WVICUc3oJx23J8Ss6R6hzPwPtfw8M3mkctbZtGo9F0AVosOqDwVDK1\nSb/Fv+RHDH4xpAz/AyFxt4KTjjyn0Wh6D1os2qGiKJcTm5cQc+EfFONM9viX6HPTA8QarCxtmkaj\n0XQ5Wiwuwlhfx4GPXyXi0KsMlpV85/Ezwu/4A2HBQZY2TaPRaCyGWR0SCSGmCiHShBAnhRBL2jhv\nJ4R433T+ByFEWItzT5vS04QQU8xpZyNpP3zOmf8dybBDz3PGJoLjsz5nwqL1Wig0Gk2vx2wtCyGE\nFbAamARkAnuFEElSytQW2X4NFEkp+wohZgMvAXcJIQYCs4FBQACwTQgRJaVsMIetOZknOf/+bxle\ntoNsvNk94o+Mmv4rDNq5n0aj0QDmbVncAJyUUqZLKWuBzcDMi/LMBN41HX8ITBRCCFP6ZilljZTy\nNHDSVF/nk38Cr3cSGFi6k++D7sf1tz8y+rb7tFBoNBpNC8w5ZhEInGvxOhMY1V4eKWW9EKIE8DKl\n77mobODFFxBCLAAWAISEhPw0K736wpjFFEb8jBvD+v+0OjQajaaHY86/z22FeZNXmOdKyiKlXCel\njJNSxvn4+PwEEwEhsL55CQFaKDQajaZdzCkWmUBwi9dBQFZ7eYQQ1oAbUHiFZTUajUbTRZhTLPYC\n/YQQ4UIIW9SAddJFeZKAe03HdwLbpZTSlD7bNFsqHOgH/MeMtmo0Go3mMphtzMI0BvEo8CVgBbwj\npTwihHgOSJZSJgF/Bv4qhDiJalHMNpU9IoT4O5AK1AOPdDQTat++fflCiDPXYLI3kH8N5c2Ftuvq\n6K52Qfe1Tdt1dXRXu+Cn2RZ6JZmE+iOvEUIkSynjLG3HxWi7ro7uahd0X9u0XVdHd7ULzGubnh+q\n0Wg0mg7RYqHRaDSaDtFi0cw6SxvQDtquq6O72gXd1zZt19XRXe0CM9qmxyw0Go1G0yG6ZaHRaDSa\nDtFiodFoNJoO6fVi0ZEb9S60I1gIsUMIcVQIcUQIsdCUvlwIcV4IkWLaplvIvgwhxCGTDcmmNE8h\nxNdCiBOmvUcX29S/xX1JEUKUCiEWWeKeCSHeEULkCiEOt0hr8/4Ixeum79xBIcTwLrZrlRDimOna\nHwkh3E3pYUKIqhb37S1z2XUZ29r97LoqbEE7dr3fwqYMIUSKKb3L7tllnhFd8z2TUvbaDbVY8BQQ\nAdgCB4CBFrKlDzDcdOwCHAcGAsuB33aDe5UBeF+UthJYYjpeArxk4c/yAmqBUZffM2AcMBw43NH9\nAaYDn6N8oMUDP3SxXZMBa9PxSy3sCmuZz0L3rM3PzvRbOADYAeGm361VV9l10fn/Byzt6nt2mWdE\nl3zPenvL4krcqHcJUspsKeV+03EZcJQ2PO12M1q6mH8XuN2CtkwETkkpr2UV/09GSvkdygtBS9q7\nPzOBv0jFHsBdCNGnq+ySUn4lpaw3vdyD8r3W5bRzz9qjy8IWXM4uIYQAfgFsMse1L8dlnhFd8j3r\n7WLRlht1iz+ghYoYOAz4wZT0qKkZ+U5Xd/W0QAJfCSH2CeUaHsBPSpkN6osM+FrINlCuYlr+gLvD\nPWvv/nSn7919qH+fjYQLIX4UQnwrhBhrIZva+uy6yz0bC+RIKU+0SOvye3bRM6JLvme9XSyuyBV6\nVyKEcAa2AIuklKXAGiASiAWyUU1gS5AgpRwOTAMeEUKMs5AdlyCUo8pE4ANTUne5Z+3RLb53Qojf\noXyvvWdKygZCpJTDgCeAjUII1y42q73PrlvcM2AOrf+UdPk9a+MZ0W7WNtJ+8j3r7WLRrVyhCyFs\nUF+C96SU/wCQUuZIKRuklEbgT5grYmAHSCmzTPtc4COTHTmNzVrTPtcStqEEbL+UMsdkY7e4Z7R/\nfyz+vRNC3AvMAOZJUwe3qYunwHS8DzUuENWVdl3ms+sO98wamAW835jW1fesrWcEXfQ96+1icSVu\n1LsEU1/on4GjUspXWqS37GP8GXD44rJdYJuTEMKl8Rg1QHqY1i7m7wU+7mrbTLT6t9cd7pmJ9u5P\nEnCPabZKPFDS2I3QFQghpgL/DSRKKStbpPsIIaxMxxGo0ADpXWWX6brtfXbdIWzBLcAxKWVmY0JX\n3rP2nhF01fesK0bxu/OGmjFwHPWP4HcWtGMMqol4EEgxbdOBvwKHTOlJQB8L2BaBmolyADjSeJ9Q\nIXD/BZww7T0tYJsjUAC4tUjr8nuGEqtsoA71j+7X7d0fVPfAatN37hAQ18V2nUT1ZTd+z94y5b3D\n9PkeAPYDt1ngnrX72QG/M92zNGBaV9plSt8APHRR3i67Z5d5RnTJ90y7+9BoNBpNh/T2biiNRqPR\nXAFaLDQajUbTIVosNBqNRtMhZovB3dV4e3vLsLAwS5uh0Wg01xX79u3Ll1L6dJSvx4hFWFgYycnJ\nljZDo9ForiuEEFfkIkd3Q2k0Go2mQ7RYaDQazXXKucJKvj+V3yXX6jHdUBqNRnO9Ut9gJL+8lvzy\nGgoqaimsqKGgvJaiyloKK2pZdtsg7G2seGP7CTb95xy7ltwMwKov00g6kMXR56biYGtlVht7tFjU\n1dWRmZlJdXW1pU3RtMDe3p6goCBsbGwsbYpGY1aqahvILavG18UeB1srjmSV8OnBbB6e0BdnO2ve\n2XmaN785SUFFLW2tj7Y2CDycbFk8KQp7Gyv6+rowcYAvRqPEYBA8OD6COTeEYG3Vls/AzqVHi0Vm\nZiYuLi6EhYWh3KpoLI2UkoKCAjIzMwkPD7e0ORrNNVFYUcuBzGIulFSTXVxFVkk12SVVZJdUk1ta\nQ3mNChvy/oJ4RkV4cTK3nHXfpXPniCCcfZwJ8XRk0kB/fFzs8HWxw9vZDm9nWzydbPFyssPVwbrV\ns2vqYH+mDvZvej0owK3L3muPFovq6motFN0MIQReXl7k5eVZ2hSNpl3qG4xkl1RzrrCS88VVxAS5\nEe3vyvGcMh7duJ/ltw3ixr7eJGcUsuCv+wAwCPB1saePuz3R/i6M6+fTJALh3k4A3BrTh9uGBGAw\nqGfSLQP9uGWgn8Xe59XQo8UC0ELRDdGfiaa7UFlbz7ajuZwrrFRbUSVnCyvJKq6mwdjcL/TU1P5E\n+7vi5mBDmJcTdjZqbtAN4Z58+NBo+rg74Otih43V5ecMWXdwvjvT48VCo9H0TqSU5JXVkJ5fga21\ngeEhHhiNklv/byczYwN4aHwkVbUNPL7pRwC8nW0J9nRkWLAHiUMdCPF0JNjDkQB3B/zd7AHwc7Vn\n3T1xTddwd7QlLszTIu+vq9Fi0U24//77eeKJJxg4cKDZrvHRRx8xa9Ysjh49SnR0tNmuo9F0JaXV\ndZzOq+B0fgXp+Wp/Or+c03kVVNQ2ADAx2pc//2okBoNgUIAr/q7q4e/pZMuXi8YR7OmAo61+HF4O\nfXe6iEaf8AZD283Qt99+2+w2bNq0iTFjxrB582aWL19u9utpNObgk4NZFFXUcvfoMABu+7+dnClQ\nMZwMAoI8HAn3diIu1JMIHyfCvZ3o6+vcVP7lnw9tOhZC0N/fpUvtv17pVWJx19rdHeaZOMCXBeMi\nm/LfOSKIn8cFU1hRy2/+tq9V3vcfHH3ZujIyMpg2bRoTJkxg9+7dbN26lbS0NJYtW0ZNTQ2RkZGs\nX78eZ2dnbrrpJl5++WXi4uJwdnZm4cKFfPLJJzg4OPDxxx/j5+dHXl4eDz30EGfPngXg1VdfJSEh\ngW+//ZaFCxcC6sv/3Xff4eLS+gdQXl7Orl272LFjB4mJiVosNN2WwopajueUcSKnjOM55RzPKaOg\nopZtT4wH4KsjORzPKWsSi/+eGo21QRDh40SwpyN21uZdb9Bb6VViYQnS0tJYv349b775Jvn5+Tz/\n/PNs27YNJycnXnrpJV555RWWLl3aqkxFRQXx8fG88MILPPXUU/zpT3/imWeeYeHChSxevJgxY8Zw\n9uxZpkyZwtGjR3n55ZdZvXo1CQkJlJeXY29vf4kdW7duZerUqURFReHp6cn+/fsZPnx4V90GjaZd\nfkgv4OvUHFKzS0m7oIShERc7a/r5ORMX6kFtvRFbawMv3TEEe5vmFvr0mD5tVavpZHqVWHTUErhc\nfk8n26suDxAaGkp8fDwAe/bsITU1lYSEBABqa2sZPfrSOm1tbZkxYwYAI0aM4OuvvwZg27ZtpKam\nNuUrLS2lrKyMhIQEnnjiCebNm8esWbMICgq6pM5NmzaxaNEiAGbPns2mTZu0WGi6jNLqOmytDNjb\nWPHt8TxWfnGMd++7AW9nO5LPFPHXPWeI9lcLzqL8XOjn50KUnzP+rvaXzJ4z90plTdv0KrGwBE5O\nTk3HUkomTZrEpk2bLlvGxsam6QdiZWVFfb1a2GM0Gtm9ezcODg6t8i9ZsoRbb72Vzz77jPj4eLZt\n29ZqALugoIDt27dz+PBhhBA0NDQghGDlypV6Gqum02lcqHYos4QjWSWkZpdyrrCKt++J45aBfjjZ\nWuHpZEt5dT3eznbclxDOg+Mirutppb0BLRZdSHx8PI888ggnT56kb9++VFZWkpmZSVRU1BWVnzx5\nMm+88QZPPvkkACkpKcTGxnLq1CliYmKIiYlh9+7dHDt2rJVYfPjhh9xzzz2sXbu2KW38+PHs3LmT\nsWPHdu6b1PQ6iipq+XvyOQ5mlnAgs5jMoioAhIBwLyeGBLkze2QIkaZB5rgwT/7661FN5XVL4fpA\ni0UX4uPjw4YNG5gzZw41NTUAPP/881csFq+//jqPPPIIQ4YMob6+nnHjxvHWW2/x6quvsmPHDqys\nrBg4cCDTpk1rVW7Tpk0sWbKkVdodd9zBxo0btVhorhgpJUII6huM/PeWQ4yO9OLOEUHUGY387+fH\nCPJwYGiQO3fHhzIkyJ3Bga642Gv/X52ClFBVBKXnoTQLyrKhNFvtyy6AWyDM+KNZTRCyLe9V1yFx\ncXHy4uBHR48eZcCAARaySHM59GfT/cktq2b/mSKSM4rYd7aIQHcH3pirxrluX72LyYP8ePimvoDq\nevJ0srWkudcvRiNU5jcLQWlW28f1FztEFeDkAy7+EDQSZrzyky4vhNgnpYzrKJ9uWWg0GhqMkuM5\nZew7U9S0nS1UaxdsrQ0MCXRr5bRu6yMJrcproWgHoxHKcy4SgMyLhCAbjHWtyxlswLUPuAZCwDCI\nvlUduwaAS4A65+wHVl3XctNiodH0Qipr6zmaXcqIUOWq4uH39vHlkRwAvJ3tiAv14O74UIaHejA4\n0FWvXWiP+lr18C8+ByXnWuzPqn3J+UuFwNpePfRdAyFkdPOxa0DzsaM3tLOA11JosdBoegEVNfXs\nO1PEiFAPnOysefvfp3nl6+McWDoZN0cbZt8QwpRB/sSFehLs6aBnyTVSW3GpALQUhrJsoGVXvlDd\nQm7BEDgCBt4O7sHgGqTGFVwDwcFDjf5fZ2ix0Gh6II3isCe9gD3pBRzMLKHeKFn/q5FMiPZlZmwA\nQ4LcsLdV/14n9Pe1sMUWoqFedQUVZVy0nYaiM1BV2Dq/wUY99N2CIXKC2rsHN+9dg8C6Z3bJabHQ\naHoA1XUN/HC6sEkcDpnEwdogGBrszoJxEcRHeBEX5gFAqJcToV5OHdTaQ6gubSEAGa234rNgrG/O\na7AG9xDwCIM+sSYhCFFp7sFqnMDQO7vktFhoNNchUkoOZJZgbRAMDnSjsKKWe9/5T5M4PDheicOI\nUI+e701VSqjIg4KTUHCqWRQKTfuLWwcOns1iMPB2dewRBp7havDYqoffr5+IvivdgKSkJFJTU1my\nZAlbt24lKiqqTVflaWlpPPjggxQXF1NTU8PYsWNZt24dKSkpZGVlMX369Evqa4uMjAxmzJjB4cOH\nO7StuLiYjRs38vDDD3eY98knn+Szzz5j+vTpPPXUU8yYMYPa2lpef/11vZ6jE2gMznNjpDcAD/9t\nH0OC3Hnr7hEEuDvw/oJ4YoLceq44VBVBQboShcJTzeJQcApqy5rzGaxVt5BHGAxqIQYeYeAeCg7u\nlrH/OqeHfquuLxITE0lMTASUw78ZM2a0KRaPP/44ixcvZubMmQAcOnQIUCu5k5OTm8SiZX3XSnFx\nMW+++eYVicXatWvJy8vDzs6OzZs3Ex0dzbvvvtspdvRGSqvr2H2qgH+fyGPniXwyCirxdbHjh/+Z\niBCC1fOGE+zp2JR/VISXBa3tJGoroDC9tRA0CkNlQXM+YVCC4NUXgm9Qe69I8IxU6bp10On0njv6\n+RK4cKhz6/SPgWkr2j2dkZHB1KlTGTNmDHv27GHo0KHMnz+fZcuWkZuby3vvvccNN9zAhg0bSE5O\nZu7cuSQlJfHtt9/y/PPPs2XLFiIjI5vqy87ObuUkMCYmhtraWpYuXUpVVRU7d+7k6aefpqqqiuTk\nZN544w1ycnJ46KGHSE9PB2DNmjUEBAQ01ZGens4dd9zBunXrcHR0ZP78+dTW1mI0GtmyZQvPPvss\np06dIjY2lkmTJrFy5UqeeuopPv/8c4QQPPPMM9x1110kJiZSUVHBqFGjmDNnDqtXr6aqqorY2Ng2\n/VlpLkVKydHsMnak5bLjWC4/niumwShxtLUiPsKLe0aHMS7Kuyn/sBAPC1p7jVTkQ94xyEuD/OPN\n+9LzrfO59FFCED2jWRC8+qpWgrWdRUzvrfQesbAQJ0+e5IMPPmDdunWMHDmSjRs3snPnTpKSknjx\nxRfZunVrU94bb7yRxMREZsyYwZ133nlJXYsXL+bmm2/mxhtvZPLkycyfPx93d3eee+65JnEA2LBh\nQ1OZxx9/nPHjx/PRRx/R0NBAeXk5RUVFgOrWmj17NuvXryc2NpbHHnuMhQsXMm/ePGpra2loaGDF\nihUcPnyYlJQUALZs2UJKSgoHDhwgPz+fkSNHMm7cOJKSknB2dm7K5+fn18omTdtU1NRja23AxsrA\nmm9PsfKLNABiAt34zfhIxvTzZniIB7bW3WvO/RVhNKo1CHnHIT+ttTC0HEewcQLvfhA2Brz6NQuC\nZwTYObdfv6ZL6T1icZkWgDkJDw8nJiYGgEGDBjFxoupCiImJISMj46rqmj9/PlOmTOGLL77g448/\nZu3atRw4cOCyZbZv385f/vIXQHmwdXNzo6ioiLy8PGbOnMmWLVsYNGgQAKNHj+aFF14gMzOTWbNm\n0a9fv0vq27lzJ3PmzMHKygo/Pz/Gjx/P3r17O63bqzdQ12DExsrAgXPF/Pyt3ay9ZwQT+vsyeaA/\n3s523BTlg6/rpTFJui3GBjWYnHe0hSAcg/wTUFfZnM/BE3z6w4Db1N6nP3j3V2sPutkCNM2l9B6x\nsBB2ds1NZYPB0PTaYDA0uR6/GgICArjvvvu47777GDx48BUNUreFm5sbwcHB7Nq1q0ks5s6dy6hR\no/j000+ZMmUKb7/9NhEREa3K9RRfYl1Jbb2R/5wuZPuxXHak5XJrTB9+O6U//f1d+FVCGMEeqouu\nr69zq/Cf3Q4pldO63FS15Zj2eWlQX9WczzUIfKJg+I1q720SBifv9uvWdHu0WHQzXFxcKCsra/Pc\nF198wcSJE7GxseHChQsUFBQQGBhIRkZGu2UmTpzImjVrWLRoEQ0NDVRUVAAqwNLWrVuZMmUKzs7O\nzJ07l/T0dCIiInj88cdJT0/n4MGDDB06tFXd48aNY+3atdx7770UFhby3XffsWrVqs6/Edc55TX1\nfJuWx1epF9h+LJeyatXdNDrCiwF9XAGwt7Hif6Z3U2eK1SWQewxyj5hE4ag6ripqzuPsD34DYeSv\nwXcg+A4A7yjdddRD0WLRzZg9ezYPPPAAr7/+Oh9++GGrAe6vvvqKhQsXNoVNXbVqFf7+/kyYMIEV\nK1YQGxvL008/3aq+1157jQULFvDnP/8ZKysr1qxZQ58+Kgylk5MTn3zyCZMmTcLJyYnU1FT+9re/\nYWNjg7+/P0uXLsXT05OEhAQGDx7MtGnTWLlyJbt372bo0KFNAZT8/f277gZ1c5IOZPHR/kx2nSyg\ntsGIp5MtUwf5M2mgH2P6eXe/aa1Go1qXkH1ATQDJOaJaCyXnmvPYuighGDgTfAepY79B4OhpObs1\nXY52Ua6xCD3ls8ksquRfR3O5Z3QoQgj++8OD7E4vYPJAPyYP8mdEqAdWhm7iB6i+RgnBhUOQfdAk\nDoehtlydN1irloHvQNVi8B2k9m7B16UvI82VoV2UazRmQErJ4fOlBHk44OFky/cnC1iWdISEvl70\n9XVheeIg7G0MlnfEV1WkxKBxyz6oZiQ1urawdQH/wRA7T00B7zMEfKL1dFRNu2ix0Gg6QErJofMl\nfHoom88PXeBsYSW/TxzEvTeGMS3Gn4R+3gS6q0Fqi4QIrSyErP2Q9SNkpShhKDnbfN6ljxKE/tOa\nhcE9TM9A0lwVPV4sGkNBaroP10PXp5SSg5klfHYom88OZ3OusAprg+DGvt48MiGSyQPVOI2LvU3X\nhg6tLlHjC+cbxeFHKD7TfN6rLwSPhJH3gf8QtTn7dJ19mh5LjxYLe3t7CgoK8PLy0oLRTZBSUlBQ\n0DRI3x15+cs0tqacJ7NICURCX28em9CPyYP8cHfsQvfTtRWqlZD1Y3PLoeBk83n3UBVFbeSv1b7P\nULB3a78+jeYa6NFiERQURGZmJnl5eZY2RdMCe3v7Vm5LLM2xC6XsPlXA/IRwAE7kltHX15nHJ/Zj\n8sAuEgijUS1my9xr2pLVIjdpVOddAiBwOAydrYQhYLiejaTpUnq0WNjY2BAeHm5pMzTdkFN55QS6\nO2BvY8W21Bxe/9dJbo8NxMPJljXzRmAw9wymykI4v6+FOOyDmhJ1zt4NgkbCgBlKFAJiVfQ1jcaC\n9GixuFqqq6sZN24cNTU11NfXc+edd/L73/++VZ5HH32Uf/7zn5w5c6adWjpm7dq1LF++HD8/P8rL\nyxk8eDB///vfsbXtmRG2ugsXSqr55GAWH6dkceh8CW/OG870mD7cHR/G3fFhuDmqsYdOF4qGejVl\ntbHFkLkXCk6oc8KgpqgOnqUEImikGnfQg8+aboYWixbY2dmxfft2nJ2dqaurY8yYMUybNo34+HgA\nTp8+zTfffENtbS1lZWW4uLj8pOscPHiQF198kfnz52M0GomKiuLgwYPExXU41VlzlZRU1vH54Ww+\nTsliz+kCpFRO+p65ddee07oAABVgSURBVEBT1LhGkeg0asoh8z9wdg+c3a1aDXVq5TyO3sqlduwc\nJQwBw8Dup32PNJquRItFC4QQODsrVwV1dXXU1dW1GhhftmwZzzzzDH/60584cuRIk4i0x8GDB3Fx\ncbmkK+zQoUM88MADgPJKK6UkKiqqk99N70VKyaeHlEB8k5ZLXYMk3NuJhRP7kTg0gAifTnZHUZ6r\nROHsHjjzvVrXIBtUq8FvMPz/9u48PKr6XOD4981OICFsYQ9h3yJr2FQUCVCkFkQtUEuhVa9PW2xr\nba8bfbytXPuodb23cqu1tLhTtQoSFVxZigiIISGQkLAmEMMqSEgCSd77x28CIWaBIZmZJO/neebJ\nzC9nJu/85uS8c87vnPc39IfQZSR0SXSlte1kC9MAWbKopLS0lOHDh5Odnc28efMYNWoUAOnp6Wzd\nupXFixezdu3aC0oWhYWFzJ49m6VLl56XMNLT05kzZw5nzpwhNzeX5ORkoqOj6/V9NXZlZcquwwX0\nim2BiPDc6l18dbyIuWPimTakMwmdo+vmjDhVNznPvs/cbe9nbnIegJAI6JwIY++CuNEuQUTY52oa\nhzpPFiISqqpnallmMvA0EAw8r6oPV/r9j4E/AeUzofxZVZ+v61irEhwcTEpKCl9//TXTp09n69at\nJCQkMH/+fBYsWICI0L9//29Ve33ppZd4+OFvl0HPy8tj5syZbNiwAYCcnBxiY2NJTU0F4IUXXmDB\nggV88MEH9f/mGrHHP8jk+TW72fi7CURHhPLcjxJpFxV+6aU2VF0RvT1rYe9at/dwMt/9rlkriBsD\nw+e6nx2HQIiNO5nGqU6ShbivbNcANwPfA9rXsGww8AwwEcgFNorIMlXdVmnRJap6R13E542YmBjG\njRvH+++/T0FBAStWrCAlJYV58+ZRVFTEoEGDzlt+9uzZzJ49+7y2ffv2MXXqVJ588smzbampqedN\nmTp48GAef/zx+n0zjcyJojO8m5rHm5tzuWdyPxLjWzN1cGd6xbYgLNgNDHdo6eV1HKpuHoY9q2H3\nGpckTh12v2vZFXqMc3sNcZe7Oko2EG2aiEtKFiIyCpcgpgOtgXnAf9bytJFAtqru8rzGa8A0oHKy\n8LlDhw4RGhpKTEwMhYWFfPjhh9xzzz3cf//9LF++nKSkJADy8/MZOnRora+XmZnJwoULufzyy8+2\npaWlnS2gp6osXryYCRMm1M8bakRKSstYm32YNzfvZ2X6VxSXlNGzXXNOFrtaR307RNG3gxcDxeWH\nlfasOZccTn7lfhfVCXolQfxY6D7WjTcY00R5lSxE5CFgBrAPeBV4ENikqosv4OmdgQr1j8kFRlWx\n3I0ichWwA/i1quZUXkBEbgduB4iLi7uo91CVvLw85s6dS2lpKWVlZcyYMYPw8HCKi4vPJgpwU4YW\nFBRw9OhRWreu/sKoiRMnfqstLS2NVatWkZycjIgwevRoHnvssUuOvbHKPniS1zfl8NaX+zn4TTEx\nkaHMHNGVG4d1YVCXlt6NQ3y9D3aX7zmsOTfvc/NYlxTix0L3q9y0njYYbQzgZYlyETkEZAJPActV\ntUhEdqlqj1qeioh8H/iOqt7mefwjYKSq/qLCMm2Ak6paLCI/BWao6viaXreqEuWmYZv38maS0/II\nCRLG9Y3lpuGduaZfLOEhF1msr+i4Swy7PoGdH7s9CYDINm7e5/Lk0LaPJQfT5NR3ifIOwCTgB8BT\nIvIJ0ExEQlS1trlCc4GuFR53AQ5UXEBVj1R4+FfgES/jNA1IVv43vLYxh/uu7UdIcBCjerRmcNeW\nTB/ahXZRF1E6u7TE1VLa+THs/MRdBKelENrcJYeRt7vk0K6/jTkYc4G8ShaqWgq8B7wnIhHAdUAk\nsF9EPlLVm2t4+kagt4h0x53tNAs37nGWiHRU1TzPw6nAdm/iNIHvWMFpRCAmMoydhwp45fN93Dis\nCwM6RTNnTPyFv9DRXeeSw+41ntIZ4i56u/JO6DnencpqZysZ4xVvxyzuqtSkwNvAH4AaR35VtURE\n7gBW4E6dXaSq6SJSPu6xDPiliEwFSoCjwI+9idMEprIy5d87D7NkYw4r0/P52bie/HpiH5L6x7Jh\nftKFlfw+fcqNN2SthOwP4dge196yKwycBj2ucWcuWbE9Y+qEt4ehqjrtJB6Yj0sYNVLVd4F3K7U9\nUOH+fcB9lZ9nGra844W8vimXf27KIfdYITGRodw8Ko7vDnJzgocGBxEaXMNhoaO7XXLIWun2HkqL\nITQSul8No+e5vYc2PW3cwZh64O1hqCoTgoi0Bj7EnSFlDKVlyuqsQ7y8fh8fZ+RTpnBlr7bcPbkf\nkwa0JyK0hsHqkmJXPiPrA5cgyovvte7p5nDoPdFd7xAauHNjGNNY1OkV3Kp6VGyWIVPBguXb+Me6\nPbRtEcbPxvVk1og4uraOrP4JJw7AjhUuQez61BXgCw53A9MjbnMJok1Pn8VvjHHqNFmIyHjgWF2+\npmlYco+d4uH3MrhjfC/6dYjm+4ldSIxvxaQBHQgLqeIQk6or353xLmQmu9ngwI09DJ4FvSe5ax/C\nmvv2jRhjzuPtAHcablC7ota4U2DnXGpQpmE5fuoMB78ponf7KJqHhbBh91F2HyqgX4doBnZqycBO\nlab6LC1xRfgy34WM5HNzSHdOhKQHoO8UaNfPxh6MCSDe7llcV+mxAkdUteAS4zENhKqyJfc4L63f\nyztbDtC/YzRvz7uCVs3D+Oy+pG8X8Cs+CTs/cnsQWSug8Jg7vNRjnKvS2udaiKq2pJgxxs+8HeD2\nfpo406AVni7l7ZT9vLR+L+kHThAZFsyNw7tw88hz5VbOJoqCw5Cx3O097Frlzl5q1gr6THZ7Dz3H\nQ3gdzy1hjKkXNp+FuSA5R0/x4vq9LNmYw/HCM/TrEMWC6xO4fkin86+L+CYfMt6BbUtdUT4tcwX4\nRtwG/aZA19EQbKudMQ2N/deaWq3JOsScRRsIEuE7A9szd0w8I7u3PlfE70QebF/mEsTedYBCm94w\n9jcwYJqbLc7GH4xp0CxZmG9RVV5av5eoiFCuH9qZEfGt+VVSb2aO6ErHls3cQsdzYZsnQeSsd22x\nA2DcvS5B2AC1MY2KJQtz1pGTxbRpEY6IsDTlAO2jI7h+aGciQoO5c0IflyDWvQXpb8N+T4Xf9pfB\n+N9B/2nQzuYRN6axsmTRxJWVKZ/uOMg/1u1l/a4jrLt3PG1bhLPoJyOICg+BgiOw7S1IexP2rXNP\n6jgEkv7L7UHYBXLGNAmWLJqok8Ul/HNjDos/28PeI6eIjQpn3rhehAYFQfE3RGcmQ9obrpKrlrrD\nSuN/Bwk3ukmBjDFNiiWLJib32CkWr9vDaxty+Ka4hOHdWvHbSX2Z3C+G0F0fwfL/hh3vQ0kRtIyD\nK34JCTdB+4E2BmFME2bJookoK1PuXJJCcpqbJmTKZR259YpuDCnbBlsegneXQfEJiGwLw+a4BNF1\npCUIYwxgyaJRKyktY9PeY4zu0YagIKFZaDC3XdmdW/qX0X73W/DmEji+D8JaQP+pcNlNrty3XQdh\njKnEtgqN2KJ/7+aP72bw8W+upkeLMzwSvwlSXoUNG0CCXKmNpAeg33chrIZKsMaYJs+SRSOy78gp\n/r5uN1f0bMuEAe25YXB7RhR/TvePfw473oPS027e6YkPwmXfh+hO/g7ZGNNAWLJo4FSVjXuO8be1\nu1i5LZ9gEfpILuxbRdvUJbQ9ddiNQyTe6kp+dxxs4xDGmItmyaKBKi1T3t/6Fc+t3smW3ON0bFbC\nwgGZJJ1aQdimTRAUCn0nw5AfQq8JEHwB81obY0w1LFk0MEVnSnn9i1yeX7OLvUcKmNJqP4/1Wk+v\ngyuRnSehbV+Y9JDbi2je1t/hGmMaCUsWDcy/Nu/nibfXcUebzcyI/YSoE1mQHwkJN8DQOXa6qzGm\nXliyCHDFJaU8lLydhI7RzGi3h5l7FzErMpmggtPQeThc/TQMvAEiov0dqjGmEbNkEaDyTxTRPjqC\nsDMn6L7zRZIyVkDhboIjYmDErTDsR+6qamOM8QFLFgFEVVmddZhnV+2kaN9mXhmylYiMt/jJmVNu\nfuoRd8PA6RDazN+hGmOaGEsWAeBMaRnLUw/w90+30/vQh9wf/hEJwVloRqS7qjrxVug0xN9hGmOa\nMEsWflR4upQlG/eRvOrfTDqVzEshq4kOO4m26QsjHkUGzYRmMf4O0xhjLFn4g6qy8JNs0tcu5cYz\ny3k9+EvKQkOQ/t+DEbci8VfaGU3GmIBiycKHThaX0EJOI6mvMf2zp5hXtpfTzdvC6PsIGv5jiOrg\n7xCNMaZKlix8ZPWmFDLfeYJbIlYRXPw1HToMhtH3EZZwA4SE+zs8Y4ypkSWLepSdf4Kg3A302Pki\nY7e/w5WiFHe9lmZjf0FQ3Gg71GSMaTAsWdSD1H2H2LR8EYlfvcqgoN0Q0RIZMw8Z+R80i4nzd3jG\nGHPRLFnUEVVlQ2YOWe8/w7hjb3CLHOZo824UXPEozUfOhrDm/g7RGGO8ZsniEqkq61K2kffB00wo\nWM4oKSAvZiinJjxF64HfhaAgf4dojDGXzJLFJcjZkUL6m3/kmqKPCZUScjqMp9m1d9MxfrS/QzPG\nmDplyeIilZUpRzLW0C71WbpkJNOeEHK6XU/cdXfTLbaPv8Mzxph6YcniQqlC1kp2/+tBehZtRSNi\nkKt+S9jI2+nZItbf0RljTL2yZFGLkpISNr73AiNzFhF8MI3OkZ1IG3Q/A6b8nOCIKH+HZ4wxPmHJ\nohqnT5/mi+Tn6ZC6kDGaw4nIOKKnLSRi0AwusylKjTFNjF+ShYhMBp4GgoHnVfXhSr8PB14AhgNH\ngJmquscXsRUXF/LFO8/SNf0vjNE89gZ3I23EEyRMnAvBlluNMU2Tz7d+IhIMPANMBHKBjSKyTFW3\nVVjsVuCYqvYSkVnAI8DM+oyrqLCAL5f+L/EZf+VyDpMd0outYxYy8JpZSFBwff5pY4wJeP74qjwS\nyFbVXQAi8howDaiYLKYBv/fcfwP4s4iIqmqdR3O6gIzlT9M29VnG8DWZoQM4OvZRBlw5HbFrJIwx\nBvBPsugM5FR4nAuMqm4ZVS0RkeNAG+BwxYVE5HbgdoC4OC/LaBQdp8/WJ9kWPoCDV9/NgDFTrGaT\nMcZU4o9kUdWWuPIew4Usg6o+BzwHkJiY6N1eR3Qngn6xiYRW3bx6ujHGNAX+OM6SC3St8LgLcKC6\nZUQkBGgJHK23iCxRGGNMjfyRLDYCvUWku4iEAbOAZZWWWQbM9dy/Cfi4XsYrjDHGXBCfH4byjEHc\nAazAnTq7SFXTReRBYJOqLgP+BrwoItm4PYpZvo7TGGPMOdJYvrCLyCFg7yW8RFsqDaAHCIvr4gRq\nXBC4sVlcFydQ4wLvYuumqu1qW6jRJItLJSKbVDXR33FUZnFdnECNCwI3Novr4gRqXFC/sdmFBMYY\nY2plycIYY0ytLFmc85y/A6iGxXVxAjUuCNzYLK6LE6hxQT3GZmMWxhhjamV7FsYYY2plycIYY0yt\nmnyyEJHJIpIpItkicq8f4+gqIp+IyHYRSReRX3nafy8i+0UkxXOb4qf49ohImieGTZ621iLygYhk\neX628nFMfSv0S4qInBCRO/3RZyKySEQOisjWCm1V9o84/+NZ51JFZJiP4/qTiGR4/vZbIhLjaY8X\nkcIK/faX+oqrhtiq/exE5D5Pn2WKyHd8HNeSCjHtEZEUT7vP+qyGbYRv1jNVbbI33BXkO4EeQBiw\nBRjgp1g6AsM896OAHcAAXKn23wZAX+0B2lZqexS413P/XuARP3+WXwHd/NFnwFXAMGBrbf0DTAHe\nwxXMHA187uO4JgEhnvuPVIgrvuJyfuqzKj87z//CFiAc6O75vw32VVyVfv848ICv+6yGbYRP1rOm\nvmdxdm4NVT0NlM+t4XOqmqeqmz33vwG240q1B7JpwGLP/cXA9X6MJQnYqaqXchW/11R1Nd8udlld\n/0wDXlBnPRAjIh19FZeqrlTVEs/D9bhinj5XTZ9VZxrwmqoWq+puIBv3/+vTuEREgBnAq/Xxt2tS\nwzbCJ+tZU08WVc2t4fcNtIjEA0OBzz1Nd3h2Ixf5+lBPBQqsFJEvxM0jAtBeVfPArchArJ9iA1c/\nrOI/cCD0WXX9E0jr3S24b5/luovIlyKySkTG+immqj67QOmzsUC+qmZVaPN5n1XaRvhkPWvqyeKC\n5s3wJRFpAbwJ3KmqJ4D/A3oCQ4A83C6wP1yhqsOAa4F5InKVn+L4FnHVi6cCr3uaAqXPqhMQ652I\nzAdKgJc9TXlAnKoOBe4CXhGRaB+HVd1nFxB9BvyA87+U+LzPqthGVLtoFW1e91lTTxYXMreGz4hI\nKG4leFlV/wWgqvmqWqqqZcBfqadd79qo6gHPz4PAW5448st3az0/D/ojNlwC26yq+Z4YA6LPqL5/\n/L7eichc4Drgh+o5wO05xHPEc/8L3LhAH1/GVcNnFwh9FgLcACwpb/N1n1W1jcBH61lTTxYXMreG\nT3iOhf4N2K6qT1Ror3iMcTqwtfJzfRBbcxGJKr+PGyDdyvnzjswFlvo6No/zvu0FQp95VNc/y4A5\nnrNVRgPHyw8j+IKITAbuAaaq6qkK7e1EJNhzvwfQG9jlq7g8f7e6z24ZMEtEwkWkuye2Db6MDZgA\nZKhqbnmDL/usum0EvlrPfDGKH8g33BkDO3DfCOb7MY4rcbuIqUCK5zYFeBFI87QvAzr6IbYeuDNR\ntgDp5f2Emxf9IyDL87O1H2KLBI4ALSu0+bzPcMkqDziD+0Z3a3X9gzs88IxnnUsDEn0cVzbuWHb5\nevYXz7I3ej7fLcBm4Ht+6LNqPztgvqfPMoFrfRmXp/0fwE8rLeuzPqthG+GT9czKfRhjjKlVUz8M\nZYwx5gJYsjDGGFMrSxbGGGNqZcnCGGNMrSxZGGOMqZUlC2O8ICKfVq58Kq7i7UIvXiexbqMzpu5Z\nsjDGO6/iLuKsqHJ9Ksov2DKmobNkYYx33gCuE5FwOFvYrROwVkTGeeYdeAV3MZQxDV6IvwMwpiFS\n1SMisgGYjCuvMAtYoqrqqjIwEkhQV07bmAbP9iyM8V7FQ1GVD0FtsERhGhNLFsZ4720gyTNdZTP1\nTEzjUeCnmIypF5YsjPGSqp4EPgUWUcvMaSLykYj4fWItY7xlycKYS/MqMBg3JW+VRCQI6EX1U4gm\ni0iu5/Z6NcsY41dWddaYeiYiCcAtqnqXv2MxxluWLIwxxtTKDkMZY4yplSULY4wxtbJkYYwxplaW\nLIwxxtTKkoUxxphaWbIwxhhTq/8HYNoDxlVf0jMAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x28b6e2486a0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"from scipy.optimize import root\n",
"import numpy as np\n",
"%matplotlib inline\n",
"xa0 = 1.\n",
"k1 = 0.08 # min^-1\n",
"v0 = 10. # L/min\n",
"vr = 200 # L\n",
"def ua(vr, epsa, xa0):\n",
" return root(lambda ua_var: \n",
" vr / v0 * k1 + \n",
" epsa * xa0 * ua_var + \n",
" (1 + epsa * xa0) * np.log(1 - ua_var),\n",
" 0.99\n",
" ).x\n",
"ua = np.vectorize(ua) # Vektorisieren\n",
"print ('100% A')\n",
"print ('UA = ' + '{0:g}'.format(\n",
" ua(vr, epsa=(-1. +2. + 1.)/(-(-1.)), xa0=1.).item()\n",
"))\n",
"\n",
"xa0 = 0.05\n",
"print ('5% A')\n",
"print ('UA = ' + '{0:g}'.format(\n",
" ua(vr, epsa=-1. +2. + 1., xa0=0.05).item()\n",
"))\n",
"\n",
"vr = np.array(range(0,200,1))\n",
"plt.subplots(nrows=2, ncols=1)\n",
"plt.subplot(2,1,1)\n",
"plt.plot(\n",
" vr, ua(vr, epsa=(-1. + 2. + 1.)/(-(-1.)), xa0=1.), '-.',\n",
" vr, ua(vr, epsa=(-1. + 2. + 1.)/(-(-1.)), xa0=0.05), '-'\n",
")\n",
"plt.xlabel('Vr, L')\n",
"plt.ylabel('UA')\n",
"plt.legend(['reines A', 'mit Stickstoff'])\n",
"plt.title('$A \\\\rightarrow B + 2 C$')\n",
"plt.subplot(2,1,2)\n",
"plt.plot(\n",
" vr, ua(vr, epsa=(-3. + 1.)/(-(-3.)), xa0=1.), '-.',\n",
" vr, ua(vr, epsa=(-3. + 1.)/(-(-3.)), xa0=0.05), '-'\n",
")\n",
"plt.xlabel('Vr, L')\n",
"plt.ylabel('UA')\n",
"plt.legend(['reines A', 'mit Stickstoff'])\n",
"plt.text(0.5,0.5, '$3A \\\\rightarrow B$');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Fazit**\n",
"\n",
"a) Bezüglich der Reaktion, wobei eine höhere Stoffmenge an Produkt hergestellt wird, als der Reagenzienkonsum ist es bevorzugt, ein inertes Komponent einzuführen. Denn somit steigt der Gesamtdruck, und somit die Konzentration und folglich die Reaktionsgeschwindigkeit.\n",
"\n",
"b) Bei der Reaktion, die eine niedrigere Produktstoffmege herstellt, als sie verbraucht ist es begünstigt, keine zusätzlichen Komponente einzuführen. Denn die Reaktion selbst erniedrigt den Gesamtdruck, und somit die Konzentratrion und infolgedessen die Reaktionsgeschwindigkeit."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ü 5.8\n",
"Die Gasphasendehydrierung von Benzol B zu Diphenyl D und weiter zu Triphenyl T wird in einem isotherm betriebenen Strömungsrohr durchgeführt. Ziel ist, die \n",
"Produktion von D zu maximieren und die Weiterreaktion zu T zu unterdrücken. \n",
"Die Reaktion wird bei Normaldruck durchgeführt.\n",
"\n",
"$\\begin{array}{ccccc}\n",
" 2 C_6H_6 & & \\overset{k_1}{\\longrightarrow} & C_{12}H_{10}+& H_2\\\\\n",
" B & & & D & H\\\\\n",
" C_6H_6 +& C_{12}H_{10} & \\overset{k_2}{\\longrightarrow} & C_{18}H_{14} +& H_2\\\\\n",
" B & D & & T & H\\\\\n",
"\\end{array}$\n",
"\n",
"Die Geschwindigkeitsgleichungen lauten wie folgt:\n",
"\n",
"$r_1 = 14,96 \\cdot 10^6 e^{-15200/T} \\left(p_B^2- \\frac{p_D p_H}{K_1} \\right) kg \\cdot h^{-1} \\cdot L^{-1}$\n",
"\n",
"$r_2 = -8,67 \\cdot 10^6 e^{-15200/T}\\left(p_B p_D - \\frac{p_T p_H}{K_2}\\right)$\n",
"\n",
"$K_1 = 0,312$\n",
"\n",
"$K_2 = 0,480$\n",
"\n",
"1. Studiere den Effekt der Raumzeit $\\tau$ auf die Umsätze $U_1$ und $U_2$ und ermittle die Stoffströme im Reaktor.\n",
"2. Bestimme die Reaktionsgeschwindigkeiten $r_1$ und $r_2$ als Funktion der Raumzeit $\\tau$.\n",
"\n",
"**Lösung**\n",
"\n",
"Raumzeit (hydrodynamische Verweilzeit) $\\tau = \\frac{V_R}{\\dot {V}}$\n",
"\n",
"Billanz\n",
"\n",
"$\\frac{d \\dot{n}_B}{d V} = \\nu_{B,1}r_1+\\nu_{B,2}r_2 = -r_1 - r_2$\n",
"\n",
"Als Funktion der Raumzeit und des Partialdrucks $n_B = \\frac{p_B \\dot {V}}{R T}$:\n",
"\n",
"$\\frac{d \\dot{n}_B}{d V} = \\frac{1}{R T}\\frac{d p_B \\dot {V}}{d (V)} =\\frac{1}{R T}\\frac{d p_B }{d (V/\\dot {V})}= \\frac{1}{R T}\\frac{d p_B }{d \\tau}$\n",
"\n",
"${\\boldsymbol \\nu} = \\left( \n",
"\\begin{array}{cccc}\n",
"\\nu_{B,1} & \\nu_{D,1} & \\nu_{T,1} & \\nu_{H,1} \\\\\n",
"\\nu_{B,2} & \\nu_{D,2} & \\nu_{T,2} & \\nu_{H,2}\\\\\n",
"\\end{array}\n",
"\\right) = \n",
"\\left( \n",
"\\begin{array}{cccc}\n",
"-2 & +1 & 0 & +1 \\\\\n",
"-1 & -1 & +1 & +1\\\\\n",
"\\end{array}\n",
"\\right)$\n",
"\n",
"$\\frac{1}{R T}\\frac{d {\\bf p}}{d \\tau} = {\\bf \\nu} {\\bf r}$\n",
"\n",
"$\\frac{1}{R T}\\frac{d p_B}{d \\tau} = -2 k_1 e^{-15200/T}\\left(p_B^2- \\frac{p_D p_H}{K_1} \\right) - k_2 e^{-15200/T}\\left(p_B p_D - \\frac{p_T p_H}{K_2}\\right)$\n",
"\n",
"$\\frac{1}{R T}\\frac{d p_D}{d \\tau} = + k_1 e^{-15200/T}\\left(p_B^2- \\frac{p_D p_H}{K_1} \\right) - k_2 e^{-15200/T}\\left(p_B p_D - \\frac{p_T p_H}{K_2}\\right)$\n",
"\n",
"$\\frac{1}{R T}\\frac{d p_T}{d \\tau} = + k_2 e^{-15200/T}\\left(p_B p_D - \\frac{p_T p_H}{K_2}\\right)$\n",
"\n",
"$\\frac{1}{R T}\\frac{d p_H}{d \\tau} = + k_1 e^{-15200/T}\\left(p_B^2- \\frac{p_D p_H}{K_1} \\right) + k_2 e^{-15200/T}\\left(p_B p_D - \\frac{p_T p_H}{K_2}\\right)$"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAENCAYAAAAorJMrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xd8VGW+x/HPb0p6QkJCKCkkVOlI\nR8CGFbtiwe7uFcu66Lru3ZVt6t511bvquutdV1dde28oYkWx0pUOAtISCCWBhCQzyUxmnvvHGTDg\n0JJJzszk9369zmvOnDlzzu9AJt+c55x5HjHGoJRSSjWXw+4ClFJKxQcNFKWUUhGhgaKUUioiNFCU\nUkpFhAaKUkqpiNBAUUopFREaKEoppSJCA0UppVREaKAopZSKCJfdBbSUnJwcU1RUZHcZSikVUxYu\nXFhujOnQlPfGbaAUFRWxYMECu8tQSqmYIiIbm/pebfJSSikVERooSimlIkIDRSmlVETE7TWUcPx+\nP6WlpdTV1dldyiElJSWRn5+P2+22uxSllDosbSpQSktLSU9Pp6ioCBGxu5wDMsZQUVFBaWkpxcXF\ndpejlFKHxfYmLxEpEJFPRWSliCwXkZvDrCMi8ncRWSsiS0RkSFP2VVdXR3Z2dlSHCYCIkJ2dHRNn\nUkoptUc0nKE0AL80xnwjIunAQhH5yBizotE6pwM9Q9NI4JHQ4xGL9jDZI1bqVEqpPWwPFGNMGVAW\nmq8WkZVAHtA4UM4BnjHWeMVzRCRTRDqH3quUihbBIPg91uSrDc17IeCDgB+Cfgg0QLCh0bw/9FoD\nmKC1HWNC88aa3/P4o2XBRvP8sKy5mj00ejPf39z9Z3SBYdc0bxtNYHugNCYiRcDRwNz9XsoDSho9\nLw0t2ydQRGQyMBmgsLCwpcpsFqfTyYABAzDG4HQ6efjhhznmmGPsLkup8IwB7y6oKoHKEuuxZht4\nKsCzM/RYYa2zJ0BUhDSjlSJ/WNsOFBFJA14HbjHG7N7/5TBv+VGEG2MeAx4DGDZsWHP/xGgRycnJ\nLFq0CIAPPviA22+/nc8++8zmqpQC6mtgyzewbQVsX249lq+G+v0+jg43pGSHpvaQ2xeSsyAhFRLS\nICEF3CnWc3do3um2JocbHC5wuqx5557noUdxAGI97mn2FdlvmRx42d73R6DJWJudj1hUBIqIuLHC\n5HljzBthVikFCho9zwe2tEZtLWn37t1kZWXZXYZqq/xeWP85rJsFm2ZD2RIwAeu15PbQsR8MvBiy\niiCzANoVQGahFST6y1aFYXugiHX1+QlgpTHmgQOs9jZwk4i8hHUxvqq510/ufGc5K7bsfyLUPH27\nZPDHs/oddB2v18vgwYOpq6ujrKyMTz75JKI1KHVQPg+smg7L34J1n1pNVK4kyB8O426FgpHQaSCk\n5WpoqCNme6AAY4ArgKUisii0bCpQCGCM+RcwA5gArAU8QOs3DkZI4yav2bNnc+WVV7Js2TK9q0u1\nrC2LYOF/YNkbVhNWRj4Mvgx6nwZF48CVaHeFKg7YHijGmC85xNWn0N1dP4vkfg91JtEaRo8eTXl5\nOTt27CA3N9fuclS8McZqzvrqb9ajOwX6nmMFSdcx4LD9a2gqztgeKG3ZqlWrCAQCZGdn212Kijeb\nF8KHv4eNX0FaRzjpTuuun6R2dlem4pgGSivbcw0FrC5Wnn76aZxOp81VqbhRsx0++C0sfQVScmDC\nX2HIldqkpVqFBkorCwQCdpeg4pExsPRVeO+/re+DjL0Vxv4CkjLsrky1IRooSsU67y6YdpN191b+\ncDjn/6BDb7urUm2QBopSsWzLInjlSti9BU75Hxh1Izi0CVXZQwNFqVi16AV45xZI7QA/ed/qbkMp\nG2mgKBVrjIHP7oNZd0PxcTDxP5Cqdwoq+2mgKBVLAg3w7q3wzdMwaBKc/Q+rHyylooAGilKxItAA\nb1wLy9+AcbfBib/T7lFUVNGvyrYyp9PJ4MGD6devH4MGDeKBBx4gGIzA+A0qvgUa4M3JVpic/CcY\n/3sNExV19AyllTXuy2v79u1ceumlVFVVceedd9pcmYpawQC8dQMse936xvuYKXZXpFRYeoZio9zc\nXB577DEefvhhTLNHiFNxyRh4/3brm+/j/wBjb7G7IqUOqO2eobz3G9i6NLLb7DQATr/niN7SrVs3\ngsEg27dvp2PHjpGtR8W+r/8O8x6FUT+Dcb+0uxqlDkrPUKKAnp2osJa+Bh/9AfqdZ31pUako13bP\nUI7wTKKlrFu3DqfTqd3Xq32VLrSum3QdA+f+S7uaVzFBf0pttGPHDq6//npuuukmHWBL/aB6G7x8\nOaR1goueBXeS3RUpdVja7hmKTfZ0X+/3+3G5XFxxxRXceuutdpelokWDD169yurw8acf6jfgVUzR\nQGll2n29OqgPpsKm2XDBE9B5oN3VKHVEtMlLqWix/E2Y/28YfRMMmGh3NUodMQ0UpaLBro3w9s2Q\nNwxOusPuapRqEg0UpewW8MPrPwUMTHxCO3tUMUuvoShlt0/vhtL5MPFJyCqyuxqlmkzPUJSy04Yv\n4csH4egroP8FdlejVLNooChll/pq68uL7Yvh9HvtrkapZouKJi8ReRI4E9hujOkf5vXjgWnA+tCi\nN4wxd7VehZFRUVHB+PHjAdi6dStOp5MOHToAMG/ePBISEuwsT7W2D38PlSXW8L0JqXZXo1SzRUWg\nAE8BDwPPHGSdL4wxZ7ZOOS0jOzt7b9f1d9xxB2lpadx22202V6VssfZjWPgfOObnUDjK7mqUioio\naPIyxnwO7LS7DqVahbcSpv0ccnrDCb+zuxqlIiZazlAOx2gRWQxsAW4zxizffwURmQxMBigsLDzo\nxu6ddy+rdq6KaIFHtT+KX4/4dUS3qeLQ+7dDzTa45Dntp0vFlag4QzkM3wBdjTGDgH8Ab4VbyRjz\nmDFmmDFm2J5rE0pFlTUfweIXYNytkDfU7mqUiqiYOEMxxuxuND9DRP4pIjnGmPKmblPPJFSr89XC\n9Futpq5jf2V3NUpFXEycoYhIJwn17y4iI7DqrrC3KqWO0Kd3Q9UmOOshcCXaXY1SERcVZygi8iJw\nPJAjIqXAHwE3gDHmX8BE4AYRaQC8wCVGhzlUsaRsMcx5BIZeDV1H212NUi0iKgLFGDPpEK8/jHVb\ncdy444477C5BtZZgAN6eAinZ2vGjimtREShKxbW5j0LZIquvruQsu6tRqsXExDUUpWJWZQl88j/Q\n8xTod77d1SjVojRQlGopxsCM2wADE/4K1n0lSsUtDRSlWsqKabD6fThhKmR1tbsapVqcBopSLaGu\nCt77NXQaCCNvsLsapVqFXpRXqiV8fCfUbodLXwKnfsxU26BnKK0sLS1tn+dPPfUUN910k03VqBax\naS4seAJGXg9djra7GqVajQaKUpHU4IN3boaMfDjht3ZXo1Sr0nNxpSLp67/DjpUw6SVITDv0+krF\nkTYbKFvvvpv6lZHtvj6xz1F0mjr1oOt4vV4GDx689/nOnTs5++yzI1qHsknF9/DZfdD3HOh9ut3V\nKNXq2myg2CU5OXnvqI1gXUNZsGCBjRWpiDAGpt9idfp4mo4Pr9qmNhsohzqTUOqILH4R1n8OZz4I\nGZ3trkYpW+hFeaWaq7YcPpgKBaNgyNV2V6OUbTRQlGquD6ZCfQ2c9Tdw6EdKtV1ttsnLLjU1Nfs8\nv/rqq7n66qvtKUY139qZsORlOPa/IbeP3dUoZSv9c0qppvJ5YPovILsHjPul3dUoZTs9Q1GqqT67\nByo3wtXvgjvJ7mqUsl2bO0OJlZGDY6XONmvrUvj6YTj6Cigaa3c1SkWFNhUoSUlJVFRURP0va2MM\nFRUVJCXpX71Rae+Qvu3h5LvsrkapqNGmmrzy8/MpLS1lx44ddpdySElJSeTn59tdhgpn9v/Blm/g\ngiesUFFKAW0sUNxuN8XFxXaXoWLZjtXWkL5HnQn9L7C7GqWiSptq8lKqWYIBmPYzSEiBMx7QIX2V\n2k+bOkNRqlnmPAKl8+D8xyG9o93VKBV1ouIMRUSeFJHtIrLsAK+LiPxdRNaKyBIRGdLaNao2rnwt\nfPIn6H0GDJhodzVKRaWoCBTgKeC0g7x+OtAzNE0GHmmFmpSyBAMw7UZwJcGZ2tSl1IFERaAYYz4H\ndh5klXOAZ4xlDpApItqlq2odsx+Gkrlw+n2Q3snuapSKWrFyDSUPKGn0vDS0rCzSO/L4Gvj9W8tJ\nTXSSkuCiU0YiRTmp9OyYTl5mcqR3p6Jd2WKY+SfocxYMvMjuapSKarESKOHaGH707UQRmYzVJEZh\nYWGTduTxBZizrgKPr4Ha+gC+QHDva3mZyYwobs9JfTpy4lG5JCc4m7QPFSN8Hnj9WkjNgbP+rk1d\nSh1CrARKKVDQ6Hk+sGX/lYwxjwGPAQwbNqxJX4fPSUvkq9+cuGd7lNf42FBRy4otu5m7voLPVu/g\nzW83k5Lg5LR+nbjqmCIGFWQ2ZVcq2n30eyj/Dq54S7/AqNRhiJVAeRu4SUReAkYCVcaYiDd37U9E\n6JCeSIf0RIYXteeqY4oIBA1z11XwzpItvLO4jDe+3cyQwkyuO647p/TtiOhfsfHhu/dh/uMw+ibo\nfoLd1SgVEyQa+rUSkReB44EcYBvwR8ANYIz5l1i/pR/GuhPMA1xjjDnoQOzDhg0zLT1We3Wdn9cW\nlvLU1xvYWOFhUH47bju1N2N75GiwxLKa7fDP0dYF+Gs/scaJV6qNEJGFxphhTXpvNARKS2iNQNmj\nIRDkjW8289DMNWyu9DKuZw5/PKsfPXLTWmX/KoKCAXj2XCiZB5Nn6aBZqs1pTqBExW3Dsc7ldHDR\n8AI+ue04/nBmXxaVVHL6Q59z7/ur8Pga7C5PHYlZf4H1n1tdq2iYKHVENFAiKNHl5Cdji/nkl8dz\n9qA8Hpn1PSc/8Dmfr47+3o0VsOYj+Px/4ejL4ejL7K5GqZijgdICOqQncv9Fg3j1+tEkuR1c+eQ8\nfvP6Eqrr/HaXpg6ksgTeuBY69ocJf7W7GqVikgZKCxpe1J53p4zjuuO68cqCEk59UM9WopK/Dl69\n2rp+ctEz4NYvsCrVFBooLSzJ7eT20/vw2g3HkJzg5Mon5zH1zaXU1uu1lahgDEy/BTYvgHP/Cdnd\n7a5IqZilgdJKhhRm8e6UcUw+thsvztvE6Q99wfwNB+u+TLWKr/8Oi1+EE35rda+ilGoyDZRWlOR2\nMnVCH16ePBqD4aJHZ/OXGSup8wfsLq1t+u59+OiP0O88OPZXdlejVMzTQLHBiOL2vHfzsVwyvJBH\nP1/H2Q9/ybLNVXaX1bZsWw6v/xQ6D4Rz/qn9dCkVARooNklLdPGX8wfwn2uGU+nxc+7/fcXfZ66h\noVFnlKqFVJbAcxdAYjpc8qI1pK9Sqtk0UGx2Qu9cPvzFsUwY0JkHPlrNBY98zdrtNXaXFb88O+G5\n862ehC9/Hdrl2V2RUnFDAyUKZKYk8PdJR/PwpUezcaeHM/7+BU9+uZ5gMD67xbGNzwMvXAy7NsKk\nF6BjP7srUiquaKBEkTMHduHDW45lTI8c7pq+gssen0vpLo/dZcWHhnp49SoonQ8X/BuKxtpdkVJx\nRwMlyuRmJPHEVcO474KBLCmt5LS/fcEr80uI1048W0WDz/ri4poP4cwHoe85dlekVFzSQIlCIsJF\nwwt4/5Zj6dclg/9+fQn/9fQCtlfX2V1a7An44bVr4LsZVpcqw66xuyKl4pYGShQraJ/Ci9eO4vdn\n9uXLteWc+uDnTFu0Wc9WDleDz7o1eNV0OO1eGHGt3RUpFdc0UKKcwyH8dGwx704ZS2H7FG5+aREX\nPzaH5Vv0eysH5fPAS5fCimlw6t0w6nq7K1Iq7mmgxIgeuem8ceMY/nxef9Zsq+asf3zJ1DeXUlFT\nb3dp0ce7yxok6/uZcNbfYfTP7K5IqTZBR2yMQVUeP3+buZpnZm8kyeXgJ2OL+a9x3WiX7La7NPvt\nLrO+tFixBi54XC/AK3WEdAjgMOI5UPZYu72aBz9aw7tLy0hPcnHtuG5cdUxR2w2WLYvgxUlQvxsu\nfg66n2B3RUrFHA2UMNpCoOyxfEsVD360ho9XbiMlwcmFQ/O5ZkwxRTmpdpfWelZMgzeug9QcmPQS\ndOpvd0VKxSQNlDDaUqDssXxLFU98uZ53Fm+hIWg4sXcuFw0v4ITeuSS44vRyWTAIX/wVPv0z5I+A\nS56HtFy7q1IqZmmghNEWA2WP7bvreHbORl6cV0J5TT3tUxM4e1AXJgzozJDCTFzOOAmX2nJ4Y7J1\n8X3gJXDWQ+BOsrsqpWKaBkoYbTlQ9mgIBPliTTmvfVPKR8u34QsEyUpxc0LvXE7sk8uI4vbkpsfo\nL+BNc+DVa8BTAaffC0Ov1i7olYqA5gSKK9LFqOjhcjo44ahcTjgql+o6P1+sKefjFdv45LvtvPHt\nZgCKslMYXtSeQQWZ9OmcTq+O6aQnRfFF/QYffHYvfPkgJrMQ85MPCXYaCEGD02H1MqCUskdUnKGI\nyGnAQ4ATeNwYc89+r18N/C+wObToYWPM4wfbpp6hHFhDIMjSzVXM37CT+Rt2sWDDTnZ5/Htfz8tM\nprB9Cl0yk8nLSiYvM4mslAQyUxLITHHTLtlNkttJgtOB2yk4HbL3F7kxhkDQ0LBnCgTx+AJ4fA3U\n1gd+mPcF8NQ37PPc6wtQW9+Ax9/4Net1jy9AXv06/mT+QR/ZyKsNx3JXw5VU88NYJk6HkOJ2kpxg\nTelJLnLSEumQlkiH9EQ6t0uiOCeNbh1S6ZSRhMOh4aPU/mK6yUtEnMBq4GSgFJgPTDLGrGi0ztXA\nMGPMTYe7XQ2Uw2eMYUtVHavKdrNqazXfba2mdJeHLZV1bKuu41A/IiLgdjgIGitEmsLlEFISnKQm\nukhOcJKasOfRSYYryITdrzC+/GnqXBl83H0q67KPQwCHyN6WrvoGK4Dq/Nbjbq+f8hofO6rrKa+p\n36e2ZLeTozqnMyg/k8EFmQztmkVBex1oS6lWafISkbuwziAWAYuMMWuassMwRgBrjTHrQvt5CTgH\nWHHQd6mIERHyMpPJy0xmfJ+O+7zmawiybXcdlR4/VV4/lV4fVV4/df4g/kAQf4P16AtYTU5OhwO3\nQ3A6BZdDcDkcpCQ4SUl0kRo6c0hNcJGa6CQlwUVKaFmiyxm+uLUzYcavYOf30O980ib8lXNTs4/4\nGINBw/bqetaV17BuRy3f76hh+ebdvDy/hKe+3gBAcU4qx/bM4bjeHRjTI+fANSmlwjrsQDHG/EFE\nOgJHAxeISHdjTCR628sDSho9LwVGhlnvAhE5Futs5hfGmJIw66gIS3A5KGifQkH7Vt5x5Sb48Pew\n4i1o3x0ufwN6jG/y5hwOoVO7JDq1S+KY7jl7lzcEgqzeVsO89RV8tnoHrywo5enZG0lPcnF6/06c\nMziPUd2ycWrzmFKHdMhAEZHTgTuATGAx8OD+1ziaKdwndf92k3eAF40x9SJyPfA0cGKYWicDkwEK\nCwsjWKJqNZ6d8MX9MO8xEAec8DsYMwVciS2yO5fTQd8uGfTtksHVY4qpbwgw+/sK3llcxoylW3ll\nQSn5WclcMaorFw8vIDMloUXqUCoeHPIaioisBy7HaoIaihUu/2eMeTEiBYiMBu4wxpwaen47gDHm\nLwdY3wnsNMa0O9h29RpKjKmvgXmPwpd/A18NDL4Ujr8d2uXbVlKdP8DHK7fx7OyNzF2/kyS3g/OO\nzufG47vr9RYVt1r0oryIzDHGjGr0PBWYa4yJSN8WIuLCasYaj3UX13zgUmPM8kbrdDbGlIXmzwN+\n3bimcDRQYoRnJ8z7N8x9xOoluPcEGP8HyO1jd2X7WFm2m6e/3sAb32wmaAwXDsvnZyf0ID9Lg0XF\nl5YOlJeAtcBdxhifiCQAnxljRjdlhwfYxwTgb1gX/Z80xvw5dBPAAmPM2yLyF+BsoAHYCdxgjFl1\nsG1qoES53WUw55+w4EnrjKT3BBh7KxQMt7uygyqr8vLIrO95aV4JBsOVo4uYMr5n2+2QU8Wdlg6U\nF4FBQDawBigEnsf6xR+pO70iTgMlChkDG7+G+f+Gle+ACUK/82HsL2KuM8eyKi8PfbyGlxeUkJWS\nwK0n92LSiEK9eK9iXqt8D0VEkoD+WOGyZ+pmjCloyo5bmgZKFKmrgmWvw7zHYftySGoHR18Bw38K\n7bvZXV2zLNtcxV3TVzBv/U7652Vw7wUD6dfloJf3lIpqMf3FxpaigWKzYADWfQqLXrTGdG+og04D\nYPi1MOBCSIifaw/GGN5dWsYdb69gl8fH5GO7cfP4niS59XssKvZoX14qOhgDW761vjuy5BWoLoOk\nTDj6chh0KeQNicsOHEWEMwd2YVyPDvx5xgoemfU97y/byn0TBzK8qLW/wKOUffQMRTVPgw82fAHf\nzYBVM6B6C4gTep4CgydBr9Na7Dsk0eqrteX85o0lbN7l5Ybju3Pz+F7xOx6Nijva5BWGBkoLqquC\nNR9ZIbLmI2vIXXcKdD8RjjoTep0KKW37L/Oa+gb+9M4KXl5QwoC8dvztksF075Bmd1lKHZIGShga\nKBG2e0voLORdWP8FBP2Q2sE6AznqTOh2HLiT7a4y6ry/rIzfvLGUOn+A353Rl8tGFmoX+yqq6TUU\nFXnGwPaV8N27VlPWlm+s5e27w6gb4KgzIH84OPTC88Gc1r8zRxdmcduri/ndW8uY9d127ps4iPap\n2oWLij96hqJ+EAxYIyHuORPZtd5anjfMCpCjzoCcXnF5Yb2lBYOG/3y9gXvfW0VmipsHLhrM2J45\nh36jUq1Mm7zC0EA5TD6PdXvvqndh9fvWkLrOBCg+Do6aAL1Oh4zOdlcZN5ZvqWLKi9/y/Y5arju2\nG788pbdesFdRRZu81JHxVsLqD2Dl29Z4Iw1eSGxnXUw/agL0OAkS0+2uMi7169KO6T8fx5/eXcGj\nn6/j6+8reOiSwXTTC/YqDugZSltRvc36guGq6bD+cwg2QHoXqxmrz5nQdQw4tT+q1vTB8q38+vUl\n1PuD3Hl2Py4clq8X7JXt9AxFhVe9FZa9ASumQclcwFhdnYy+CfqcBV2GgEObW+xyar9ODMrP5Bcv\nL+K/X1/CZ2t2cPe5A2iXosGuYpMGSrzxVlodLy591frCoQlCxwFwwlTr9t7cPnpRPYp0apfEc/81\nkkc//54HPlzNok2VPHjxYEYUt+3v8ajYpE1e8cDvtS6oL30N1nwIAZ91JjLgQug/ETr0srtCdRgW\nlVRy80vfUrLTw00n9mTKiT1wOfUMUrUuvcsrjDYRKFuXwTdPw5KXrW+vp3WE/hfAgInQZQgGCFRW\n4i/djH9zKf7Nm2nYUU5g1y4aKncRqKwkWFlF0OfD1NdjfD6Mz2d9B8XlQlwuxOkEtwtHcgrO9HQc\nGek406xHV1YWrtyOuHJzG00dcCTodyyaqqa+gT9OW87r35QypDCThy45WkeHVK1KAyWMuA2U+hpY\n/gYsfBo2L7Bu8e1zNoHeE6n3ZlO3di31362mfvVq6tesIVhTs8/bJSUFV2Ymzqwsa8rIQJKSkAQ3\nkpBghYE4MA0NmEADNDRg/A0EvV4C1bsJ7q7e+9iwaxf4/T8q0dWpEwmFhSR0LcRdWEhCYVcSuhaS\nUFyMI7Ft9evVVNMWbeZ3by4jaAy3ndqbK0cX6VgrqlVooIQRV4Gypxffb562mrV8NfiTeuFJOAZv\nZRqepSup/+47CAYBcLRrR1KvXiT27Gn9Us/Pt6a8PJxpkbs91RhDoLKShu3b907+rVvxbyrBt2kT\nvk2bCFRU/PAGp5OErl1J7N3Lqi80ufPyEL054EdKdnr47VvL+Hz1Dgblt+Pu8wfoWCuqxWmghBEX\ngVJXZXUD/83TBEuWUVuRTm19b2o3NeDbvA0AR0oKyYMHkXz0EJIHDiCxd29cHTtGze2ngZoafBs3\n4tuwgfpGZ0/+0tK96zjS00ke0J+k/gNIHjiApAEDcXfMtbHq6GGM4e3FW/jT9BXs8vi55pgifn5i\nT70TTLUYDZQwYjZQjLFu8V34NP55b1G9Qaguz8GzJQCBIJKcTMqI4aSNGUPKsGEk9uqFuGLvZr1A\nTS2+tWuoW72auhUrqFuylLrVq6GhAQBXbi5JAweQPGgQKUOHkdy/H9KGr81Uefzc8/5KXppfQrtk\nN1NO7Mnlo7rqt+xVxGmghBFzgVJbAUtewj/rP+xesoXq0jS8O6yOFxN79iB13LGkjR1D8tChcXsd\nIlhXR/2qVXiXLMW7bCl1i5fg27gRAElMtMJl2FCShw4lZfBgHKmpNlfc+lZs2c3dM1by5dpyuman\ncMtJPTlrYBe9G0xFjAZKGDERKMEgrJ+Fb+a/qZ71Fbs3uqmrsP4KT+zdk4zTJ5B+yqkkdiu2uVD7\nNFRU4Fm4EO/ChXgWLKRu5Urr383pJKlPH1JGjCB19ChShg7FkdI27oYyxvDZ6h3c894qVm2tpqB9\nMtcf150LhuTrsMOq2TRQwojqQKkqxffhv6ie/ia719RRt9MKkaRe3Ug/4xwyTj2FhKIie2uMUoGa\nGrzfLsKzcAGeBQuoW7wE4/eD203yoIGkjhxF6uhRJA8cGPdNZMGgYeaq7Tz86VoWl1SSk5bAhcMK\nmDS8kMLsthGuKvI0UMKIukDxeaif9RzVbz5P9aLN1O2yLqomdc8j4+yJpJ8+gYTCQpuLjD1BrxfP\nwm/wzJlN7ew51K1YAcYgKSmkDB1K6igrYBKPOipu7yQzxvD19xU89fUGZq7cRtDAuJ45nDM4j5P7\ndqRdsl7AV4dPAyWMqAiUgJ/6T19g95svUL1wPfWVVnNEUlEOGWeeQ/q5k0jIz7O3xjgTqKykdt48\nPHPmUDtnLr516wBwZmaSMnIkqaNGkjJyJAnFxVFzJ1wklVV5eXl+Ca8uKGVzpRe3UxjXswMn9enI\n2B45euaiDinmA0VETgMeApzA48aYe/Z7PRF4BhgKVAAXG2M2HGybdgVKcHc53ulPUfPJB9Qs3YSv\nygEYkouyyDjlZNIvnow7L7/V62qr/Nu2WeEyew61c+bQsHUrAM4OOaQOH2GFzMgRuLt2jauAMcaw\nqKSSGUvLmLF0K5srvQAUtE9sUm9IAAAYxElEQVRmTPccji7MZGB+Jj1z0/SCvtpHTAeKiDiB1cDJ\nQCkwH5hkjFnRaJ0bgYHGmOtF5BLgPGPMxQfbbmsFivFUU/f5W3i+/BjPouXUrq/BBARxGFK6ZZE2\nfjzpl9yAu7OeidjNGIN/0yZq587FM3cetfPmEthRDoCrY0dSRo4gdYQVMu78+OlK3hjD9ztq+Wpt\nOV+uLWfOugqq66zbs5PcDvp0zqBHhzS6dUijOCeV7h1S6ZKZTGpi7N2Orpov1gNlNHCHMebU0PPb\nAYwxf2m0zgehdWaLiAvYCnQwByk+0oFivLU0bFyJf80S6pd9Q93q1dRv2kbd1npMwPrF427nIG1g\nMaknnUHqhMtwpGdEbP8q8owx+NZvwDNvrhUy8+bv/Wa/q0MHkgYNJHngIJIHDiSpf3+cafFxm3Iw\naNhQUcuS0iqWlFaxbEsV63bUUl5Tv8966YkucjMS6dQuidz0JDJT3LRLtqaMpNBjspuUBCdJbgeJ\nLidJ7h/m3U6Jm1BuS2J9PJQ8oKTR81Jg5IHWMcY0iEgVkA2UR7qYqk3L+Pq6S3D5De4Gg8sPSV5D\niscg/PDhqE807MpxsmN4Olt7dmB7n3zqsjNw4ABZj3z7Z0QEB469HypBcDqcJDgSSHAmkOhMxO10\nk+hM3Ltsz/JEZyJp7jRSE1JJdaWSlpBGqjuVJGeSfkgjRERI7FZMYrdisi65xAqYtWupnTcP76LF\neJcspubjmXtWJrFHD5L69iWxZw8Se/YksUcPXF26RP3/hwkGCXo8BGtq9k4dvV5O8vkYn+zHFPgI\ndvThrfVSsauGnZW1VFd78VR4qSupw1Pno67ej9/XQF0giM8EqTAGhwniMAbBenSElgkGZ+g1p8P6\n1DiEvZ+ePfMigmB9rkTAAbBnPWNApNF8o+WNPonCj/+mtF4zjeYbvyA/Xh6HGvIKOeeJ+1t9v9EQ\nKOH+b/f/KTmcdRCRycBkgMIm3jEVdLlw1QVpcAveVAd+l+BNdrA7w8XuTDdVWYls7ZxCVWYSJlRV\n0AQxbMXsLGv03GCM2fcRQyAYwBf04QtYU8AEjqg+pzhJdaeS5k4jPSGdrKQsshKzrMcw87mpuaS7\n06P+l140EBErKHr2hMsuA6Bh1y7qli7Fu3gJ3iVLqJ09m6pp0/a+x5GaSkJREe68PNxdulhTXhec\n7dvjzMy0pnbtjvgOMysEvARrawl6agnWeqz52lqCtaFgqK0lUFNDsKY29HzPstp9wiPo8Rz2fp1A\nh9AEgNuNOJ1W/aHJiAPjcGBECIr1aMSxdz4oQpDQY/CHX+8mNLN3vtHyPW0NjT/UptHH3uz5+TXs\n/dztfYMIZu87G0eM7N2i/VeKW1dDndeW/WqTl80agg34Aj78QT/1gXoraII+vA1ePH4Ptf5aavw1\n1PpCj/4fHnfX72ZX/S521VlTtb867D6SXcl0TOloTakdyU3J3fu8IL2A/PR8klxJrXzksStQVWX1\nS7ZmDfVr1uLbuBH/li34t2zB1NX9+A0iONLSkIQEa3K7rd6dHU5MIGD16BwIWJPfj/F4Dj8EHA4c\naWk40lJxpqbiSE0LPQ+3LBVn6DVJSsKxp55wk9ttTXF6q7U6sFhv8poP9BSRYmAzcAlw6X7rvA1c\nBcwGJgKfHCxMYonL4cLliMx/gz/gp7K+cm/I7KzbyXbPdrZ5trGtdhvbPNuYt3UeOzw7fnRmlJuS\nS0F6AQXpBRSmF1KQXkBxu2KK2xWT4IzvLwgeKWe7dqQMHUrK0KH7LDfGENi5E/+WMgK7dhKorPxh\nqq7ZO96M8futx2AAcYXOAFxOcFrjzzhSUnCkpuJI3fOY2miZFQyOVCscJDlZzz5V1LA9UELXRG4C\nPsA6437SGLNcRO4CFhhj3gaeAJ4VkbXATqzQUftxO910SOlAh5QOB10vEAyws24nZbVllFSX7DN9\nuflLyr0/XJpyipOuGV3pkdmDHlk96JnZkx6ZPSjMKMQh+tdrYyKCKzsbV3a23aUoZQvbm7xaSqw0\neUUjj99DSXUJ66rWsWbXGtZWrmVt5VpKq0v3tlWnudPom92Xfjn96J/dn/45/emc2ln/WlYqxsX0\nbcMtRQMl8jx+D+ur1rN612qWVyxnWfkyvtv1HQ1B6zsN7ZPaMyR3CMM6DWNYx2H0zOqpZzFKxRgN\nlDA0UFqHL+Bj9a7VLCtfxtLypSzctpDNNZsByEjIYEjHIQzvOJyx+WMpzojP7k6UiicaKGFooNin\nrKaMBdsWWNPWBWyq3gRAXloeY/PGcmz+sQzvNJxkV7LNlSql9qeBEoYGSvQoqynji81f8MXmL5hb\nNhdvg5dEZyJjuozhlKJTOL7geFLd8fEtdKVinQZKGBoo0ak+UM/CbQv5rOQzPt74Mdu920lwJDAm\nbwynFp3KiYUn6pmLUjbSQAlDAyX6BU2QRdsX8eHGD/low0ds924nzZ3GacWncV6P8xiQM0CvuSjV\nyjRQwtBAiS1BE2ThtoW8tfYtPtzwIXWBOrq168b5Pc/n3B7n0i6xnd0lKtUmaKCEoYESu2p8NXyw\n4QPeXPsmi3csJtmVzFndzuKyPpfRLbOb3eUpFdc0UMLQQIkPq3au4vmVzzNj3Qx8QR/HdDmGq/pd\nxejOo7U5TKkWoIEShgZKfNlZt5PXVr/GS6teYod3BwNzBnLdoOsYlzdOg0WpCNJACUMDJT75Aj7e\nWvsWTyx9gi21W+ib3ZfrBl7HCQUnaLAoFQEaKGFooMQ3f9DP9O+n8++l/6akuoSBHQbyy6G/ZEjH\nIXaXplRMa06gaEdLKia5HW7O63keb5/7Nncecydba7Zy1ftXcfMnN7Ouap3d5SnVJmmgqJjmcrg4\nv+f5TD9/OlOOnsLcrXM5f9r53DPvHqp94QccU0q1DA0UFReSXclcO/BaZpw/g4m9JvLCyhc4+62z\nmb5uOvHarKtUtNFAUXGlfVJ7fjfqd7x45ot0Tu3M7V/czk8//CnrKrUZTKmWpoGi4lK/7H48N+E5\n/jD6D6zetZqJ70zk8aWP7x27RSkVeRooKm45xMGFvS5k2jnTOKHgBB765iEun3E5a3atsbs0peKS\nBoqKe9nJ2dx//P389bi/UlZbxkXTL+KxJY8RCAbsLk2puKKBotqMU4tO5c1z3mR84Xj+8e0/+OmH\nP2Vr7Va7y1IqbmigqDalfVJ7/nrcX7l77N2srFjJBW9fwMcbP7a7LKXiggaKapPO6n4Wr571KoXp\nhfxi1i+4c/adeBu8dpelVEzTQFFtVmFGIc+c/gzX9L+G11a/xuUzLqdkd4ndZSkVszRQVJvmdrq5\ndeitPHLSI2zzbOPi6Rczq2SW3WUpFZNsDRQRaS8iH4nImtBj1gHWC4jIotD0dmvXqeLf2LyxvHTG\nS+Sn5/PzT37OP779h94FptQRsvsM5TfATGNMT2Bm6Hk4XmPM4NB0duuVp9qS/PR8njn9Gc7tcS6P\nLXmMG2feSFV9ld1lKRUz7A6Uc4CnQ/NPA+faWItSJLmSuOuYu/jj6D8yf+t8Jr07SXsvVuow2R0o\nHY0xZQChx9wDrJckIgtEZI6IaOioFiUiTOw1kSdPfZJafy2Xv3s5X23+yu6ylIp6LR4oIvKxiCwL\nM51zBJspDA34cinwNxHpfoB9TQ4Fz4IdO3ZEpH7Vdg3OHcyLZ7xIl7Qu3DjzRp5b8Zz2XKzUQdg6\nYqOIfAccb4wpE5HOwCxjTO9DvOcpYLox5rWDracjNqpI8fg93P7F7XxS8gkTe01k6sipuB1uu8tS\nqkXE8oiNbwNXheavAqbtv4KIZIlIYmg+BxgDrGi1ClWbl+JO4cETHuTaAdfy2urXuO6j66isq7S7\nLKWijt2Bcg9wsoisAU4OPUdEhonI46F1+gALRGQx8ClwjzFGA0W1Koc4mDJkCn8Z9xcWb1/MZTMu\nY33VervLUiqq2Nrk1ZK0yUu1lEXbF3HzpzfjD/p54PgHGNV5lN0lKRUxsdzkpVTMGZw7mBfOeIGO\nKR254aMbeHX1q3aXpFRU0EBRqgny0vJ49vRnGdVlFHfNvov75t+n36xXbZ4GilJNlJaQxj9O/AeX\n9bmMZ1c8y82f3kytv9buspSyjQaKUs3gcrj4zYjf8NuRv+XLzV9yxXtXUFZTZndZStlCA0WpCLjk\nqEv45/h/UlZTxqR3J7FkxxK7S1Kq1WmgKBUhx+Qdw3MTniPJlcQ171/D++vft7skpVqVBopSEdQ9\nszsvnPEC/XP686vPf8Ujix/R7lpUm6GBolSEtU9qz79P+Tdndz+bfy76J7/+4tfUB+rtLkupFuey\nuwCl4lGCM4H/GfM/FLcr5qFvHmJLzRb+dsLfyEnOsbs0pVqMnqEo1UJEhP8a8F/cf9z9fLfzOy57\n9zLW7Fpjd1lKtRgNFKVa2ClFp/DUaU/hD/q54r0rmLlxpt0lKdUiNFCUagX9cvrxwhkvUJRRxC2z\nbuHeeffiD/jtLkupiNJAUaqVdErtxDOnP8Okoybx3MrnuOr9q9hcs9nuspSKGA0UpVpRgjOBqSOn\ncv9x97O+aj0XvnOhNoGpuKGBopQNTik6hZfPfJn8tHxumXULU7+Yym7fbrvLUqpZNFCUsklhRiHP\nT3ie6wddz4z1Mzhv2nl8vflru8tSqsk0UJSykdvp5meDf8bzE54nzZ3GdR9fx9QvplLuLbe7NKWO\nmAaKUlGgX04/XjnrFa4dcC3vbXiPs988mxdWvqBjrKiYooGiVJRIdCYyZcgU3jj7Dfrl9OMv8/7C\nxHcm8ummT7U/MBUTNFCUijLF7Yp57OTHuP+4+/EH/Uz5dApXvHcF87fO12BRUU3i9Qd02LBhZsGC\nBXaXoVSz+IN+pq2dxiOLHmG7dzsDcgZwVb+rGF84HpdDu+JTkSciC40xw5r0Xg0UpaJfXUMd09ZO\n45kVz7CpehN5aXlM7DWRs7qdRcfUjnaXp+KIBkoYGigqHgWCAWaVzOLZlc+ycNtCHOLgmC7HcEa3\nMzg2/1gyEjLsLlHFOA2UMDRQVLzbtHsTb619i7e/f5ttnm24xMXwTsM5vuB4RnYeSbd23RARu8tU\nMSZmA0VELgTuAPoAI4wxYRNARE4DHgKcwOPGmHsOtW0NFNVWBE2QpeVL+WTTJ3yy6RM27N4AWAN9\nDe04lMEdBtMnuw+92/fWMxh1SLEcKH2AIPAocFu4QBERJ7AaOBkoBeYDk4wxKw62bQ0U1VaVVJew\nYOsC5m+dz/xt89lau3Xva/lp+XTP7E5BegEF6QUUZhRSkF5Ah+QOpLhTbKxaRYvmBIqtt4kYY1YC\nhzotHwGsNcasC637EnAOcNBAUaqt2hMW5/U8D4BybzkrK1ayaucqVu5cyYbdG5i3dR7eBu8+70tx\npZCTnENOcg7ZydlkJGSQnpBOmjuNtIS0vY8prhQSnAkkOhNJcCaQ4Gg0H5qc4sQhDhyi30xoS2Lh\nvsM8oKTR81JgpE21KBVzcpJzGJc/jnH54/YuM8ZQ7i1nU/UmSqtLKfeWU+4tp8JbwQ7vDtbsWkO1\nr5pafy11gbpm7b9xuDjEccDnjf+wFGSfRwj/h2e41w+1LNz2wr0ey3pn9ea+4+5r9f22eKCIyMdA\npzAv/dYYM+1wNhFmWdh2OhGZDEwGKCwsPOwalWprRIQOKR3okNKBoR2HHnRdf8BPjb+GGl8N1f5q\nvA1efAGfNQV91Afq9z6vD9TjD/ppCDZgjCFgAgRNkIAJ/Oh50AT3TgHzQxcze5rhTZiPeeMm+sav\n75kP+3qjzexdr/F74/DGpLz0PFv22+KBYow5qZmbKAUKGj3PB7YcYF+PAY+BdQ2lmftVSmF1YJnl\nzCIrKcvuUlSUi4UGzvlATxEpFpEE4BLgbZtrUkoptR9bA0VEzhORUmA08K6IfBBa3kVEZgAYYxqA\nm4APgJXAK8aY5XbVrJRSKjy77/J6E3gzzPItwIRGz2cAM1qxNKWUUkcoFpq8lFJKxQANFKWUUhGh\ngaKUUioiNFCUUkpFhAaKUkqpiIjb7utFZAewsRmbyAHKI1ROrGhrx9zWjhf0mNuK5hxzV2NMh6a8\nMW4DpblEZEFTe9yMVW3tmNva8YIec1th1zFrk5dSSqmI0EBRSikVERooB/aY3QXYoK0dc1s7XtBj\nbitsOWa9hqKUUioi9AxFKaVURMR8oIjIaSLynYisFZHfhHk9UUReDr0+V0SKGr12e2j5dyJy6qG2\nGepCf66IrAltM6Gp+4jXYxaRk0VkoYgsDT2eGO/H3Oh9hSJSIyK3xfvxishAEZktIstD/9dJ8XzM\nIuIWkadDx7pSRG5v7vFG0TEfKyLfiEiDiEzcb/9XhdZfIyJXHfKAjDExOwFO4HugG5AALAb67rfO\njcC/QvOXAC+H5vuG1k8EikPbcR5sm8ArwCWh+X8BNzRlH3F+zEcDXULz/YHN8f7/3KiG14FXgdvi\n+XixeilfAgwKPc8m/n+uLwVeCs2nABuAojg55iJgIPAMMLHRvtsD60KPWaH5rIMeU3M/7HZOWOOo\nfNDo+e3A7fut8wEwutEHoRxrWOF91t2z3oG2GXpPOeDaf99Huo94Pub96hCgAkiM92MGzgX+F7iD\n5gdKVB8v1tASz7Wxz/Ik4J3QsmxgNdA+Ho650bpPsW+gTAIebfT8UWDSwY4p1pu88oCSRs9LQ8vC\nrmOswbqqsH4gDvTeAy3PBipD29h/X0e6j+aI9mNu7ALgW2NM/REd4Y9F9TGLSCrwa+DOJh/hAY4l\nTA0/WseG/+NegBGRD0JNJf/d5CMNczxh6vjROjYc82tALVAGbAL+aozZ2bRD/fHxhKnjR+u04DE3\np7592DrAVgRImGX737Z2oHUOtDxcyB5s/absozmi/ZitF0X6AfcCp4RZ70hF+zHfCTxojKkRCbfK\nEYv243UBY4HhgAeYKSILjTEzw6x/uKL9mEcAAaALVvPPFyLysTFmXZj1D1e0HPOBHPF7Yv0MpRQo\naPQ8H9hyoHVExAW0A3Ye5L0HWl4OZIa2sf++jnQfzRHtx4yI5GONxHmlMeb7Jh5n2OMJU8eP1rHh\nmEcC94nIBuAWYKqI3NS0Q913P2Fq+NE6Nv1cf2aMKTfGeLBGUx3SxGP90fGEqeNH69hwzJcC7xtj\n/MaY7cBXQHO7NomWY25OffuKZDtoa09Yfymtw7ootecCVL/91vkZ+17UeiU03499L2qtw7qgdcBt\nYl1wbXxR68am7CPOjzkz9P4L2sr/83513EHzr6FE9fFi/YX+DdbFaRfwMXBGnB/zr4H/YP3Vngqs\nAAbGwzE32tdT/Pii/PrQ/3dWaP6g141sDYRITFgXCFdj3dnw29Cyu4CzQ/NJoX/ItcA8oFuj9/42\n9L7vgNMPts3Q8m6hbawNbTOxqfuI12MGfofV1ryo0ZQbz8e8X5130MxAiYXjBS4HlgPLgPvawM91\nWmj5cqww+VUcHfNwrLORWqybaJY3es9PQuuvBa451PHoN+WVUkpFRKxfQ1FKKRUlNFCUUkpFhAaK\nUkqpiNBAUUopFREaKEoppSJCA0UppVREaKAopZSKCA0U1aaJSEBEFonIMhF5R0Qy7a6pMRH5OvSY\nKSI3NnNbGyJSlFIHoIGi2jqvMWawMaY/Vh9JP7O7oMaMMceEZjOxxsZQKmppoCj1g9mEuucWkbfE\nGnFyuYhM3rOCiBSJyLJGz28TkTtCy1eJyOOhs53nReQkEfkqNNrdiND614fOiBaJyHoR+TS0/HIR\nmRda/qiIOEPLa0K7ugfoHnr9fw90ACKSISLfhur2hNafIyIOYEek/8GUakwDRSkg9At8PPB2aNFP\njDFDsXqUnSIi+4/1Ek4P4CGs0e+OwuqhdixwGzAVwBjzL2PMYH7oP+kBEekDXAyMCb0WAC7bb9u/\nAb4PnU396kAFGGN2G2OOBq4BPgqtP8oYEzTGDD+MY1CqyWJ9PBSlmitZRBZhDYO6EPgotHyKiJwX\nmi8AemJ1nHcw640xSwFEZDkw0xhjRGRpaPuNPQR8Yox5J9TV/VBgfmg8lWRge7OOyhp+eXkzt6HU\nEdFAUW2d1xgzWETaAdOBn4nIEuAkrKFXPSIyC6vXV4AG9j2zT2o033hkymCj50EafdZE5GqgK7Bn\nzBQBnjbG3B6RI7L0xepiXqlWo01eSgHGmCpgClbzVDtgVyhMjgJGNVp1G5ArItkikgiceST7EZGh\noX1cbowJhhbPBCaKSG5onfYi0nW/t1YD6ftta6aIHGhI1i7A1iOpTanm0kBRKsQY8y3WgESZgCt0\npvInYE6jdfxY41XMxTqjWXWEu7kJa+CiT0MXzB83xqzAGkfmw9A+PwI671dbBfBV6IL//4Yusvcg\nNEpmGB8AT4jIcUdYn1JNpuOhKBWDRKQ/1o0Dt9pdi1J7aKAopZSKCG3yUkopFREaKEoppSJCA0Up\npVREaKAopZSKCA0UpZRSEaGBopRSKiI0UJRSSkWEBopSSqmI+H+4djkrJmx4QQAAAABJRU5ErkJg\ngg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x28b6e8df828>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from scipy.integrate import odeint\n",
"t = 1033. # K\n",
"r = 8.314/1000. # J / (mol K) [=] 8.314 kPa / (mol K)\n",
"# Angeblich sollen die Einheiten der Geschwindigkeitskonstante \n",
"# kg h^{-1} L^{-1}, was aber nicht Sinn ergibt, denn sind die kg\n",
"# in der zweiten Konstante auch kg? Wenn so, sind es kg von B oder\n",
"# D? Es wäre verständlicher, mit Einheiten kgmol h^{-1} L^{-1}\n",
"k1 = 14.96E+06 * np.exp(15200./t) # kgmol h^{-1} L^{-1}\n",
"k2 = -8.67E+06 * np.exp(15200./t) # kgmol h^{-1} L^{-1}\n",
"kp1 = 0.312 # \n",
"kp2 = 0.480 # \n",
"def eq_set(y, t):\n",
" pb, pd, pt, ph = y\n",
" res = np.empty(4, dtype=np.float)\n",
" res[0] = r * t * (\n",
" -2 * k1 * (pb**2 - pd*ph/kp1) + \n",
" -1 * k2 * (pb*pd - pt*ph/kp2))\n",
" res[1] = r * t * (\n",
" +1 * k1 * (pb**2 - pd*ph/kp1) +\n",
" -1 * k2 * (pb*pd - pt*ph/kp2))\n",
" res[2] = r * t * (\n",
" +1 * k2 * (pb*pd - pt*ph/kp2))\n",
" res[3] = r * t * (\n",
" +1 * k1 * (pb**2 - pd*ph/kp1) + \n",
" +1 * k2 * (pb*pd - pt*ph/kp2))\n",
" return res\n",
"t = np.arange(0, 0.00001, 0.00000001)\n",
"y0 = np.array([1.0, 0, 0, 0])\n",
"y = odeint(eq_set, y0, t)\n",
"plt.plot(t, y)\n",
"plt.legend(['B', 'D', 'T', 'H'])\n",
"plt.xlabel('Raumzeit, $\\\\tau$' + \"'\")\n",
"plt.ylabel('$p_i$');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ü 5.9\n",
"Eine Reaktion 1. Ordnung mit $\\epsilon_A=0$ wird in einem Kreislaufreaktor durchgeführt, $k \\tau = 5$. Welche Umsätze resultieren für ein Kreislaufverhältnis von 0, 5, 10 und $\\infty$?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"Rückvermischung.jpg\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Lösung**\n",
"\n",
"Raumzeit (hydrodynamische Verweilzeit). Sie gibt definitionsgemäß das Verhältnis des Reaktionsvolumens zum volumetrischen **Zulauf**strom an.\n",
"\n",
"$\\tau = \\frac{V_R}{\\dot V_0}$\n",
"\n",
"Reaktion 1. Ordnung\n",
"\n",
"$A \\rightarrow Produkte...\\hspace{10mm} r_1 = k c_A$\n",
"\n",
"$\\nu_{A1}=-1$\n",
"\n",
"Stoffbilanz am Reaktor Ausgangsstrom:\n",
"\n",
"$\\frac{d \\dot{n}_{A,2}}{d V} = \\nu_{A1}r_1$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*Allgemeiner Umsatz*\n",
"\n",
"$U_A = \\frac{\\dot n_{A,0} - \\dot n_A}{\\dot n_{A,0}}=1-\\frac{\\dot n_A}{\\dot n_{A,0}}=1-\\left(\\frac{c_A}{c_{A,0}}\\right)\\left(\\frac{\\dot V}{\\dot V_0}\\right)$\n",
"\n",
"$\\rightarrow \\dot n_A = \\dot n_{A0}(1-U_A)$\n",
"\n",
"*Allgemeine Stoffbilanzen*\n",
"\n",
"$\\begin{array}{ll}\n",
"\\dot n_A &= \\dot n_{A,0} + \\nu_{A1}\\xi_1 \\hspace{10mm} \\rightarrow \\xi_1 = \\frac{\\dot n_A}{(-\\nu_{A1})}U_A\\\\\n",
"\\dot n &= \\dot n_0 + (\\sum_j \\nu_{j1})\\xi_1\\\\\n",
"&= \\dot n_0 + \\left(\\frac{\\sum_j \\nu_{j1}}{-\\nu_A}\\right)\\dot n_{A0} U_A\\\\\n",
"&= \\dot n_0 \\left(1+\\left(\\frac{\\sum_j \\nu_{j1}}{-\\nu_A}\\right) x_{A0} U_A \\right)\\\\\n",
"&= \\dot n_0 \\left(1+\\epsilon_A x_{A0} U_A \\right)\\\\\n",
"\\end{array}$\n",
"\n",
"*Innerliche Stoffblianzen*\n",
"\n",
"$\\begin{array}{ll}\n",
"\\dot n_{A2} &= \\dot n_A + \\dot n_{Ar}\\\\\n",
"&= (R+1)\\dot n_A\\\\\n",
"\\dot n_{A1} &= \\dot n_{A0} + \\dot n_{Ar}\\\\\n",
"\\end{array}$\n",
"\n",
"*Volumenänderung*\n",
"\n",
"$\\frac{P \\dot V}{\\dot n R T}=Z$\n",
"\n",
"$\\frac{P \\dot V}{Z R T} = \\frac{P_0 \\dot V_0}{Z_0 R T_0}\\left(1+\\epsilon_A x_{A0} U_A \\right)$\n",
"\n",
"$\\require{cancel}$\n",
"$\\dot V = \\dot V_0 \\left(1+\\epsilon_A x_{A0} U_A \\right)\\times \\cancelto{1}{ \\frac{P_0}{P}}\\cancelto{1}{\\frac{T}{T_0}}\\cancelto{1}{\\frac{Z}{Z_0}}$ (I. G.)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADnVJREFUeJzt3X+MZWV9x/HPZyG4uyxpGvhnV5Zc\nqN1VQQrZxkTN1mm6SX9Mt9AapUvVWJuyldaoXSWDaeKGaBxjN63GqtDa0lhRDJEEHNKqxFHSpkXH\nIooUBDoVC2g1oFuQH+5++8c5Uy7z3J0598e5zzln3q9ksjtnz579zp1nPvs95zznuY4IAUC/TbkL\nANA8BAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEw\nAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEA\nIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOA\nBMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAAS\nBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIHFy7gI2\nMttvlfSTiLja9n5Je/r++IikHZIO9G27OSKWbB/u23ZvRFxn+1JJu1Y2RsRh23sk7e/b95OSHpJ0\nqG/bUkTcbPugpO3ltqMRccT2jKSZvn2vKX+9rG/bYkQs2j4k6bRy28NN+JqEkTkictewYdk+HBGH\nc9fRRbYPRsTVuetoK04l8jqau4AO277+LjgRgiGjiDiSuwZgEIIho/IcHvWgGxsDwZDXTO4Cuopu\nbDwEAzqJbmw8BAO6aiZ3AW1GMOR1zfq7ANNHMABIEAx5Xbb+LhgR3dgYCAYACYIBXUU3NgaCIa/F\n3AUAgxAMGUXEYu4agEEIhozKR5VRj8XcBbQZwZDXaevvglHQjY0nezDYvtH2u23fZvsR2/ty14T2\nq7sb6/q4zR4Mks6T9FhE7JV0uaTfy1zPND2cu4AOq7sb6/S4zRoMtrdK+hlJf1FuOlnSY31/fv1K\n8ts+1fbf2/5r2534JrDCUDsNOW7Psf0x2zdMv9LR5e4YzlWxPt+x8vPzJX1TkmxfJOmz5TZJ+h1J\nN0TEH0r6rWkXWodyTUTUo85urPK4jYgHIuIPaqylFrmD4TxJd/R9fr6kO21vlvTqiPi4imSWpDMl\nPVj+/pi6Yc/6u2AUNXdjw4zbVsodDC/Rc1/g81Qk7zskbbP9UUnn2t4i6bsqwkHKXzcaruZubJhx\n20pZl4+PiD9d9fk5ts+S1IuIiyXJ9rtUJPJnJH3I9qwklgbHevaopnEyzLi1fZ+k90i60PaVEfHe\nOmqaNJaPz8j2aRHB2oQ1YGn+8dCS57UjdwHAIARDXgfW3wUjYjHYMRAM6Cq6sTEQDOgqurExEAx5\ncXcFjUQwZBQRS7lrAAbJ/azEC2x/Y9W259n+T9svzlXXtKx663dMVm3d2EYYt1knOEl6QNJO25si\n4ni57TJJX4qIb2Wsa8PrzS1skvQrkl4p6UJJp6uYin6/pK9Kuml5fnY5W4HrqLkb6/y4zT7Byfad\nki6OiAfKKaR3S5qJiOWshU1BEyfh9OYWrGKQXyHpnDV2PS7pFklzy/Ozd02jtmHU/dp2fdw24RrD\n3ZJeWP7+jyXd1JUXt4J7cxfQrze3sEPSrZI+qrVDQSrGzm9KWurNLVxRd20N1Olx25Rg2G17m4oX\n+D1dXHthkIi4LncNK3pzCzsl/bOkXx7yrz5P0vt6cwsfnHxVjTZo3LZy7YVBmhIML5T0FkmfiIjv\nqYNrLwxi+9LcNUhSb27hFBUX63pjHObNvbmFN0+moomouxtLxm1b114YpCnB8FJJb5T0/nJbF9de\nGGRX7gJKfybpFyZwnPne3MILJnCcsU2hGxs0bjujCcFwj4rn26+JiB+V21h7YUp6cwunq1hHYBK2\nqgiZ7KbQjQ0at52R/YcuIp6KiJMj4n19mz8j6VW2PyJmB/4/21vL6y5X2X6N7XNtnzLmYX9f0uZJ\n1Fe6pAyb3GrtxgaNW9unl4u0XGj7ymGPaXtveW3tLbb32d5h2xMtvKLc8xgGiojHVQzYThvhdtqZ\nkl6n4vv2uCRL2mL7EUl3SbpdxUpCd0n6dkQ8XeGYvzFkDevZrOICZusvwA0rIn4o6Y/GOMQlkl4v\n6TWSnlJxYTds369ixaivqvjefkvSw1HjXINs8xhsX5XlH26W7Rpu0dLTVQTDiZZGP6a+wJC0ZmCU\ncxYe1YTXJ/zx7Tfe8OgXP3b3JI85gldK+lLmGob165J+cY0/f1J9gaFislktgZEzGJ5RQzuWDhoY\nGD5ly9d3vvXTV0y6W33wAweeOP7k0a0TPSjWcqLA+ERE/OMoB8z5g8mactNzkqRTVYTD0yo6leNx\n7Bm+B92wWcXP01OStkk6W8XM1NtGPWDOYLhVDbj4mdnPqUj3qk5VcVtx2xr7rHQHm1QMmIckfUPS\nV/Ts6cT9EfFMb27hJEk/VnE3YWK27nrZ1/73zs89McljjmDY17YJXiRp5zr7/ERFuG+W9FMVX+PX\nJC2pOJW4S9L3xz2dyP6sxEZme3dE3DPE/rtUtIhbNEQArHXM3tzCv0h62UhfwIm9bnl+9h8mfMyh\nNPE5lPXY/pCKWZTSlALgRDjHz+uhIff/vqSvS/qhhgyANdyqyQbDcbXvol9TLEraqykGwIlk7xhs\nv1/S9yLiz8vPV66U74iIsdtR278m6QMqzrP/JiLmxz3mpDThf7Xe3MJZKh4jPmlCh7xpeX72ogkd\na2TDdmMjHL/WcZtbE87xz5N0Z9/nZ0v6nwmFwkmS/krFbaAXSzrQlYU0JmV5fvY7kq6d0OGOqXhz\nlSYYthsbVm3jtgmaEAwv0XNf4PNXfT6Ol0q6r3y45WlJn5KU/X+zBjqkYhr6uI4sz8/ePoHjTMKh\nmo9f57jNLvfSbj8r6ZSIeKRvc6UX2PZttu8Y8LGvb7fn69mHsaRi8D9/IsVPRiPWfFyen/2RpIsl\njTPn/xY15DmJuo0zbtsid8ewOnWlVS+w7ettJ+kfEXsj4oIBH1/o223QzJ3G3IaJiMY8B7I8P7uk\nYirzAyP89b+T9NvL87OjXgBtm6HGbRvXacgdDLvVd6/Z9iZJr1A5McP2RZI+q+JFf46KHcN39dz7\nwmeq/nPPymwfzF1Dv+X52X9X8Vr/pYrbZev5tqT9y/Ozb1yen63yXMY01dmNDTVu27hOQ+7blf8l\n6U22N0fEk5LeKenLEfED25slvToiXmv7Vav/YkTsrXD8r0j6edtnS/pvSb8rqRGLo5S25y5gteX5\n2cclva03t3CViucyfknFYrBn6Nn76UuSbpT0+eX52cZ0YP1q7sZGHrdtkTUYIuJztn9V0n/YfkrS\nv+rZp9PeIWlb+Rjruba3RESV/8X6j/9T238i6Z9U3I7724ho3MKlTbQ8P/uopA+WH7K9KEkRMZOv\nqupsH4yIq+s4dt3jtglydwyKiENadQXZ9lmSehFxcfn5u1S0Zf82wvFvUXFhrImO5i6gw2rtxoYZ\nt7bvU3Eb90LbV0bEe+usbRKyT3BCO9h+uyStTOhpuiZMHmuz7B3DRmZ7JiIWc9dRRVsCoQ/d2Bhy\n35XY6GZyF9BVEXEkdw1tRjCgEtuLKxcg28D2TO4a2oxgQFfN5C6gzQiGvK7JXQAwCMEAIEEw5HVZ\n7gI6jG5sDNyuRFWfzl0ApoeOAZVExIcj4sO56xgC3dgYCIa8FnMXUFX59ni8V8QGwalERm2Z9Vha\ned5kJmcRmA46howGLUCDiVnMXUCbEQx5neg9KDGmlnVjjUMwoJPoxsZDMOQ1zDtdYzh0Y2Pg4mNG\nda0wVJNrcxeA6SEYMrK9v0krRa8lIq7NXcOQ6MbGwKlEXntyF1CV7TNsn5G7jqpa1o01DsGAqm4o\nP1rB9v7cNbQZwYCuak031kQEQ14sP4ZGIhjy2pG7AGAQgiGvA7kL6DC6sTFwuxJVfSR3AUPaIeme\n3EW0FR0DKomI6yPi+tx1DIFubAwEQ16tmNwkSbZ32t65/p7oAk4lMoqIOt+qfdI+Xv46k7MITAcd\nQ0a2D+euocNa0401EcGATmpZN9Y4BAM6iW5sPFxjyGzVAF55L4T+FY4XI2KxXHhkZY2BhyPi6vJ5\ngP6pv0dU3KbrvyJ/c0Qsrfp37o2I62xfKmnXysaIOGx7j6T+5ww+KekhSb2+epci4mbbByVtL/c7\nGhFHyveMnGnA1/SYMDJHRO4a0AIrDyW15TFxjIdgAJDgGgMqsb3b9u7cdWA66BhQie1FSYqImbyV\nYBroGAAkCAYACYIBQIJgAJBgghOqenfuAjA93JUAkOBUApXYvsD2BbnrwHTQMaAS5jFsLHQMABIE\nA4AEwQAgQTAASDCPAVW9M3cBmB7uSgBIcCqBSmy/3PbLc9eB6aBjQCXMY9hY6BgAJAgGAAmCAUCC\nYACQ4OIjKll5sjIi7shdC+pHMABIcCqBSmzvs70vdx2YDjoGVMI8ho2FjgFAgmAAkCAYACQIBgAJ\nLj6ikpV3uo6Ie3LXgvoRDAASnEqgEtv7be/PXQemg44BlTCPYWOhYwCQIBgAJAgGAAmCAUCCi4+o\nxPZOSYqIB3PXgvoRDAASnEqgEtuX2L4kdx2YDjoGVMI8ho2FjgFAgmAAkCAYACQIBgAJLj6iEttn\nSFJE/CB3LagfwQAgwakEKrH9BttvyF0HpoOOAZUwj2FjoWMAkCAYACQIBgAJggFAgouPqMT2VkmK\niCdy14L6EQwAEpxKoBLbl9u+PHcdmA46BlTCPIaNhY4BQIJgAJAgGAAkCAYACS4+AkjQMQBIEAwA\nEgQDgATBACBBMABIEAwAEgQDgATBACBBMABIEAwAEgQDgATBACBBMABIEAwAEgQDgATBACBBMABI\nEAwAEgQDgATBACBBMABIEAwAEgQDgMT/AW34wvEqdFKdAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x28b6e8bfb38>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"patch1 = matplotlib.patches.Circle(\n",
" [0.5,0.5],0.05\n",
")\n",
"patch2 = matplotlib.patches.Rectangle(\n",
" [0.3,0.3],0.4, 0.4, alpha=0.5, \n",
" fill=False, edgecolor='black',\n",
" linestyle = '--'\n",
")\n",
"arrow1 = matplotlib.patches.Arrow(\n",
" 0, 0.5,0.45,0, width=0.05,\n",
" color='black'\n",
")\n",
"arrow2 = matplotlib.patches.Arrow(\n",
" 0.55, 0.5,0.45,0, width=0.05,\n",
" color='black'\n",
")\n",
"line1 = matplotlib.lines.Line2D(\n",
" [0.5,0.5], [0,0.45],\n",
" linestyle='--', color='black'\n",
")\n",
"text1 = matplotlib.text.Text(\n",
" 0, 0.45, '$n_{A0}$\\n$V_0$\\n$U_A=0$'\n",
")\n",
"text2 = matplotlib.text.Text(\n",
" 0.8, 0.45, '$n_{A1}$\\n$V_1$\\n$U_{A1}$'\n",
")\n",
"for artist in [\n",
" patch1,patch2,arrow1,arrow2,\n",
" line1,text1,text2\n",
"]:\n",
" ax.add_artist(artist)\n",
"ax.set_frame_on(False)\n",
"ax.set_axis_off()\n",
"ax.set_aspect(1.0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Umsatz am Knotenpunkt # 1.\n",
"\n",
"In folgender Weise wird der Umsatz 1 definiert. Definitionsgemäß nimmt er nur den Speisestrom und den Reaktoreneintrittstrom in Acht, ohne irgendeiner Absicht auf den Rücklaufstrom.\n",
"\n",
"$U_{A1} = \\frac{\\dot n_{A0} - \\dot n_{A1}}{\\dot n_{A0}} = 1 - \\frac{\\dot n_{A1}}{\\dot n_{A0}} = 1- \\frac{c_{A1}}{c_{A0}} \\left(\\frac{\\dot V_1}{\\dot V_0} \\right)$\n",
"\n",
"$\\dot V_1 = \\dot V_0(1+\\epsilon_A x_{A0}U_{A1})$\n",
"\n",
"$U_{A1} = 1-\\frac{c_{A1}}{c_{A0}}(1+\\epsilon_A x_{A0}U_{A1})$ \n",
"\n",
"$\\begin{array}{lll}\\Rightarrow & U_{A1} & = \\frac{1-c_{A1}/c_{A0}}{1+\\epsilon_A x_{A0}c_{A1}/c_{A0}}\\\\ & c_{A1} & =\\left(\\frac{1-U_{A1}}{1+\\epsilon_A x_{A0}U_{A1}}\\right)c_{A0}\\end{array}$"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAD55JREFUeJzt3X+s3fVdx/HXq9TSlpJpiMnaUXJB\nfklLpVbRxdRdI4m6KxZd2CxzJmKkbnMy10AuxoSGbNldZp0jM0LnpmbChiEjAS7RTeJlxEXZOlkZ\nVBh0dz/kx+YEVmAUaN/+8f0ee3o+p/f8/J7P95w+H8kNPd977pf3PfdzX/d9vp/v9/N1RAgAmi3L\nXQCA+iEYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJ\nggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQI\nBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAY\nACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAA\nkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgCJ5bkL\nOJHZfq+kH0bEzbYvlbSl6dO7Ja2TtL1p210Rsdf2rqZtj0XErbavkHRuY2NE7LK9RdKlTc/9tKQn\nJe1s2rY3Iu6yvUPS2nLbwYjYbXta0nTTc/eU/72qadtCRCzY3inp1HLbU3X4noS+OSJy13DCsr0r\nInblrmMS2d4RETfnrmNc8VYir4O5C5hgazs/BcdDMGQUEbtz1wC0QzBkVL6HRzXoxgZAMOQ1nbuA\nSUU3NhiCAROJbmwwBAMm1XTuAsYZwZDXns5PAUaPYACQIBjyuqrzU9AnurEBEAwAEgQDJhXd2AAI\nhrwWchcAtEMwZBQRC7lrANohGDIqL1VGNRZyFzDOCIa8Tu38FPSDbmww2YPB9h2232/7fttP274k\nd00Yf1V3Y5M+brMHg6SNkp6LiK2S3iXp7ZnrGaWnchcwwaruxiZ63GYNBturJb1O0kfKTcslPdf0\n+dsayW/7FNt/b/vjtifih8AKQ+Opx3F7lu1P2L599JX2L3fHsEHF+nyHy8ebJH1Nkmxvk3R3uU2S\nfkvS7RHxB5J+Y9SFVqFcExHVqLIb63rcRsSBiPj9CmupRO5g2CjpwabHmyTts71S0uUR8SkVySxJ\np0v6dvnvw5oMWzo/Bf2ouBvrZdyOpdzBcKGOfYE3qkjeayStsX2TpA22V0n6jopwkPLXjZqruBvr\nZdyOpazLx0fE+1oen2X7DElTEXGZJNm+XkUif1bSx2zPSGJpcHSyRRWNk17Gre3HJX1A0mbb10XE\nB6uoadhYPj4j26dGBGsTVoCl+QdDS57XutwFAO0QDHlt7/wU9InFYAdAMGBS0Y0NgGDApKIbGwDB\nkBezK6glgiGjiNibuwagndzXSpxt+6GWbSfb/obtC3LVNSott37HcFXWjZ0I4zbrCU6SDkhab3tZ\nRBwpt10l6b6IeCRjXSe8qdn5ZZJ+WdKbJG2WdJqKU9GfkPRlSXcuzs0sZiuwg4q7sYkft9lPcLK9\nT9JlEXGgPIV0v6TpiFjMWtgI1PEknKnZeasY5NdKOmuJpx6RdI+k2cW5mYdHUVsvqn5tJ33c1uEY\nw35J55f/frekOyflxe3CY7kLaDY1O79O0r2SbtLSoSAVY+fXJe2dmp2/turaamiix21dguE822tU\nvMAfmMS1F9qJiFtz19AwNTu/XtK/SfqlHr/0ZEkfmpqdv3H4VdVau3E7lmsvtFOXYDhf0tWSbomI\nZzSBay+0Y/uK3DVI0tTs/AoVB+umBtjNe6Zm598znIqGoupuLBm347r2Qjt1CYaLJV0p6cPltklc\ne6Gdc3MXUPozST81hP3MTc3Onz2E/QxsBN1Yu3E7MeoQDI+quL59T0Q8X25j7YURmZqdP03FOgLD\nsFpFyGQ3gm6s3bidGNl/6SLiUEQsj4gPNW3+rKS32P5rcXbg/7O9ujzucoPtt9reYHvFgLv9PUkr\nh1Ff6W1l2ORWaTfWbtzaPq1cpGWz7et63aftreWxtattX2J7nW0PtfAu5T6Poa2IeFHFgJ1ofUyn\nnS7pHSp+bi9KsqRVtp+W9LCkB1SsJPSwpK9HxCtd7PPNPdbQyUoVBzDH/gBcryLi+5L+cIBdvE3S\n70p6q6RDKg7shu0nVKwY9WUVP9tHJD0VFZ5rkO08Bts3ZPkf18ta9bZo6WkqguF4S6MfVlNgSFoy\nMMpzFp7VkNcn/MEDd9z+7L9+Yv8w99mHN0m6L3MNvfo1ST+zxOdfVlNgqDjZrJLAyBkMr6qmHcsE\nahsYXrHqq+vf+4/XDrtb/fZHt7905OWDq4e6UyzleIFxS0T8Uz87zPmLyZpyo3OSpFNUhMMrKjqV\nI3H4VX4Gk2Glit+nQ5LWSDpTxZmp9/e7w5zBcK9qcPAzs59Qke7dOkXFtOKaJZ7T6A6WqRgwT0p6\nSNKXdPTtxBMR8erU7PxJkn6gYjZhaFaf+8avvLDvcy8Nc5996PW1rYOflLS+w3N+qCLcV0p6TcX3\n+BVJe1W8lXhY0ncHfTuR/VqJE5nt8yLi0R6ef66KFnGVegiApfY5NTv/RUlv7OsbOL53LM7N/MOQ\n99mTOl6H0ontj6k4i1IaUQAcD+/x83qyx+d/V9JXJX1fPQbAEu7VcIPhiMbvoF9dLEjaqhEGwPFk\n7xhsf1jSMxHx5+XjxpHydRExcDtq+1clfVTF++y/iYi5Qfc5LHX4qzY1O3+GisuITxrSLu9cnJvZ\nNqR99a3XbqyP/Vc6bnOrw3v8jZL2NT0+U9L3hhQKJ0n6KxXTQBdI2j4pC2kMy+LczLck/d2QdndY\nxc1V6qDXbqxXlY3bOqhDMFyoY1/gTS2PB3GxpMfLi1tekfQZSdn/mtXQThWnoQ9q9+LczAND2M8w\n7Kx4/1WO2+xyL+32Y5JWRMTTTZu7eoFt32/7wTYflzQ97Q06ejGWVAz+Nwyl+OGoxZqPi3Mzz0u6\nTNIg5/zfo5pcJ1G1QcbtuMjdMbSmrtTyAtu+zXaS/hGxNSIuavPxL01Pa3fmTm2mYSKiNteBLM7N\n7FVxKvOBPr78byX95uLcTL8HQMdNT+N2HNdpyB0M56lprtn2Mkm/oPLEDNvbJN2t4kU/Rpcdw3d0\n7Lzw6ar+vWfXbO/IXUOzxbmZ/1TxWv+liumyTr4u6dLFuZkrF+dmurkuY5Sq7MZ6GrfjuE5D7unK\nb0p6p+2VEfGypD+V9IWI+B/bKyVdHhG/Y/strV8YEVu72P+XJJ1j+0xJ/y3ptyXVYnGU0trcBbRa\nnJt5UdKfTM3O36DiuoxflLT5tRf+98eXrVj96rIVK59Q8Ut3h6TPL87N1KYDa1ZxN9b3uB0XWYMh\nIj5n+1ck/ZftQ5L+XUevTrtG0pryMtYNtldFRDd/xZr3/5rtP5L0zyqm4z4ZEbVbuLSOFudmnpV0\nY/kh2/sl/UVEfDxrYV2yvSMibq5i31WP2zrI3TEoInaq5Qiy7TMkTUXEZeXj61W0Zf/Rx/7vUXFg\nrI4O5i6gG+W079mSLspdSw8q7cZ6Gbe2H1cxjbvZ9nUR8cEqaxuG7Cc4of5sn63ieMIDEfFzuevp\nRh1OHhtnuQ8+ntBsT+euoUsbVFzaW5c1KrsxFt1YXREMeU3nLqBLF6i8dNv2j+YuphsRsTt3DeOM\nYEA3Lpb0I5JeUhEStTdG3VgtEQzoRuM8kuUq3laMg+ncBYwzgiGvPbkL6KSckWicJNZYKAYTjmBA\nJ2eqWDCk4WdzFYLRIRjyuip3AV3YoGIFoYZxmZmofTdWZwQDOrlAx64JOTYzE+gfwYBOGjMSDeMy\nMzEO3VhtEQx5LeQuoAutV7aO08wE+kQwZBQRC7lrWErLjEQDMxMnAIIho3YL0NRM64xEwzjMTCzk\nLmCcEQx5He8elHXROiPRUPuZibp3Y3VHMGAprTMSDbWfmRiDbqzWCIa8ernTdQ6tMxIN4zAzUfdu\nrNYIhoyqWmFoiJK1NkvMTEw4giEj25fmrqGDI+VHY/XnQ+XjUzS8O1dVpe7dWK0RDHltyV1AB+er\nuIHuN8vHr0l6p6STJdW62xmDbqzWCAYcV0QcLu/g1bz+32sR8cqob7LaqzHoxmqNYMCkqns3VmsE\nQ14sP4ZaIhjyWpe7AKAdgiGv7bkLmGB0YwMgGDCp6MYGQDBgUtGNDYBgyKvKG68CfSMYMoqIKm/V\nDvSNYMjI9q7cNUwwurEBEAyYSHRjgyEYMJHoxgazPHcBJ7qWAdy4F0LzCscLEbFQLjzSWGPgqYi4\nubweoPnU390qpumaj8jfFRF7W/4/j0XErbavUNNqTBGxy/YWSc3XGXxaR/+ArJC0zfb3IuIu2zsk\nrS0/dzAidpf3jJyuwff0nNA31/xaGNSA7ccknSPpRUl/HBGfzFwSKsZbCQAJggFAgmAAkCAYACQI\nBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAYACQIBgAJggFAgmAAkCAY\nACQIBlTK9h2232/7fttP274kd03ojGBA1TZKei4itkp6l6S3Z64HXSAYUBnbqyW9TtJHyk3L1XS/\nB9u3lfeWaP06j6ZCHA/BgCptkLQ3Ig6XjzdJ+pok2d4m6e5ym2y/3vYXbc9Ken2OYnEUwYAqbZT0\nYNPjTZL22V4p6fKI+JSKjkKSNkv6TETMRcRTI64TLQgGVOlCHRsMG1V0DNdIWmP7JkkbbK+SdJGk\nz4++RLTDvStRmYh4X8vjs2yfIWkqIi6TJNvXq+gkzpH06OirRDvcuxIdce/KEw9vJQAkCAYACYIB\nQIJgAJAgGAAkCAYACYIBlbF9tu2HWradbPsbti/IVRc6IxhQpQOS1ttuHmdXSbovIh7JVBO6wJmP\nqExEHLH9LUlTkg6Upz7vlDSdsy50RseAqu2XdH7573dLujMiFvOVg27QMaBq+yWdZ/sLKoLh55s/\nadvBefm1Q8eAqjU6hqsl3RIRz7D2Qv3RMaBq+yXNSrpE0k+X2xprL9yYrSosiY4BVXtUxboMeyLi\n+XIbay/UHB0DKhURh5SOM9ZeqDmCASMXEVfmrgFL460EgATBACBBMABIEAwAEgQDgATBACBBMABI\nEAwAEgQDgATBACBBMABIEAwAEgQDgATBACBBMABIEAwAEgQDgATBACBBMKAbhyS9IOkkSa9mrgUj\nYO71AaAVHQOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEA\nIEEwAEgQDAASBAOABMEAIEEwAEgQDAASBAOABMEAIEEwAEj8H47ZyH4Uac9AAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x28b6ea4a048>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"patch1 = matplotlib.patches.Circle(\n",
" [0.5,0.5],0.05\n",
")\n",
"patch2 = matplotlib.patches.Rectangle(\n",
" [0.3,0.3],0.4, 0.4, alpha=0.5, \n",
" fill=False, edgecolor='black',\n",
" linestyle = '--'\n",
")\n",
"arrow1 = matplotlib.patches.Arrow(\n",
" 0, 0.5,0.45,0, width=0.05,\n",
" color='black'\n",
")\n",
"arrow2 = matplotlib.patches.Arrow(\n",
" 0.55, 0.5,0.45,0, width=0.05,\n",
" color='black'\n",
")\n",
"arrow3 = matplotlib.patches.Arrow(\n",
" 0.5, 0.0, 0,0.45, width=0.05,\n",
" color='black'\n",
")\n",
"text1 = matplotlib.text.Text(\n",
" 0, 0.45, '$n_{A0}$\\n$V_0$\\n$U_A=0$'\n",
")\n",
"text2 = matplotlib.text.Text(\n",
" 0.8, 0.45, '$n_{A1}$\\n$V_1$\\n$U_{A1}$'\n",
")\n",
"text3 = matplotlib.text.Text(\n",
" 0.55, 0.1, '$n_{Ar}$\\n$V_r$'\n",
")\n",
"for artist in [\n",
" patch1,patch2,arrow1,arrow2,\n",
" arrow3,text1,text2,text3\n",
"]:\n",
" ax.add_artist(artist)\n",
"ax.set_frame_on(False)\n",
"ax.set_axis_off()\n",
"ax.set_aspect(1.0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Konzentration am Knotenpunkt # 1.\n",
"\n",
"$c_{A1} = \\frac{\\dot n_{A0} + \\dot n_{A1}}{\\dot V_0 + \\dot V_{ar}} = \\frac{\\dot n_{A0} + R \\dot n_{A0}(1-U_A)}{\\dot V_0 + R \\dot V_0 (1+\\epsilon_A x_{A0}U_A)}=c_{A0}\\left(\\frac{1 + R -U_A R}{1 + R+\\epsilon_A x_{A0}U_A R} \\right)$\n",
"\n",
"$\\left(\\frac{1-U_{A1}}{1+\\epsilon_A x_{A0}U_{A1}}\\right)c_{A0}=c_{A0}\\left(\\frac{1 + R -U_A R}{1 + R+\\epsilon_A x_{A0}U_A R} \\right)$\n",
"\n",
"$\\Rightarrow U_A \\frac{R}{R+1} = U_{A1}$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*Mathematisches Modell*\n",
"\n",
"$\\frac{d \\dot{n}_{A,2}}{d V} = \\nu_{A1}r_1$\n",
"\n",
"$\\begin{array}{ll}\n",
"\\frac{d \\dot{n}_{A,2}}{d V} &= \\frac{d (R+1)c_A \\dot V}{d V} = \\frac{d }{d V} \\left[ (R+1)c_A \\dot V_0 (1 + \\epsilon_A x_{A0}U_A)\\right]\\\\\n",
" &= (R+1)\\frac{d }{d (V/V_0)} \\left[c_{A0} \\left(\\frac{1-U_A}{1+\\epsilon_A x_{A0}U_A}\\right) (1 + \\epsilon_A x_{A0}U_A) \\right]\\\\\n",
" &= (R+1)c_{A0}\\frac{d (1-U_A) }{d \\tau}=-(R+1)c_{A0}\\frac{d U_A }{d \\tau} \\\\\n",
"\\Rightarrow \\int_0^\\tau \\tau &= \\tau = \\frac{-(R+1)c_{A0}}{\\nu_{A1}} \\int_{U_{A1}}^{U_{A}} \\frac{1}{r_1} d U_A = \\frac{-(R+1)c_{A0}}{\\nu_{A1}} \\int_{U_{A1}}^{U_{A}} \\frac{1}{k_1 c_{A0}\\left(\\frac{1-U_A}{1+\\epsilon_A x_{A0}U_A} \\right)} d U_A \\\\\n",
"\\frac{(-\\nu_{A1})k \\tau}{R+1} &= \\int_{U_{A1}}^{U_{A}} \\frac{1+\\epsilon_A x_{A0}U_A}{1-U_A} d U_A = \\int_{U_{A1}}^{U_{A}} \\frac{\\epsilon_A x_{A0}}{-1}d U_A + \\int_{U_{A1}}^{U_{A}} \\frac{\\epsilon_A x_{A0}+1}{1-U_A} d U_A\\\\\n",
" &= -\\epsilon_A x_{A0} U_A \\Big |_{\\frac{R}{R+1}U_A}^{U_A} - (\\epsilon_A x_{A0} +1) \\times ln (1-U_A)\\Big |_{\\frac{R}{R+1}U_A}^{U_A} \\\\\n",
" &= -\\epsilon_A x_{A0} U_A \\left(1-\\frac{R}{R+1} \\right) + (\\epsilon_A x_{A0} +1) \\times ln \\left(\\frac{1-\\frac{R}{R+1}U_A}{1-U_A} \\right) \\\\\n",
" \\\\\n",
"\\bf{\\epsilon_A} &= 0 \\\\\n",
"\\Rightarrow \\frac{(-\\nu_{A1})k \\tau}{R+1} &= ln \\left(\\frac{1 - \\frac{R}{R+1}U_A}{1-U_A}\\right)\\\\\n",
"U_A &= \\frac{1-exp((-\\nu_{A1})k\\tau/(R+1))}{\\frac{R}{R+1}-exp((-\\nu_{A1})k\\tau/(R+1))}\n",
"\\end{array}$"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"UA = ['0.993262', '0.886439', '0.863575', '0.833334']\n"
]
}
],
"source": [
"ua = [(1-np.exp((-1*-1)*5.0/(r+1)))/(r/(r+1)-np.exp((-1*-1)*5.0/(r+1))) for \n",
" r in [0., 5., 10., 1e6]]\n",
"print ('UA = ' + str(list(map(lambda x: '{0:g}'.format(x), ua))))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment