Skip to content

Instantly share code, notes, and snippets.

@santiago-salas-v
Last active December 26, 2016 04:35
Show Gist options
  • Save santiago-salas-v/a3048520231d2a1e18e52ad889184b57 to your computer and use it in GitHub Desktop.
Save santiago-salas-v/a3048520231d2a1e18e52ad889184b57 to your computer and use it in GitHub Desktop.
CO2 Equilibria
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CO2 Equilibria"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Atmospheric pressure (altitude)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$dp = -\\rho g dz$\n",
"\n",
"${{dp}\\over{dz}} = -\\rho g = -{{\\rho_0}\\over{p_0}} g p \n",
"\\text{ .. Boyle-Mariotte i.g. }p/p_0 = \\rho/\\rho_0$\n",
"\n",
"${{1}\\over{p}}{{dp}\\over{dz}} = -{{1}\\over{p_0/(\\rho_0\\times g)}} \n",
"\\equiv -{{1}\\over{H}} [=] 1/m \\text{...(Skalenhöhe)}$\n",
"\n",
"$\\int{{{1}\\over{p}}dp} = \\int{-{{1}\\over{H}}dz}$\n",
"\n",
"$ln(p) + c1 = -z/H$\n",
"\n",
"$p(z) = e^{c1} e^{-z/H}$\n",
"\n",
"$p(0) = p_0 \\rightarrow p(0) = e^{c1}e^0 = e^{c1} = p_0$\n",
"\n",
"$p(z) = p_0 e^{-z/H}$\n",
"\n",
"=============================================\n",
"\n",
"Hg: $p=\\rho g z$\n",
"\n",
"$z=760mm=0.760m, \\rho=13,595.098kg/m^3, g=9.80665m/s^2 \\rightarrow p=p_0=101325Pa$\n",
"\n",
"\n",
"N2/O2/Ar: $p=p_0 e^{-z/H}$\n",
"\n",
"$p/p_0 = 1 \\rightarrow 0 = -z/H$\n",
"\n",
"$\\lim_{p\\rightarrow 0}{p/p_0} = +\\inf$"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"delta_z=8.8 km\n",
"p_0=101325 Pa\n",
"H = 8.8 km\n",
"99.9999% of atmosphere weight: 122.2 km\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEQCAYAAACugzM1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm81nP+//HHK6citNijLIkWFFpGo3JaqGmxhEooy1gb\nM2HSjN8YGeY3GGUsMRi+RqQsoZBEnSF7JVnK1rdBRmFGxozRVK/vH+/P0ZHO6XTOdV3vz3Vdz/vt\ndm5d53Nd1/k8i3pd793cHRERkcrUiR1ARETSTYVCRESqpEIhIiJVUqEQEZEqqVCIiEiVVChERKRK\nKhQiIlIlFQoREalSSTZ/uJl1AY4CFgH/AbZ399uyeU8REcmsrBYKwJJ7LHH3BWY228wWAo2Avd39\nlizfX0REaimrXU/u/jywX1IkmgD1gMHu/hRQ38yaZ/P+IiJSe1ktFGZWDyjfTOpI4C6gQfL9V8DO\n2by/iIjUXra7njoCq81sINDU3a80s/+fPNcYWLHhG8xMuxSKiNSAu1s2fm62Zz39EPiDu0939yuT\na4+bWQ9grbt/uLE3tW3r3HOP456er0svvTR6BmVSpmLMpUzV+8qmrLUozKwFMIwNWg3uPjd5OKey\n9951F/TrB6WlsOuu2UooIiLVkbUWhbsvdfeD3X3i5r63Qwc46yw480zIcqEUEZFNSO2Cu1/9CpYv\nhzvvjJ0kKC0tjR3he5SpepSp+tKYS5nis2z3bW0uM/PyTIsWQa9eMH8+7L575GAiIilmZnieDmbX\nSrt2cP75cPrp6oISEYkl1YUC4KKL4Msv4Y9/jJ1ERKQ4pbrrqdzixdCtG7z8MrRoESmYiEiKFW3X\nU7k2beDii2HECFi7NnYaEZHikheFAmDUKKhbF66+OnYSEZHikhddT+U+/DCssXj8cejYMcfBRERS\nrOi7nso1bw433AAnngj/+lfsNCIixSGvWhTlTj4Ztt0WbropR6FERFIumy2KvCwUq1ZB+/YwYQL0\n75+jYCIiKaZCsRHPPANDh8LChbDTTjkIJiKSYioUlbj4Ynj9dZg2DSwrfzwiIvlBg9mVGDsWPv4Y\nbr01dhIRkcKV1y0KgCVLwqrtuXOhVassBhMRSTG1KKrQujVcfnkYr/jmm9hpREQKT963KCDsLHv8\n8bDbbnDddVkKJiKSYmpRbIIZ3HYbPPJIGNgWEZHMKYgWRbkXXoCjj4Z588IqbhGRYqEWRTV16RI2\nDzzxRFizJnYaEZHCUFCFAmDMGKhfPwxwi4hI7RVU11O5Tz6Bgw6CSZOgR48MBRMRSTF1PW2mXXaB\nO+8Mmwd++mnsNCIi+a0gWxTlxoyBN96ARx/VFh8iUtjUoqihK66Azz+Ha66JnUREJH8VdIsC4IMP\noHNnuO8+6N49Yz9WRCRV1KKohd13D+MVw4bBihWx04iI5J+CLxQAffvCaafBCSfA2rWx04iI5Jei\nKBQAl14KdeqEX0VEpPoKfoyiopUroUMHuOUW6NcvK7cQEYlCJ9xl0HPPwbHHwksvwR57ZO02IiI5\npcHsDDr0UBg9GgYP1vkVIiLVUXQtCgjnVwwaFM6vuPHGrN5KRCQn1KLIMLMwZfbJJ2HixNhpRETS\nrShbFOXefDNsGvjEE3DwwTm5pYhIVqhFkSX77Qc33xy6obR5oIjIxhV1i6LcxRfDiy+GrqiSkpze\nWkQkIzQ9NsvWroX+/UMLY9y4nN5aRCQj1PWUZVtsEQ45evjh8KuIiKynFkUFixZBr14waxYceGCU\nCCIiNaIWRY60awc33ADHHBPOsRAREbUoNmr0aHj1VZgxA+rWjRpFRKRaNJidY2vWwIAB0LKlVm6L\nSH5Q11OOlZTAlCnw9NNhnYWISDHTqoFKNGoE06eHTQRbtYKePWMnEhGJQy2KKrRsCZMnh5Px3n03\ndhoRkThUKDahRw+47DIYOBC++CJ2GhGR3NNgdjWddx688w489pi2+RCR9NFgdgpce204x+LCC2Mn\nERHJLRWKaiqfCfXEE3DrrbHTiIjkjjpRNkOTJvDoo9CtG+y5JxxxROxEIiLZpxbFZtpnH3jgATjp\npLA3lIhIoVOhqIGuXeH668Pq7eXLY6cREckudT3V0NChsGxZKBbPPAPbbhs7kYhIdmh6bC24w1ln\nwUcfwbRpmjYrIvFoemxKmcGECbBuXVhnkSf1TURks6hQ1FLdunDfffD883DNNbHTiIhknjpLMqBh\nw7Biu0sX2GMPGDw4diIRkcxRociQZs3CGovDD4cddwx7RImIFAJ1PWVQ+/Zh9faQIbBwYew0IiKZ\noUKRYT16wE03Qf/+sHRp7DQiIrWnrqcsOO44WLkS+vSB556DnXaKnUhEpObUosiSc88NBx717w//\n/GfsNCIiNacFd1lUviBv2bIw0F2vXuxEIlKosrngToUiy9asCV1RW28NEydCHbXhRCQLtDI7j5WU\nwL33wgcfwAUXaPW2iOQfFYoc2GqrsBdUWVk4f1tEJJ9o1lOONGkCM2dC9+5hp1kdqSoi+UKFIod2\n3hmeeiqckNewIZxxRuxEIiKbpkKRY82bw6xZUFoaWhZDh8ZOJCJSNRWKCPbZB554Anr3DrOhBg6M\nnUhEpHIazI7kgANg+nQ47TSYPTt2GhGRyqlQRNS5M9x/f9hE8MUXY6cREdk4FYrISkvhzjvhqKNg\n/vzYaUREvk+FIgX694dbboF+/eDVV2OnERH5Lg1mp8TRR8PatfCjH4X1Fu3bx04kIhKoUKTIscfC\nunVhe/JZs8KAt4hIbCoUKXP88aFlccQRYXHefvvFTiQixU6FIoWGDg3F4vDD4emnoU2b2IlEpJip\nUKTUiSeGYtG7d1hn0apV7EQiUqxUKFJs+PBQLHr1Ct1QrVvHTiQixUiFIuVOPTUcdtSzJzz5JOy/\nf+xEIlJsVCjywIgR4RjV3r1hxgw46KDYiUSkmKhQ5IkTToD69aFv37BHVOfOsROJSLFQocgjgwaF\nlsWAAfDQQ3DoobETiUgx0BYeeWbAALj77rCSu6wsdhoRKQYqFHnoiCPgvvvC4rwnn4ydRkQKnQpF\nnurRI3Q/nXQSPPJI7DQiUsg0RpHHunaFxx8PJ+StWhXWXYiIZJoKRZ7r2DGs3O7TB/7xD/jZz2In\nEpFCo0JRANq0gblzw95Qn38Ol10GZrFTiUihMHePneE7zMzTlilfrFwZ1ln88Idw/fVhRbeIFAcz\nw92z8hFRhaLArFoVxiyaNw9HrNatGzuRiORCNguFPnMWmEaNwgl5X34JxxwD//537EQiku9UKArQ\nVlvB1KnQuHFYc/H557ETiUg+U6EoUHXrwl13hfGKQw+FZctiJxKRfKVZTwWsTh24+mpo1iysuZg+\nXTvPisjm02B2kXjwQTjnHLjnnjCNVkQKiwazpdaOPTYUi5NOCl1SIiLVpRZFkVm8GH70IzjzTPjl\nL7UwT6RQaB2FZNTHH0O/ftClC9xwA5RopEok76lQSMZ9+WXYprxOHZgyBRo2jJ1IRGpDYxSScQ0b\nwmOPwV57hSm0mj4rIpVRoShiJSUwYQKccUYoFi++GDuRiKSRup4ECK2LU04JYxZDh8ZOIyKbS2MU\nkhOLFoUNBU8/HS65RDOiRPKJCoXkzN/+BkcdBfvuC3/6E2y5ZexEIlIdGsyWnGnaFMrKYPXqcC73\n3/4WO5GIxKZCId/ToAFMnhzWWnTqBC+9FDuRiMSkriep0rRp8OMfh80FTzkldhoRqYzGKCSqt94K\n4xb9+sE11+jUPJE00hiFRNW2Lbz8Mrz9NvTpA599FjuRiOSSCoVUS5MmYa1Fp07QuXOYSisixUGF\nQqptiy3gqqvgt7+FXr3g3ntjJxKRXKj1GIWZlQB7u/vbGQmkMYq8sHAhHHdc2LJ83DioVy92IpHi\nFn2MwoLxlTxdCqw1s7pmNtLMLjSzyzOWUFLpwANh3jz44AM47DD48MPYiUQkWzZZKMysCTAK6F7J\nS1q5+3vAccAkdx8HtDazzpmLKWnUuDE89BAcfXQYt3jqqdiJRCQbNlko3P0f7n4t8GUlL1mb/NoK\nGJI8Xgo0q308Sbs6dWDMGJg0CYYPD+MX69bFTiUimVTtMQozm+3uPTe41hlY6+7zzaw+UMfdvzaz\nGcCPgd2Bo4BFwH+A7d39tk3cR2MUeWr5chgyJLQ0Jk4MM6VEJDeij1FUoYO7zwdw92+SItEVmO3u\nywEDSoAl7j4VOMHMOplZbzM7q5b3lpTZbTeYMydsKHjwwdr6Q6RQ1Pa05O9ULzNrDHR19ysB3P15\nM7vE3RckYx31gMHuPtrM2ppZc3f/3jDo2LFjv31cWlpKaWlpLWNKrtStC+PHQ7ducOSR8POfw4UX\nhi4qEcmcsrIyysrKcnKvzel6muPuPSp83wpo5u5PV7h2NnAroaXSHZgLPOzu/cxsBFAfaO/uI83s\nNGCRu8/b4D7qeioQf/0rDBsWjl39859hp51iJxIpXFG7nsxsazMbRZjJNMrMGiRPlQJlFV53BvA7\nYAXwSfJrR2C1mQ0Emrr7rcCq5C2Nk9dIgdpjj7Bl+UEHha6o2bNjJxKRmqjxgjsz+4m737iJ1/wc\nmOfuZRWudQXqAu3c/bqNvEctigI0axaMGBF2ov31r8N53SKSOakbzDazpsDyTbymBTAMaF7xurvP\ndfc5GysSUrgOPxwWLIAXX4SePbVATySf1HSIsRsws6oXuPtSdz/Y3SfW8B5SYHbZBZ54ImxX3rEj\n3H9/7EQiUh06j0KieOUVOOkkOOQQuP56aNQodiKR/Ja6rieR2urUKXRFNWgQ9o169tnYiUSkMmpR\nSHSPPgpnnBGOWr3sMu1EK1ITalFIQRswIGxb/sYboStq8eLYiUSkIhUKSYWdd4Zp0+Dss6F7d7jh\nBm0uKJIW6nqS1HnnnbDmYsst4fbboUWL2IlE0k9dT1JU9t0X5s6F/v3DORcTJqh1IRKTWhSSaosX\nw6mnhtlRd9wBe+4ZO5FIOqlFIUWrTZvQuujbNyzSu/lmtS5Eck0tCskbb70VWhfbbBPGLtS6EFlP\nLQoRoG1beO65sG9Ux45w3XWwdu2m3ycitaMWheSlt9+GM8+E//wHbrsN2rWLnUgkLrUoRDbQqlU4\ndvXHP4ZeveDii+Hrr2OnEilMKhSSt+rUCVt/LFoE770H7duH4iEimaWuJykY06fDyJFhDOP3v4ft\ntoudSCR31PUkUg0DB4b9oho0gP32g4kTQZ85RGpPLQopSC+/DOeeG4rGTTfB/vvHTiSSXWpRiGym\nzp3hpZfghBPC0asXXgj//GfsVCL5SYVCCtYWW8A554TuqL//PazynjJF3VEim0tdT1I05s4Ng907\n7gg33gitW8dOJJI56noSyYCuXWH+/HBQUteucNFF8OWXsVOJpJ8KhRSVkhIYNQpefx0+/TQs3Lv9\ndm0FIlIVdT1JUZs3LxSOf/877B3VrVvsRCI1k82uJxUKKXruYZB7zBj4wQ/g6qu1M63kH41RiGSR\nGQwdGg5J2n9/6NABfvUr+Oqr2MlE0kGFQiTRoAH8+tfw2muwbFmYFXX77bBmTexkInGp60mkEi+/\nHGZGffopXHVVOMPbstKwF6k9jVGIROIOjz0Wxi922CFsNti5c+xUIt+nMQqRSMzCuovXXoPhw2HQ\nIBg8OGxrLlIsal0ozKzEzFplIoxIWpWUwOmnwzvvwIEHwiGHwHnnwcqVsZOJZF+1CoUF4yt5uhRY\na2b1zOxkMxtkZneYWYOMpRRJiQYNwml6ixeHg5PatIFLLoEvvoidTCR7NlkozKwJMAroXslLWrn7\ne0An4HB3nwo0BHpmLKVIyuy4Y1igN38+fPwx7LMP/Pa3mlIrhWmThcLd/+Hu1wKV7YqzNnndc8B5\nybUdgVcyklAkxfbcM0yhfe45ePNNaNkSxo/X+d1SWGo1RmFmnfluQahrZhcA/+PuK8ysi5ldaWbD\nki6pM2qVViSl9t0XJk2CWbPg2WdDwbjpJli9OnYykdqr7WB2B3efX/6Nu3/m7uOBAWbWFTCgBFiS\ndEmdYGadzKy3mZ1Vy3uLpM4BB8BDD8Ejj4QzvMs3HVTBkHxWUsv3VzZndwlwgruPNLNL3H1BMtZR\nDxjs7qPNrK2ZNXf3Dzd889ixY799XFpaSmlpaS1jiuRWx44wY0Y4A+Oyy+Dyy8NajNNOg/r1Y6eT\nQlBWVkZZWVlO7lXtBXdmNsfde1T4vhXQzN2fTr7/BVDf3S8zs9uARcAtwMPu3s/MRgD1gfZJATkN\nWOTu8za4jxbcScF54YVQLBYtCqu9zzgDttoqdiopJFEX3JnZ1mY2CmhtZqMqTHstBcoqvHQy8I6Z\nnQp8DdwIdARWm9lAoKm73wqsSl7fGFiRkd+FSMp16QKPPw4PPwyzZ0OLFnDNNZolJfmhxlt4mNlP\n3P3GTbzm58A8dy+rcK0rUBdo5+7XbeQ9alFIwXvtNbjiCnjmGfjZz+AnP4GGDWOnknyWui08zKwp\nsHwTr2kBDAOaV7zu7nPdfc7GioRIsWjfHu6/H+bMCdNqW7QIC/k++SR2MpHvq+msp27AzKpe4O5L\n3f1gd59Yw3uIFLy2beGee+Cll2DVqrDS+8wzw1YhImlRo0Lh7ve5+78zHUakWO29N0yYEApE06Zw\n6KFw7LFhq3OR2LTNuEgKffUV3HEHjBsHe+0Vptb27avzMKRyOo9CpEj9979w333hHO916+D882HY\nMNhyy9jJJG1UKESKnDs8+eT6jQjPOgvOOSd0U4lACmc9iUhumUGfPmEtxl/+Ap99FgbChw8PhUMk\nm1QoRPJM69Zhw8H334f994djjoFu3eDBB2HNmtjppBCp60kkz61ZEzYi/MMfYPlyGDkSTj01nPEt\nxUNdTyJSqZISOP74cCbG/fevPxfj5JPDHlP63CW1pRaFSAH6/HO480744x9h663h3HPDbKlttomd\nTLIl1bOezKwE2Nvd385IIBUKkYxZtw6eegpuvjkMgg8bFmZL7bdf7GSSadG7niwYX8nTpSTHoSav\nbWxmV2Ugm4jUUp06cMQRYQzjtddgu+2gd2847LCwdYiObJXqqM42402AUUD3Sl7Syt3fq/D9MMKZ\n2SKSIs2bw29+Ax98EHarvesuaNYsPH711djpJM02WSjc/R/ufi3wZSUvqdia2AdYlploIpINdeuG\nwe+ZM2HBAthxRzj6aOjQIUy7/eKL2AklbWo168nMOgOvVLi0H/Bmhee7mNmVZjbMzAaZ2Rm1uZ+I\nZNYee8Cll8LSpfC734VxjD33DDOmyso0Y0qC2k6P7eDu8wHM7IfAcxs8b4RzuZe4+1TgBDPrZGa9\nzeysWt5bRDJkiy3CWMaUKfDee6F1cd55sO++4YClZctiJ5SYSmr5/ooj7K2AloTxiZZmdoi7P29m\nl7j7gmSsox4w2N1Hm1lbM2vu7h9u+EPHjh377ePS0lJKS0trGVNEqmuHHWDUqHDy3iuvhLGMTp3C\nWRnDh8Nxx0HjxrFTSllZGWVlZTm5V7Wnx5rZHHfvUeH7VkAzd396g9ftAYx191PNrB7wsLv3M7MR\nQH2gvbuPNLPTgEXuPm+D92t6rEjKrF4NM2bAxIkwa1bYd2r48PBr3bqx0wlEnh5rZlub2SigtZmN\nMrMGyVOlQNkGr90SOA/oZGbdgY7AajMbCDR191uBVcnLGwMrMvK7EJGsqlcPjjoKHnggdEP16gVX\nXhlmTf30p6Hloc93havGC+7M7CfufuMmXvNzYJ67l1W41hWoC7Tb2LnZalGI5I/334e77w4tjZIS\nGDIEhg4N3VSSW6lbmW1mTYFD3P2hKl7TAngAuHZzzs1WoRDJP+6hVTF5chgQ3377UDCGDAnHvEr2\npbFQDAYezca52SoUIvlt3bqwQeHkyaGravfdQ9EYPDgs+pPsSF2h+M4P0F5PIlKJNWvCeozJk8M2\nIm3ahFbGoEGw226x0xWW6IXCzAwY5+4XbOS53sAyd3/PzA5w99fNbG/gI3f/ZrMDqVCIFKTVq8OM\nqSlT4NFHoVUrOPbYcPCSuqdqL2qhSNY/nAKc6O4dN/L8SHefkDz+HPiGUFTG1SiQCoVIwVu9GubM\ngalT4eGHYZddQitj0KBwap9l5Z+7wha9RZGEmO3uPTdy/Wx3/2PyeJi7T6pVIBUKkaKydi08/3wo\nGlOnhqm45UWjU6ewA65sWmoLRbLX09oK23iMB54C2rj7ODPrAhwFLAL+A2zv7rdt4j4qFCJFyj1s\nVDh1ajgD/KuvYODA8NWjB2y1VeyE6ZXmQnGOu99c4XtzdzezkcB7wD+BQcCkZBuP2cAYoBFhAPyW\njdxHhUJEAFi8OIxnTJ8OCxeGYjFwIPTvD02bxk6XLtksFBnb68nMTgG2AG4HvgYOcPdrtNeTiNRU\nmzbha/TocLzrE0+EojF6dDgXvLy1ceCBxTeukZd7PZnZAOBld19pZr8hbO8xF+31JCIZ9t//wrPP\nrm9tfP01DBgA/fqFVse228ZOmHup3uvJzEqSovEYMDRpWXzk7rPRXk8ikgV160LPnjB+PLzzTjgX\nvGVLuP562HXX8NxVV4XjX/W5s/ZqvI6ifK+nDdZR9AH2BdYBdwAj0V5PIpJDX30VFvnNnBm6qr76\nKuxy26cPHH542Ea9EKVuHUXFvZ7K11GY2XbADe5+opldRjj57jdorycRiej990PRmDkzFJBWraBv\n31A4OncunG3SUzfrqeJeT+XrKMzsHKCuu19vZvXcfXWNAqlQiEiWrF4d9qEqLxxLl0LXrmHb9J49\noV27/F23kbpCUeHat+sozGwC8C/CIPYB7n6V1lGISJp99lloZcyeDU8/HWZW9egRCkevXmHcI19m\nU6V5emyHCuso6gCr3P3xZOprP+AL1p+ZvcDMZpvZQqpYRyEikis77BCOdj3uuPD9Rx+tLxpXXBGK\nRHlro2fPcFBTMcrkmdl/Az5OHv8d2M/df691FCKSL5o1C0e8Dh8eZku9+24oGtOnwwUXQKNG0L37\n+q8WLeK1OPJ1HUVXoIe7X56cbPc6MAetoxCRArBuHSxZAs88E77+8pdwvVu39YWjbdt4YxypXkdR\n/jp3n5u8/lTCuMVMtI5CRApEnTqhEJx9NkyaFLqpnn02zKCaNw+OPhp23DH8On48zJ8fO3Hm6Mxs\nEZEMWb48FI9nnw0D5VOm5O7eqZj19J036cxsEZFUSWOh0JnZIiIpkrpCkU0qFCIimy/qYLaIiBQ3\nFQoREamSCoWIiFRJhUJERKqkQiEiIlVSoRARkSqpUFRTrjbf2hzKVD3KVH1pzKVM8alQVFMa/8dQ\npupRpupLYy5lik+FQkREqqRCISIiVUrlFh6xM4iI5KOi2etJRETSRV1PIiJSJRUKERGpUqoKhZn1\nNbMlZvaOmY3J8r2amdlsM3vTzF43s58m15uY2ZNm9raZzTSzRhXe80sze9fMFpvZERWuH2xmi5Lc\nf8hAtjpmtsDMpqUhk5k1MrP7k3u8aWY/SEGm883sjeTn3WNm9WJkMrPbzWyFmS2qcC1jOZLf1+Tk\nPS+Y2e41zHR1cs+FZvagmTWMnanCcxea2Toz2y4NmczsvOS+r5vZlbEzmVn75P2vmtnLZtYxl5kA\ncPdUfBGK1nvAHoSjUhcCrbN4v12AA5PH2wBvA62Bq4CLkutjgCuTx22BV4ESYM8ka/kYz0tAp+Tx\n40CfWmY7H7gbmJZ8HzUTcCdwavK4BGgUMxOwK7AUqJd8PwUYESMT0BU4EFhU4VrGcgDnADclj4cA\nk2uYqTdQJ3l8JfC72JmS682AJ4D/BbZLrrWJ+OdUCjwJlCTf75CCTDOBI5LHPwLm5PK/nbunqlAc\nAsyo8P0vgDE5vP/DyV+mJcDOybVdgCUbywPMAH6QvOatCteHAjfXIkczYFbyP2x5oYiWCWgIvL+R\n6zEz7Qr8FWiS/CWZFvO/HeHDTcW/2BnLQfhH9AfJ4y2AT2uSaYPnjgYmpiETcD9wAN8tFNEyET50\n9NzI62JmmgEcnzw+Abg715nS1PW0G/Bhhe8/Sq5lnZntSajiLxL+gq8AcPdPgJ0qybc8ubZbkrVc\nbXNfC4wGvMK1mJn2Aj4zs/+x0B12q5k1iJnJ3T8GxgEfJD9/lbs/FTPTBnbKYI5v3+Pua4EvKnbR\n1NBphE+ZUTOZ2ZHAh+7++gZPxfxz2hfobmYvmtkcM+uQgkznA9eY2QfA1cAvc50pTYUiCjPbBngA\n+Jm7f8V3/4FmI99nM0t/YIW7LwSqmg+ds0yET+wHAxPc/WDgX4RPMjH/nBoDRxE+ee0KbG1mJ8bM\ntAmZzFGrefJm9v+A/7r7vRnKAzXIZGZbARcDl2Ywx3duUcP3lQBN3P0Q4CJCiydTaprpHMK/T7sT\nisYdmYtUvUxpKhTLgYoDK82Sa1ljZiWEIjHR3R9JLq8ws52T53cBVlbI13wj+Sq7XhOHAkea2VLg\nXqCnmU0EPomY6SPCp755yfcPEgpHzD+n3sBSd/978qnoIeCHkTNVlMkc3z5nZlsADd397zUJZWan\nAP2AYRUux8q0N6Ff/TUz+9/k5y8ws52o/N+CXPw5fQhMBXD3V4C1ZrZ95Ewj3P3hJNMDQKcNf362\nM6WpULwCtDSzPcysHqFfbVqW73kHoS/vugrXpgGnJI9HAI9UuD40mTWwF9ASeDnpWlhlZp3NzIDh\nFd6zWdz9Ynff3d1bEH7/s939ZGB6xEwrgA/NbN/kUi/gTSL+ORG6nA4xsy2Tn9ULeCtiJuO7n8wy\nmWNa8jMAjgdm1ySTmfUldGke6e7fbJA155nc/Q1338XdW7j7XoQPJAe5+8rk5w+J8edEGKvsCZD8\nP1/P3T+PnGm5mR2WZOoFvFvh5+fmv111BjJy9QX0Jcw+ehf4RZbvdSiwljC76lVgQXL/7YCnkhxP\nAo0rvOeXhJkFi0lmISTXOwCvJ7mvy1C+w1g/mB01E9CeUMgXEj5tNUpBpkuTn78I+DNhplzOMwGT\ngI+BbwgF7FTCIHtGcgD1gfuS6y8Ce9Yw07uECQALkq+bYmfa4PmlJIPZkf+cSoCJyT3mAYelINMP\nkyyvAi/jfi6wAAABR0lEQVQQCmrOMrm7tvAQEZGqpanrSUREUkiFQkREqqRCISIiVVKhEBGRKqlQ\niIhIlVQoRESkSioUIiJSJRUKERGpkgqFFD0zOys5FGaBmS01s6c38fo5ZjbezF6xcJBTRwuHAb1t\nZpfnKrdIrqhQSNFz91vc/SCgM2FTuHHVeNs37t4JuIWwj845hHMVTjGzJlkLKxKBCoXIetcTNmJ8\nfJOvXL9h5evAG+6+0t1XA+/z3Z07RfJeSewAImmQbMHd3N3PreZbyndgXVfhMYSzJ/T3SgqKWhRS\n9JJTzC4ETtrg+p+twkH2IsVKhUIERhK2Bp9Tftxrcr0dYcvnDVW15bK2Y5aCo23GRTbCzLYF/uTu\nQ2JnEYlNhUJERKqkricREamSCoWIiFRJhUJERKqkQiEiIlVSoRARkSqpUIiISJVUKEREpEr/B3zw\nM/oWqJZLAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x6a5bb00>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"from scipy.constants import *\n",
"def interp_1(x3, x_1_2, y_1_2):\n",
" x1, x2, y1, y2 = x_1_2[0], x_1_2[1], y_1_2[0], y_1_2[0]\n",
" return (y2-y1)/(x2-x1)*(x3-x2) + y2\n",
"\n",
"comps = np.array(['N2', 'O2', 'Ar'])\n",
"mol_pct = np.array([0.7812, 0.2096, 0.0092])\n",
"mm = np.array([28.013, 31.999, 39.948])\n",
"w_pct = np.multiply(mol_pct, mm)/sum(np.multiply(mol_pct, mm))\n",
"# 1dm^3 = 1dm^3*(1m/10dm)^3*(100cm/m)^3*(1mL/cm^3) = 10^3mL = 1L\n",
"# 0.1MPa, 300K\n",
"dens_moldm3 = 1/np.array([24.854, 24.928, 24.928]) # mol/dm^3\n",
"dens_gml = np.multiply(mm, dens_moldm3)/1000.0 # g/mL, kg/L\n",
"dens_kgm3 = 1000.0*dens_gml # kg/m^3\n",
"rho_hg = 13.596*interp_1(293.15, [294, 292], [997.983, 998.392]) # kg/m3\n",
"rho_a = sum(w_pct*dens_kgm3) # kg/m^3\n",
"delta_z = rho_hg/rho_a*760.0/1000.0\n",
"print 'delta_z=' + '%.1f' % (delta_z/1000.0) + ' km'\n",
"print 'p_0=' + '%g' % (rho_hg*g*761.4855/1000.0) + ' Pa' # kg/m^3*m/s^2*m [=] (kg m/s^2)/m^2 [=] Pa\n",
"z = np.array(range(0,16500))\n",
"p_0 = 101325.0 \n",
"H = p_0/(g*rho_a)\n",
"print 'H = ' + '%.1f' % (H/1000.0) + ' km'\n",
"a = plt.plot(z,1.0*np.exp(-z/H))\n",
"plt.xlabel('z, m')\n",
"plt.yticks([1/float(x) for x in range(1,7,1)], ['$p_0$'] + ['$1/' + str(x) + 'p_0$' for x in range(2,7,1)]);\n",
"print '99.9999% of atmosphere weight: ' + '%.1f' % (np.log(0.1/101325.0)*-H/1000.0) + ' km'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Henley 3.10"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"air pressure at the top:\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAABHCAYAAADx03egAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADYxJREFUeJztnXmwHFUVh7+Tl5eEAIkhRECQLWERUYKgUYE8RSwFEzcK\nZC3cEEVABBFZZJFFI6IoJQqoLBHCphKgRCMiBotFRaKiBWIgSgkENBgEAko4/nHukE6nZ6Z78t7M\na/19VV1v+txzb5/bfc+Zu/U8c3eEEELUkxG9NkAIIUTnKIgLIUSNURAXQogaoyAuhBA1RkFcCCFq\njIK4EELUGAVxIYSoMQriQghRYxTEhRCixiiICyFEjVEQF0KIGqMgLoQQNUZBXAghaoyCuBAdYmZ9\nZnaimR1oZvtk5GZmZ5csY5yZfaGdTIhmKIgL0Tn7APe7+2xgNzMbZWbjgCOBgZJlvA94aQmZEIUo\niAvROTsBf0uf/wFMdfcn3f0rwJPtMpvZJsAj7WRCtEJBXIjOeRwYmT6PADasmH874PclZEI0RUFc\niM65FtgyfX4l8ELZjGb2GuA3LWQ2GAaK/31GtlcR4v8XM1sL2BPI/x/DR9z9J2a2jpntDiwE7qlQ\n9CuAbYFJwBQzmwZMycgmm9k0d79ztSsh/qdREBeFpAW61xIBZZm7z+2xST3B3Z8CLilKM7O3Aeu5\n+6Vmtoe7L8wmtyn3slTGJsC2KVjfWSATPWa4+4KCeAYzGwvc7u7bNUnfCjgTWJRE6wLHuPtjnZRX\n0qZpwCHAM8BYYA3gDHe/J6f3OuDYlL4R8EvgJHd/OKf3eWAucC/wHLA5MBO4NKe7KTAD+DgwJ+Vp\nZeflxJTCq5KtvyCmF0YC6yXZV939iko3YHhzP7ClmR0OfAPAzMYQz2trMzsyyccAl7j7u7OZzawf\nOAzY0cx2dvdfFMm6WJ+sbYPiC1V9po1NZdv4hsBxRPsbk/RndeozVPSFVHb3/MHddbgD7Aj8Clje\nJH0c8BCwb0Z2HLEINbJqeSVtmpoazKiM7OvAUuDVGdn2wI+AtdP5WODnwGJg41yZL+SO/wAnNLn+\n2JR+cEl7G/PCXyhI2zulHdrrZ62j7XMcFF+o6jNtbCrVxoF1gB8QI6SGbFOi0zK5ankZ/Uq+kPJ0\nxR963mB6fQBbAzcA3wFub9FwzwAeBUZkZBOAfwOHVC2vpG1fTg96z4zsHUl2TkZ2A7B5Lu/UpHd5\nTr4I+CbwfeCLxLC92fXfCiwHtilp78eS/u5N0h8HFvX6meto+vwG2xdK6ZW0rVQbBz4FfLwg/3HA\n56uWl0mr5AspT1f8oecNZzgdwEUtGu59wNwC+e+Am6qWV9KeA4EngN0ysn1SQzszI/sX8Bdg3Vz+\nJcBjOdnNFa5/GvCPCvpXAM8D4wrSDHgaWNLr51yhPvlRy/J0lJUtLzhvdryQK2eVtC7XfbV9oROf\naWFPqTYOnAd8ryD/J4EvVS2vU1/opj9oi2EJ0g6FLYC/FiQ/DOwwFNd199nuPsHdb8qIdyAaxpyM\n7EFi0WXNXBHPEfN9nTJA9MjKsgtwj7sXvegyLdnS8Rxvep39NjN7eQudo8zsiE6vkaMPOIB4g/Jw\nd+8j5jTzsnHA+4H9gfOTzg7AKGLaq6/ZAbwmq0esURwJrJHRG5HSek5ZXxgCnynbxhcA7zGzy8zs\nJcmW0cQzu7iD8hpU9QUYYn9o0NOFTTN7JzFM2ZZwgJ2I+bgJRA/kcHd/vncWvsgm6W/Rw3gaGGdm\n/e7+n6E0wswmAwcBh7l79oWQacTc3mMZ3Q2IBZSbc8WMNrNjiQb8AjAZ+Iy735+71hjgdcAp6XwU\ncDIR2NZx94/k9KcAGxDTNEUcSdy/Tyf9XYnh5kLiec8nhtjTm9Xf3d3MjgKuNbMZ7p5/2/FQog3t\n1ayMnP7UZMMSIpBOJIbiTyeV3YE/uvsCM3uvmW2f6piXbUgE4U+Z2dHEYtYtwLPAZ2i99fDnOb2N\niWmuz5nZMuBWd9+7TH26RClfKKtXwWfKtvGLgQ8B+wJvNrNjgLcDx/nKC5ulfaaqLySdIfeHF1nd\nrnynB9APfDl9/iXxDfqWTPqdwGeb5P02cDfxYkS7o6E3vYRNhUNI4A1EwDu5IO1S4gtnUtnyOrhX\n7wK+RizOHFsyz5nEQsy0nPx+YMPM+f7EvOVLc3pvTvXaOT2r00k7C4g5zQk5/Q8m/X1y8rWAWcAf\nidfSIZzsMeDl6fxlwFPAXSXrNp1YeJuUkX2AmOcstWBG9JzvBtbPyI4BZmbOdwGuIRa1DiWcaxVZ\n0l0TGA38Ov3dr6Qd++XO9wD6MvXctE3+YekLnfpMRb9o1sbXAm5kxVTUdfn2XbG8Sr7QbX/oZU98\ngBVDic2Ab7r7TzPpfyaGrKflM7r7h4bevJVY3rh0QVp/+jtkw12PfalzzWwkMM/MZhLB5okifTPb\nnNimdqavutd4S08tJTEHuAA4nugdNBggGvRvgROAs9x9adozO7vg2gPp7wwza/QeRhL3ZR5wvLsv\nN7PtiG13B7n7Q6l+D5vZE8DPSt6P+WZ2PHCdme0BvI3oec30EiM3M3tDqvOAuz+aZK8lguZFmevc\namYfIHrIJ6U6F8kgAvzBwKfd/Tkzm2pmS4nFs3NbmLOSnrv/MNmzNrCRu89vcy+Gqy8Mqc+0aeOH\nEdM4M4Bz098FZvZWd/9DB+VV9YVGHuiCP3T8Lbi6BzFsGQVsQ3xb7pJLvx1Y2GWbmvU+Nks2nlSQ\ndh3RYNcsW95q2jiQbLmySfqodO/OqlDmIuDBnOxm4AFiaL9uiTIeBB4toXcD8WNRfRnZxqlOMyre\nixnEItnPiDnksvl+TIw+ZgFnAWcDHwbWyumtT/SSDiGGuWsXyXJ5biKmZSydnwFs1cKWQj3gRGDs\nULb3NvdotXyhU58paVvTNk4sYF6fOV8jPd/ngburlteJL3TbH3rWE3f3xQBm9iZgGXBHI83M1iD2\ncf60MHP3WUz0KCYUpK0J/NNXzKMOGulFiVG+8vx347c19jSzse7+TC7bt4AfufupBeXNB/BV59n6\niMDT0BsFvJ6Yl9sAuMjMTvcmbxCa2cbEHOjVbeoznug1X+3uyzNJjeFqy15nUZGs6OmVWqRPo5ld\ngQvd/dg26gcTPbPlZvYU8CZiG1pWNkA4YoPFxLrFUmKq41lijvy+AlveT9z7Ir1d3f30MnXqMqV8\nwcyG0meatnHgs8S6CADuvgw42sz+BJxnZlu5e/5ZtPKZSr6Q8nTVH4bDG5vTgdt85QWOtxDfjpcX\nZTCzC4ggXzRUW0U96R3t7rd2YqC7P2NmdwNFuyKmEPP5g0oaTi8A+lLDezAlNR62kRuOmtnJwH3u\nfkZGdqDH711DBKCVFjAT67LijTqIRZwxRLCanxbrbjKzie7+bzMb7+5LM/qNL4Vb2lRrSrL5jpx8\nOrDA3Z80s03dfdEqOXOY2duJoe0A4Qhz02Lns22yTkw2PNDuGol+4p7fS9yTvGy0mc0CHnD384le\n1K+A65PuRsCVTcpewop78aKemW1JtP+2DFdfGCqfadXGzWwSMJ6Yis3bfX56TmOy8hI+U9UXoNv+\n0MlwZjAPYrvRSTnZjcQC0Ygu29J0+gM4FXgoJ5tMDHs+WrW8lD4FGNMkbTSxaHIv8JKMfId0zTty\n+vsDpxSUc37m81XEano2fftU3vEZ2YnEwkp/Op9JBK2JRCA4L1fGhSl96zb3d0q61rtz9VxEGsoC\n55Z4TrsSgXKdjOyg1G762+TtA/5J7MjJp60PvDdzPoFYvDoA2KuFbBti//5HgE+ke/QJYrF136Qz\nHrg2d70Reb0kfxUwp5ttfyh8oYrPtPKFim38YeCNBTprE/Pk/RXLq+QLPfGHHjeULVIlrsrIGosS\nm/XAnivSzV9lfjU5+BJg/4zsHFq8QtymvF1S2o0t7DkdOCInm01sTdo+I5tOrG7Pzh1zgMsyejsS\nOwOyr/FfAtyaa9zzgB9nzhtvq/Wnz+/K2bQQWFzyHt8FHJU+jyAWGB8ntldNLHKqgvt2FwW7DYh5\n6uvIzC82KWMWcEtOtmO6F+N75Q/D6RgMX6igV8YXyrbxvVP52VfxxxEdmPd0UF4lX+i2P7j3Poh/\nmPghmN2IFdqvE99i63XRhknEbyj8nhVvyC0m5uP3zem+mhgmn53svIbMdr0q5RG/Q/0Ibb5piR7m\nHCL4zkufp+R0/p65Vv44Jae7U2rQFxN7WE8lE9STzh3AAZnzPuC7RJA7Ick2SPb8IV1nGbHAeHSb\n+mxOBNqzga8CWxG92J8Qc5NNt50RPZ/bgJe10DkC+GQbG/qIBc3LiYB+TnKaro78htsx2L5QwWfa\n+kLFNr4z8fspc9JxJbltlWXLK+MLvfKHxtFYGe8JZjYb2MTLbGgXQgixCr1+7X6AGMoLIYTogJ4F\ncTPbgliRv61XNgghRN3pSRBPP1A0j9ju9MX0Wx5CCCEq0tM5cSGEEKtHr+fEhRBCrAYK4kIIUWMU\nxIUQosYoiAshRI1REBdCiBqjIC6EEDVGQVwIIWqMgrgQQtQYBXEhhKgxCuJCCFFjFMSFEKLGKIgL\nIUSNURAXQogaoyAuhBA1RkFcCCFqjIK4EELUGAVxIYSoMQriQghRYxTEhRCixiiICyFEjVEQF0KI\nGqMgLoQQNUZBXAghaoyCuBBC1BgFcSGEqDEK4kIIUWMUxIUQosYoiAshRI1REBdCiBqjIC6EEDVG\nQVwIIWrMfwEaYADnWhsZZwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x3fbf860>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"p to lift water:\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMAAAABHCAYAAABRaUhnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACFxJREFUeJztmn+wVVUVxz+L93g8QCDhMQxUAvrqoaSkJU6lD6W0LBCd\n8Rdl0ySSRMz0kkyQwIgGRaVGmcGwGEXxB2JJiSOp/SJMy2lkJi1y8Ef5C9MKMYRBeas/1r7T4Xju\nPffed++7jHt9Zu68d9ZZe++1z93ftX+cK6qK48RKn0YH4DiNxAXgRI0LwIkaF4ATNS4AJ2pcAE7U\nuACcqHEBOFHjAnCixgXgRI0LwIkaF4ATNS4AJ2pcAE7UuACcqHEBOFHjAnCixgXgRI0LwIkaF4AT\nNc2NDsB5dyMig4HjgeHAHlX9WYNDOgAXQA0RkfcC84FuoBXoDyxT1SdSfmOBK4A9wXcAME9VX8mp\nfy7QrKrLqoitojZFZADwiKpOyKk3z28MMAX4GnAHkCsAEbkdGA8cDbwJbAkxNwMjgu06Vb0zr65c\nVNU/NfgAQ4F7gBEJ2xhgG3BEwjYWeBWYlrB9AdgK9ClR/2jgv8CiKmKrqE3go8BjwP6cesv1GwC8\nBcysIObxYdBflXHv3HBvdk+/N98D1I4LgYc0kVFV9TlgDXBRwu8HgOiBS4GfAB3ABSXqvxybUaqh\nrDZFZJyIbARmA28Xq6xcvwSfwPabD1cQcyegwG/TN1T1LuBfwLcqqC8TF0DtOByYnGHfC/QFEJG+\nwGeB7UkHVd0L/B04O6tiETkL+BUglQZVSZuquk1Vp6jqhdjMlUm5fgk6gZ2q+pcKQp+ECeAdohER\nwWaVwRXUl4kLoHZsBc4SkdtE5D0AItIPy7A3B5+h2Dp2b0b514GJaaOIDAROV9V1VcZVcZt1YBLw\nSIVlTgKeUNVdGfdOwGbDLT0N7KDZBAdVdwFHYOvFMcDFqvrPhE9fbCnQjq1p/wacCmxQ1bXB5yJg\nKfAy8HlVfVJElgK3qupf69iFm4EZwHTgFBG5FPgMMF//vwl+FdvAtWaUHwUMF5E+qtqdsM8HruxB\nXNW0WTNEpBUT2XfCdQu2GW8ChqrqVzLKtAMjgZ8WqbYL2EVYAonIZOCrwNPAocBmbOx05sV3UAhA\nRPpga9Lfq+qcYLsWuA0b4IUHuQl4WVWnB9s8YBrwQLg+Ecu4K7AMcbmIHAbclzX4RWQ1cBw21eaG\nGfy6VHVz+qaq7hORTwLrgdOAW4GN2MxQ8OkWkXXA1FQcI7DBCJaxXwv2CcAbqvpsGfFlUmmbdeBj\n2BJwS0hgi7A9yZeBS0TkMlX9T6pMYf1/wPJHRA4BFgLHACer6jYRmYEliI+o6vMiMgp4CkuO+dTq\nFKQnH2AxNviTtpnAfixLAFwP7AAGJnw+HXw+EK7bSZxqAOcAa3uxH/OAVcDp2Jq7G3gJGJ/wacPW\nzTPDdROwBPhT6MuhwS7YrNKcKNtNdadAZbWZKnMTOac75fhhmX8vMCj8PyTYlwCri5RZE+JaC6wM\nnxuB1cB5QFPwmwDsA6anyj8PXFvWszkIBv8wbIr+Ysq+KDyEscD7QkeXp3y+B7xQpN4ZWBYuerRY\n4358A7g3cd0fWI6dkjye8h2CZbLlwHeB92PHibsTPrOASalyVQmg3DYrGdjl+mGb92eAq4G2MmN9\nFthRht9G7DSoKWE7LDynKWW11RuDI6cTs7CXMwNT9vuxdV4ztubbD5ya8tlMRoYHLgVW9nI//g0c\nmWG/OMTekVP+H8CD4f8RwPUZPlULIK/NjHs9FgDQEpLbppCM7gVOyKmvMIDX5fgNwfaKt6fsXwr2\nweU8g4NhDzAZ+KOq7i4YwinKycCdqvq2iHSEW39I+PTDXrHfkqxMRBZjWX92sj5V3ZluWERuBI6l\nsj3AXFX9Xaqe4dgXsj1dSFVXicgysjehhfJt2Cy3JJg+BXSISHIT2BL+ni8iHwZuUdUNZcRdbpv1\nYCLW76Wqujm8yX5IRIap7ZmGqOrrqTKFjetvcupux5Zyj2aU36qqu0RkjNq7mOL0ZpYsouRXwgNK\n2hYAbwBjw/WV2Dly0qew/k++Zb0CWJzyGwdc3Qv9eAn4eIZ9EJZp+4brrtDnUQmfbwaflhL1j8Yy\n48KMe+1Aa4myFbdJbWaAb2Nvrwt9nxq+s2FYQnnHLA38KPiMy2m3PTyPMxO2fsBzwDXhekVe/A19\nDyAiR2E/kjo6YfsQcAl2hFk4/bgbGBCyFuFkZyXwoqo+HWzTsPPhHSJyg4jMF5GV2LR7XS90pwtY\nFWIr9GUwtnH7uqq+FcwDgd2EN6giciwwFzhHVfeVqL8l9bfQxknYicc9JcpW02b/4Jv39rmUXyfw\ncKLvhXcRu7BZ7hcZZSYDr6lqyRdsqrodeBx7AVk4SVyB9fUZERmG7Q9KU+/MmKPiOdga8Xjgh8D3\nsaPPYzJ8ZwA/B67CMv1j2DIA4BDsx1EF38uAndgxWnsv9udEbCDeET7rgM6UTyuwDBPG+jAIJpao\ncxC2kXwBy4xvhn6dEe5/EHvnUTTbldsmlow2AX8Obe3HZo5fkjhpqcDvUeCCxHUTdrKzBliQsI/E\njrKfDHXtAX6NLTdLPe/Dw5hYjiW5DuB84EHgx8DwvO9MQkUNQUTWYycDp1RYrj82wGep6k11Cc6J\ngkb/FGISpvSiiEibiExNmT+Hxf5AvQJz4qBhAghr/Tbyd/srgPXhTTAiMhKbzheo6ot1DdJ519PI\nY9DR2OYt70dSG7B18MLwO5LRwBxVvb/O8TkR0NA9gOM0mkbvARynobgAnKhxAThR4wJwosYF4ESN\nC8CJGheAEzUuACdqXABO1LgAnKhxAThR4wJwosYF4ESNC8CJGheAEzUuACdqXABO1LgAnKhxAThR\n4wJwosYF4ESNC8CJGheAEzUuACdqXABO1LgAnKhxAThR4wJwosYF4ESNC8CJmv8BKNbS3E1fvRAA\nAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x3fd5860>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAABHCAYAAACj3IiuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADVFJREFUeJztnXmwHUUVh7+TPEIIJAgEElAhQCQqKiAKFJo8AbFAQcUC\nhdKCMqLIokRRExQ0JQpGRWVVEAkRJaK4sbhBhbBoRJFFcWdXUwIqixAxQI5/nL5mmMy7t+e+m9wh\n7/dVTb3cntPb6dNzepmemLsjhBBCNIlR/S6AEEIIUUbOSQghROOQcxJCCNE45JyEEEI0DjknIYQQ\njUPOSQghROOQcxJCCNE45JyEEEI0DjknIYQQjUPOSQghROOQcxJCCNE45JyEEEI0DjknIYQQjUPO\nSQghROOQcxJCCNE45JyEEEI0DjknIYQQjUPOSQghROOQcxJCCNE45JyEEEI0joF+F0CIFmY2AXg5\nsCnwH3f/fp+LNGKQ7kcmTW53Oac+YWbPBo4HVgBjgfWAee5+W0lua+BjwH+S7Dhgjrvf1yH944AB\nd5/XRdlq5Wlm44Al7r5Dh3Q7yU0B9gOOBhYCbTuKmV0EbA+8GFgGXJ/KOwBMSmGnufs32qWzJjGz\n7QjdLgOWEzr+mLs/VpDJso3M/HLTmkIN3ae0n1H6r2PXme20K3BEkhlH6PaTddvJzPYBvgTcmvL5\nbypfixvc/UulOGt/n3N3XWv4AjYGvgtMKoRNAf4AbFsI2xp4AHhDIeytwC3AqDbpbwU8Cny0i7LV\nyhN4GfBL4KkO6ebKjQOeAN6ZWd7tU+f4VMW9N6d7R/W4/Qa6jPdC4B5g1/R7EnBnsZ1ybaOXdtat\n7vul/y51n23Xme20I/EgH1MIOwt4GHhJzbK9H3hqiOtJYO+S/Ijoc9pz6g8zgau8MGJz97uBBcDh\nBbnPA+ZPn2p/G5gGvK1N+h8mRnHdkJWnmT3fzC4HjiI6UCW5cgVeQeyF/jSzvDMAB64p33D3bwL/\nBD6UmVYuZ5vZ5nUimNlo4DvAZ939hhS8DrA+8K+CaK5t5FA3rbq6h/7ovxty7Tq3nQ4F9k9Xix8A\n4wm912Eq8FzC0Y1uXcB04Ax3vzKVbUT1OTmn/rANsGdF+ONER8DM1gFeC9xeFHD3x4lR3YFVCZvZ\nAcAiwOoWqk6e7v4Hd9/P3WcSI/FKcuUKzAAecvffZRZ7kOgoq3QsMzNiVDghM61c1klXHQ4jZi0L\nWgHu/ld3n+TuZxbkOtpGDeqmVVf30B/916JmX8ptp5uJWdLDhbDx6e+ymkV80t2XuvtThTJvAHwE\nmFMox4jqc3JO/eEW4AAz+7qZPQvAzNYlRnAXJJmNiXXcxyviPwzsUg40s/WBfd394i7LVTvP1cAg\nsKSG/HTgNnd/pOLersQM8vpeFGyYHAzcPkQ5i+TYRi5106qre3hm6L+OXWe1k7tf6O4buftVheCd\niZnKwjqFc/f3VgTPA0509//WSatLGtnn+vpChJm9HtgbeBGx/vsKYp10I2K99T3unjMtfaZxAfAO\n4BBgDzP7ILAPcLyv3Ex9gBiBja2IvwWwqZmNcvfixunxwCnDKFc3efYMMxtLPCjmpt9jiE3p0cDG\n7v6ukvxUYHNiGaaKWcAjpCUGM9sTOBK4g7Cxa4Ej3H1Gr+tSwSuBG8xsOvAaYANib/Dj7n5LQe4C\nOttGLtlp1dV9ksnV/+w+676OXee209Mws22JWdcx7v6b4RTWzHYnliBvGk46mXk1t88Nd9Oq24tY\nVvhc+vcviFHeXoX7NxAjh76VsVTerxBT+ZsyrpbcjDbpbQD8kHDCK4BLgc0q8ry/FDaJlZulEwvh\nOwCzC79X0N0LEdl5Fu7Pp8Oma44csEfK45XJPj4BTAQ+SLwxtVFJfmaSP7hCt/OA3wE7prB3APcD\nz02/tyBeGvlVFzqaD2xZQ36T1B6/Bd5VCB8kOvIL6tpGjbyz0qqr+xr636kb3dP7/tbRruu2U7r3\nBuB0Yvls9lD512yzGzvZ10joc8NW5DAa4NXAm9K/HwBOKt3/OjF1zE1vdL/q0mX95wDnAPsSa+Er\ngKXA9gWZicno39mqI3AS8KtkIBulcCNGyQOFuN06p6w8S3F61VHmEksv49O/N0zhJwFfqZBfkMr0\nNeDsdJ2bHkRvadkE4biXA4eU4v+F2Piuq6P5wFY15DdL7bEMWLeiDJfWtY1e2lk3us/Vf691P4z+\n1tGu67ZT6f4Asdd7fVUfqVHOvch47o2EPrdGDGMIpUwCxhCvba4AppfuLwHuqDCAw5NC5gLHAccQ\no7MTC3JjiTdVZgNvJ0YBpwDPKsjsQrzCORf4CW1GXauh7u8DLiv8Xg84lVivvrkkuyFwYrr/ceKt\nnl8CjxVk3g0MluJ15Zxy81xNHWUR8crup6mYoVXI3wX8PUPucuINotGFsC2TjvZrE+8CVh2935zS\nuq0i/CZgp4p0BlJev664t4Q427JOXdvosZ3V0n2u/rvV/eq4Otl1nXYaIv3BFP/iYZTxEuC8DLm1\nss89LY01aRxDVOIo4LFio6dO9DhwRSHsecR0d2Yp/iTgQeA16fdU4Dpgj5Lcq4DrCumfXLh3YCrD\n5muozv+ieongCGJUMq1D/HuBKwv1P71Cpmvn1CnPinvD7ijEQGUZ8CPgQuAy0jmTIeRbht72QZAe\nSE8AF5XCD0vhE7rQxfnUWNZLce4DFleEL05tPqkXttGNndXVfa7+V4fue32V7bpGO00DXlySGZ90\n8iQwrouyDAD/prSKNITsWt/nmvCFiBnAz9z9iULYXoTiLoL/n3JfBJzg7guKkd39PjNbAlxjZhOB\nHwOz3P3qktxiM5tmZoNEp51tZue5+50pznrECxmXVBXSzM4lZmieUSdLcse5+3WldDYlGu/2ciR3\nP8fM5lG9cduKPxF4DjHthlgenWZmxQ3KMenvwWa2I/BVd/9eRrlz81wd7ELU+2R3vzZ94eIqM9vE\n3Zeb2YbuXnxtt7WhurhDulOJJZyfl8JnALe4+yNmNsXj/E8utV/TT/lPrQhfl/giwAPDtY2nFbBe\nWrtST/eQp/+udd+r/tY2UrVd57TTeGKPfLSZTXP3u5JM61VwI+pdl12I81T/6CJuNzS7zzVg5LKU\n0gif2MC9kXRyG/gWadYzRBp7p7/nA9e0kXsQOCj9e7dC+AsJw9phDdZ594rw8cRIrrXEM4sYyW1R\nkPlAkhnTJv2tiBHOKi+UJMMZ2yZu7TzpzSjuBGKztFX3/VObbEJ09rNL8l9O95/fIc+pSRdvLISt\nC9wNfCb9PqNm+82n/szp4FS/8l7Gg8DCuraR2Za5dlZL97n6Xx267/bKteucdkp1WE7sYRW3CnZO\n9f15hR6GbKeC3KEp/hGZNrhW97m+nnMys+cBk4lXyVthxxCfxzjI3VeY2SbAGwnFVOLuV6bRzFuJ\njbmqvF5AHAz7fYpT9OpzgFPd/dbh1SibWcA5ZrZloXwTiLIf6ytnkesTy41PJpmdiH22g9x9eZv0\nx5T+tvKYDvyR+KTNUHST53pJttNXKdrJzQB+Wqh760zKI8Ts8Mcl+T2Bf7h720OG7n47sR+0Tcp7\nFHAGUc87k339s0O5e8HFxLfTjm4FmNmbiYfc7IJclm1ktmWundXVPWTov0G6h3y77thOHmePPk08\nvB8qxJ1FPOyPLMTNaacWm6W/7fp2i7W+z/V7WW+QUMi5ZvZFwtuOAV7uKz+5si1xWPjGqgTMbBvi\nlPd2RH2GOgtyOPEBxfL5jpnAUnefUx2t97j7N81sKXCambUMYhRwprtfWxA9lXCop6SHygTi22C/\nqEo3OejvE7pw4Lh0zmCeu19KjBzvp2Kpp26eadnoQuDZxMwT4G4zu43Y0F1YRy7lUzyBv4g4zHge\n8Cd3/6TFJ4MWpLSmAMvN7Grgcnc/tU2dDgK+kJaHB1IdFxGvuu5MnA9brbi7m9nrgM+b2cWs/KzM\nbu5+b0Eu1zY6tmWNtDrqHqBL/fdd94ksu67RTieY2WFmtpDYR5lMPHBfmh7OLXL6XIs/Aw8RznEV\nRlqfszTF6gtmdiHxSu6QB7LMbAti6r2TVxxuM7Nj3f00M5tCHPR6aXkGlGZNi4E93f23hfDXEWc+\n5lucnJ/s7vcMv2ZibcbMzgfmFh9WQoje0u/PFw0Sb9YNibsvJTz3kcVwMxttZu8mvcDgsbl2GfGu\nfVFuO2Iv6oCSYxok3nT7gZlNJs6BTB5mfcTI4HTgb/0uhBBrM32bOaX9pj8C+7v7FR1kRxOfw9iW\nmB4/Spw5+JYXvu9k8X+XfIJ4q+Ye4tTyWOAsd3+wILc1MXVevxVELINt6O6P9qSCQgghuqYvzsnM\n3kscENySeOPlq97Ff4onhBBi7aSve05CCCFEFf3ecxJCCCFWQc5JCCFE45BzEkII0TjknIQQQjQO\nOSchhBCNQ85JCCFE45BzEkII0TjknIQQQjQOOSchhBCNQ85JCCFE45BzEkII0TjknIQQQjQOOSch\nhBCNQ85JCCFE45BzEkII0TjknIQQQjQOOSchhBCNQ85JCCFE45BzEkII0TjknIQQQjQOOSchhBCN\nQ85JCCFE45BzEkII0TjknIQQQjQOOSchhBCNQ85JCCFE45BzEkII0TjknIQQQjQOOSchhBCNQ85J\nCCFE4/gfR8su4/6DB+UAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f0e630>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Henry's law application:\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKwAAABHCAYAAACasqyZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAABPZJREFUeJzt3G+IVFUYx/HvU8bWrmv0DwNflKFSZNumlP1DJwsxg3ph\nbVJC9EeNEGl1s14IghFBERWVSX/IXsRW1AsDJaKM0mWlUDa2MCgMhSjRMLQgS3t6cc/abXcdZqbZ\nvfPo7wMLc88998yZZ39z7z13Yc3dEYnilKInIFINBVZCUWAlFAVWQlFgJRQFVkJRYCUUBVZCUWAl\nFAVWQlFgJRQFVkJRYCUUBVZCUWAlFAVWQlFgJRQFVkJRYCUUBVZCUWAlFAVWQlFgJRQFVkJRYCWU\nhgismd1iZnuGae8xs7uKmNOJ6ESo85iiJ5AsAL7PN5jZxcA1wKpCZlQwM3sdmAZU8r+kLPV72N0/\nL9MvfJ0bJbAl4LVBbbOAP4HeUZ9NA3D3+0dg2BLB61z4LYGZTQImAJ8N2jUT+NLd/xjUv93Mvj7O\nWMvN7KCZTRyZ2f7nveaa2Q4zWz3S71UP9axz2j9qtc4rPLDADcBhhn7DZwLDXd6+AeYdZ6wNwH53\n/6F+0xueu38IHGRoABpVPesMo1jrvEa4JSgB/e5+eKDBzC4inQ3M7FRgirvvBHD3v4AhC4fkZuCj\nkZ3usTmOBS4Dto7Q+K8AV1DdPewKd99ynD4l6ldnGMVa5zVKYAcXeS7wN9ADXAVcaGbfAg8B7cA6\nd9+eirwa+BFoAm4HnqtlEmY2D5gI/Abg7m/m9nWSheJX4BJ3fwSYDfS4+5HU5yzgPuB64EmgDWgF\nJrh7V7XzcffFtXyOMkrUWGeAOte6DbgH2A5MBs5z96UVHezuhf0AUwYKlmu7FNgG7E3ba4BxwG3A\nucB6YH7a9yqwLL0+m2zxMK6GeYwF+tLrc4CNuX1rgZW57fVAB/AisDTXfi/ZCWAnsCC1tQKHiqxx\nPepc51pPAfqB5rT9MrCq4uMLLuRisvuq9ennGWAF0AJsTGFZkgtVK7Cb7BveRnYP2ZT2l/K/kCrn\ncTqwC+gDnib7xgNMB/YCp+X6bkhz/A6YnGtvBcYDu3NtJeCLBghszXVObfWs9XvAo7ntLcB1UQLb\nXc0HBx4EngWagZXApty+x8kuWWfWOJcm4FbgY+CJ1LYCeCfXpxn4hexyuWvguNz+u4E3ctsvActr\nORM1SJ3PILtqdNar1sAhYHp63QIcAMZUenzRTwlmAZur6L+Q7AzxAFlwfoJjC6D5wCepD6l9tpld\nXm5AM7vAzPYDR939A2Ad2X0aafzfc9270vu3A5vN7GqyhdeAm9IcBnQAb6f5VjSfEVJrnReRLeYO\nUKbWVX6un4F96fUdZFegI5WOUdiiK/2F5Xzg0yoO6wNmkD1y2QrMMLM7yc58b5Fdqrbn+i8FdgBf\nlRlzP/AU0GFmLWT3Vs+nfd3AVDNbRHap3Ofua9Ki4UZgmruvzY01CXgst90LzOHfxU4l86mr/1tn\ndz9qZt3AtWVqXc3nWgYsMbN+soXXwJOGisawdGoedWY2B3gBaPPcoxapr0aus5n1Ap3uvq3iY4oK\nrJx8zKwL2OPu76Yz//vAVK8ihI3wHFZOHuOBJjNbCFwJzKsmrKAzrART9FMCkaoosBKKAiuhKLAS\nigIroSiwEooCK6EosBKKAiuhKLASigIroSiwEooCK6EosBKKAiuhKLASigIroSiwEooCK6EosBKK\nAiuhKLASigIroSiwEooCK6EosBKKAiuhKLASigIrofwDkNCTxB60e84AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x81babe0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATIAAABHCAYAAACEXssDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACoRJREFUeJztnXmwXEUVxn8nJEIAEQlRMBFIQKAIsgVQWV4eISCLwh+K\nUIBiyVrFqggpQBFBpYJFKbKEAmVRCtBCypXgEomQAIIlSEgpiLIoUpiSRUUIS45/nB64ue/Om/fe\n3Flavl/V1OR13z7Td+ab73af7jsxd0cIIXJmXK87IIQQ7SIjE0Jkj4xMCJE9MjIhRPbIyIQQ2SMj\nE0Jkj4xMCJE9MjIhRPbIyIQQ2SMjE0Jkj4xMCJE9MjIhRPbIyIQQ2SMjE0Jkj4xMCJE9MjIhRPbI\nyIQQ2SMjE0Jkj4xMCJE9MjKBmY3vdR9E3vRaQ9kbmZkd2Os+5IyZfRQ4vANxzzGz7eqO2wnMbB0z\nO9fMzjez083sLb3uU07UraGxaMdy/V+UzGxnd7/HzK5390Mbf/e4T9cC2wDbAi8Ci4GVwERgdeA+\nYL67L03Hbw38HvgXsCw9rwkMAC8DtwOvprLtgbemY8YDM939oTb7Oxs4wN1PaSdOk9irAz8GjnX3\nR+uOXydmNh/4grv/w8y2IPr8mR70oxv6WQBsBUymTzU0Ju24e5YP4HzgQuACYB5wQQ0xx9cQY1NC\nfPNK5QZ8HVgBDKSyLwGXABMKx22V2l9Rar8R8FQ61+U19HMd4B5gjQ5+RpsRX0brtV6G6eMM4OBS\n2anA2v9n+tkYeCr9+4J+19BotZPz1PLzwGPAh4gv+Fk1xLzMzDZsM8YA4MAvioUen87lwATg5FS8\nHXCiu79SOHRWan9bqf0TxAf7PuJK2y5nAte5+0s1xKrE3R8BngAO7dRr1IClR5Gx5nv6WT+PA3ek\nP3emzzU0Wu3kbGS3AEuB7wP3AgvMrN3zmZAe7TCLuGreUVG3SXp+NuUAbksCLTKQnquE9m/CyBa1\n00EzWxM4GvhOO3FGyEWE4PsSd38Q2MPMJgOY2WbA+u7+nzGE63f9LDezNYD3k4eGRqydbI3M3fd2\n90XADHdf4u5z3H1lr/sF7A4scfcVFXUnAM8RQ/sNgeuatH/M3Z8sFprZROBW4C20KUJgf+BRd3+2\nzTgj4V5gipnN6MJrjZXTgU+b2UXAwdQzuh8rndTPQmAXwmwXtdnPbmhoxNrpi2V3M9ufSGJuVCpf\nAlzq7tcP0/yKjnZuFJjZFGAacGWpfH3gy0SCdTd3fxh4uKL9psC7gGvLde7+opltA/zTU7I3tTkA\nmEMkiI8A1gMOStW7AV9x9wWlcHsBdw5zHjsQq1BO5FaOBo4F1gWmAGf7CJOw7r7SzO4C9iES0l1h\nNJpy9+fpg1Fjp/UD3Gxm59FhDaV4ewFbA4cBuwI7Am8HXiOmw682fSPe6POItdMXRgYcAjxSLDCz\nLYEPAJ8brqG739rBfo2WWel5upmdTVz5diUSl59y92NbtG/kR37dpH6QwpTBzCYAg+5+kpndQwzz\nb3b3M1L9XCKvsnEpzvY0uQCkqdUR7n5y+vtq4G5C4OOIKc/vgK+1OJciy4h8TiVm9i1gB+LcW2Hp\nuFPcfbg8z5g11UM6rR+APeighgrxTkzxbgFOdfe5qf43wBnAeS3OpcGw2mnQL0Y2CHyzVDaLWEK+\nq8t9KSd+R8MgsWx+XGOam5aSfwYcBfyyRfuGkId8QVNOYidiRa14/OL07+nAQncvGowRV9cymxBT\nlCpOAU4r/L0W8Iy7321mU4mV4muGPYuhPEtMaSpx9yNHGW8kDNIbTfWlflKsbmioGG8acLm7LyzU\nP0JM30dqZMNqp0HPjSyNAKYw9CoyANzbiRURM7uGGEYXRwBGbHHYycxeLpU7cKS739ci9O7Ab4u5\nOndfYWbfAy42szPd/S8t2v+9yTG7E5/XokLZUuC5NOVcj1ieL7Itsc+ozNtobmTz0jSkwS7A1elc\n/kbkk1YhJZ6vc/etm8R8Jr1mV+i0pjLVT6O+0xpaSixGbAVMAn5eqp9O7IsD6tNOz42MGOquYOhV\ncgD4dide0N0/WVVuZlcB56StDqPCzN4BbAH8oKK6kaeZDFSKrJAfubHJSwwSuY0HGwXu/nRqOxt4\ngUiONuKNJ3IL51fEcpos9Lj7XwsxtiRyLrdVHVtgGbDfMPUrgdVaxKiTjmoqU/1AFzRUiDdIjC7v\nLsSbSExJiyO0WrTTD0Y2CCwtrtKY2XTSFdXMVgM2d/c/pLpWDt4O7UwLGvmJqmnL7PT8dIv20Hx/\nz+u5DTObVkq2DxIrXcUE6n7ETu4b07aUqYUv2HNUTxfKzCEM4fWkbsVrk/YxDfflnQQ836zSzK4g\nBD6aHNmp7l61RQF6p6l+1g90V0MDwJ2lPW57EqvuxYWWtrTToB+2Xwwy9CqzD+HES4jNe8VkXysH\n7xWN/ESVEBvLx42r1dSKYxpCXlSuSFeymcCvUtHcQt241LY8avo4sc/oCcKQti/UPUqFCM1sDTOb\nV1jungM80JiKmZkBny0cb2Z2vJldaWYzK86pwaT0mpW4+zHuvpO77zyCR+O4ZiYGeWqqY/pJbbqi\noVJ/yp/R8cRC0Q11aadBT43MzDYn9sO8u1A2A/gEMQR+AdgX+Gmj3t1fGcvQvQvMJvbvLK+oa3wQ\nnkYD5xYrk5DmEEn1P1a0n0Bc7f9kZjtSGP4T4lqXoQLeHPhRer2PAT8p1C0mbmUpsx9hVDMs7jmc\nTozIGpzFqlOzA4Dvpv5tUhGv2JdW+aFayFhTndQPdE9DmNl7gA2I7ReNshMIQz4o5QDr1Y739j63\nY4gvyjXpcSGxorIWIbTLiBtHIT6E44k9NjM71J+rgY1GcfxkIpm5lNgf8xJxVTuhdNx2ROL5KmIp\newviIvJD4laUh1P7V4lp3ALgkFKM0wghXQyMK5R/GLi/WJbKD0rHzwe2LNXNAR6sOJ9JxErfvPSY\nmN6T+cQu6z1Lx69NTD0eB1Zv8h4ZsfLUkc+snzTVz/rploZS3VHAf9Mx84FL03v8zk5pp+PCavFB\n3kDMy0dy7IHA+kmcH+lQf64ajRBzfRB5iuXAhjXEOo7YUzaRipumieX+h7p4bj3T1JtFP600ROxF\nu72b2ul1jmwWb8zZW7GQuNLuwapD3Dr5BvBky6Myx91fJq6Sdfz0yuGEERxNdbL+RIYu6XeSXmrq\nTaEfaKmhWVTfK1qmNu30zMjS0v4GtF7aB8DjJt7DgJuBcdaBX6R09/vd/bW64/YpXwX2NbN124xz\nP3Ej+7Lye2dm04jf1+rKbWS91tSbTD9QoaGUH5vKMLfAFahPOz0cmu4NPEST+XGTNouJDXonAav1\nenid+yOJ6KYOxR5P5Gre28Xzkaa6/CB+SeMmIp91ErEw8RqxEjy3W9rJ6hdizewS4AHgz77qbQ9i\njJjZB4lE7kU1x/0isXS/qM64dSNNtU/dGhqLdrIyMpEPZjbO++NnlURmjEU7MjIhRPb0etVSCCHa\nRkYmhMgeGZkQIntkZEKI7JGRCSGyR0YmhMgeGZkQIntkZEKI7JGRCSGyR0YmhMgeGZkQIntkZEKI\n7JGRCSGyR0YmhMgeGZkQIntkZEKI7JGRCSGyR0YmhMgeGZkQIntkZEKI7JGRCSGyR0YmhMgeGZkQ\nIntkZEKI7JGRCSGyR0YmhMgeGZkQIntkZEKI7PkflLnfNWDHoXoAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7b33b38>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAASkAAABHCAYAAABbELEcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADAtJREFUeJztnXmwHUUVh79fCAGVQiEEUUhAdiEqiigBDUuipSKIwQUF\nlZQV3FgEFSlQS8UFtKQqloJExAUhxhXFXdziVqhAZDFosSlIqUFwlyjJzz/OvGTezb333Xsz983c\ncL6qqfdmuqf7dE/fM92nT/fINkmSJE1lSt0CJEmSdCOVVJIkjSaVVJIkjSaVVJIkjSaVVJIkjSaV\nVJIkjSaVVJIkjSaVVJIkjSaVVJIkjSaVVJIkjSaVVJIkjSaVVNIRSapbhiRJJZW0RdKWwDJJM+uW\npWok7Srp05I2q1uWZGJSSSWdWAp80Padg9ws6akVy1MZtm8DPgF8smZRkh5IJZVsgKQzgJW2fzzA\nvTtImgEcKGmWpK2rl7AnORZIepmkg9uF274KWCXpVZMsWtInyv2kkjKSdgO+ATzO9uoB7t8KeBkw\nB/gBcKnt/1Uq5MQyHAMst71K0tHAdbZ/1ybew4BfAU+z/cfJlDHpnexJJa2cAyweREEV7AhsB9wM\n7ApsU5VgA/JfoO0EgO1/ARcB75xUiZK+yJ5Usg5JjwGuBR5l+/424WcDd9v+eHF+GWG3urpN3DfY\n/sCQ5JxQDkkvADYH/mB7eZe0tgbuBPaw/edhyJtsHJuskpL0fNtfqluOUULSu4BZtl/eIfwa4Djb\nN0uaCqwCZtr+5yTLWakckj4P/ML2eVXKmaxH0ta2/z7IvVOrFqYJSNqLsIukkuqPFwNntAuQ9Ahg\nhu2bi0tPIYzrAysoSa8hhoStb0oV166xvWzYcgBXAKcDqaR6RNJc4CTg6cSQ/s22F7eJtzlwJXAN\ncPZAmdne5A7gHcAL65ZjlA5gN+ABYNsO4UcDl5fOzwbeVY4PbAG8bchyVi4HMLMo+/Y11v8XCSP+\nWmA18BNgSUuc1wD/KeLcCZxbg5xbApcD5wOHAC8v5Pl6h/jHAGuAvQbNc1M1nD8X+ErdQowYTwdu\nsX1vh/DDgN8BFEOsY4DlwEvHIthebXvYRujK5XD4gv2JqINasL0AOLE4XWz7YNsntkT7DHAjcIzt\nmbbPnFQhgyuBG2yfbvuHhUwA93SIfyzwK9u/GTTDTW64J+kA4EYPPjv1YOWJwK+7hB8OrJR0PPAQ\nwtnzaYShHUmPBw4Ffu3wQRoWw5JjJfAE4AuVStsfc4lh7vdbAyTtSyixZ9q+b7IFK2Q4EfgD44fF\nOxZ/V7aJvxVwBDGyGZhNTkkBxxHd0aQ/9gZuaBdQOGduZftFXe7/KzCL8LEaCkOW4xbgsYPKVhGH\nEEOncU60xUzl7rZPrUWqAttLgCUtl2cTivXnbW55LjH0/vLG5LtJKSlJU4i36Ok1izKKzAR+1CHs\nsC5hY6wi3qrD7MEOU44/ET2pjkj6GPAkNjT0t41exHu9u7hAlNIWcBAxNPpHcW0KcBYxvDq3hzzr\nYA5hc/pZm7Ajgdu9fpJjIGpVUpKOAp5BaOPjgIOBJxOzBWuAk20/0EeShwM/sr22TV5PAo4nGs7O\nwCLgVcAjiEb9Ntu3D16ajUfSfoRx9F5gGjAdeJ3D6XAsTk/lGKButwc6TRHPBr46gfjTgVsJZff7\nHovcL8OU4y/AI7tFsP3KPtLrlycQz/AHsK7XuBQ4z/Z3hpjvwBRK9CDgemB1y4LtqcCzWG+zGpwa\nZzM2B84v/v85sAKYVwq/Gnhrn2leAsxpc313whg5dv5x4DfAgUUlrwFO6zOvjwHXEbaQiY6xeHO7\npHdCEW+H0rU3AUf2W45B6hb4N3BCXe2h7oOw9/yxxvxPKZ7f84D9gW8W5++pIO2q2+pmwKWEN//a\nQs61bY41wAs2Wv4aH8p8YEHx/yrgnJbwywgDeK/pbQFc2yHsQ8BDSuefBX5W/L8T8D5gmxrrYk7x\nwOeUrh1AzKRs1285BqnbokE9aN02gIXAfTXm/wXCDeK04tgC+DMxDN287vppkXUzYth7ctFuFhbn\n5eO9RdiMjc2vzuHeDcB9kvYhuujfbgnflZi96ZUj6GwsPc/2f0rnBxG9EGzfRQcHxknk7cQQ72hJ\nC4g1lSuBl3i8k2JP5ZA0SN2uBh5aSWlGk2lMYMcapk2KcH/4OzEr+a1SfmcQTraf7iGNScH2GuDa\nYob1b8CnimvrkHQOcIftVVVkWLdWfi3wL0pvC+IHdD/wtdK1/ejSswI+B+zTQ357E13RwyeI1zW/\nCss/FfgfcEGf901Yjl7rtrh+D3BK3e2hrgM4Fbitprz3KZ7lBS3XZxVt46cT3D8pbbVNvr8FLusQ\ndg+wrAq5mzC7N5d4COXtPOYRb7ayK8FNwHPaJVAsEp1pu5ufzxjziTfmT0v3P8YbGs075lfcs4Tw\nLernrfoG262zU9OJ7vNtPaRTppdy9Fq3EMOKtns/SVpLb+VsOgJsu92OnNsRdVAHY/5R43pctn8v\n6avAUZKeaPu6DvdPVlstp/l4wkb6pjZhM4Ft6e53BxPIvY663lwlbXo3LUsYiGHbL4EpPaaxEDij\nQ9iWhPPZvsX5FcDVpXABH66x/JsRvj1ntgnbgfW2pb7L0U/dEoba99fdHmp8DkuAz9WU91LCfvPo\nNmHziV7WxXXXUYtc5xAmig3sZSWZFxXn04GzBs2r1mUxkvYgfoizS9dOAvYljLhrFbxO0kcl7d8h\nqWOJB92O5wBvBPYtFh7vynjbw9nAp0r595JfZTjG8hcR07XrkPRkQil9t7jUbzkmrNsWUVYWaT5Y\n2Z3YA6sjkj4h6QZJ1/dwjMU7dII0x3z77rB9d5so3yV6eMdKemTLvZPaVlt4MfB5t9/QcEbx99mS\n5gFfp+Tu1K/cdQ/3DiHsI0skXUho32nAAbbHut5HAcuI2a5diNXU6yge3DR33ov7h4Rxef/ieCpw\nQZHff4GvePx+SF3zGxJnAedKupxYOLoF4VqwsKRM+i1HL3Vb5jpaFOWDjL2BD3eLYPuEqjIr9u5a\nQvhzbQ88IOl7xA//giLOfsQLbPvitmslLbX9xuK8jraKpF2Aq+i8q8EKwiZ1KPAw4L22ryiF9yV3\nrftJSboU2Nn23C5xtiKGMjcCe7plTZ6kU4HVtj9SkUxd8xsVeqnblvi7EEtDZngIa8MkbUv4Ap1J\nLP5eQQxhdweutL20iHcV0XO4mbATnQwsJoYWewAH2t6zYtlmAbcTw6267FJ9M6pttV+5m9CTurRb\nBNv/lPRqYiuLKZKmeryn9AsJzVwJPeQ3KkxYt2Vs3yHpt8V9V0wUv19s31sYcN8CnORiF0xJ04kP\nItwF3AV81rFGDEkvAp5v+7SxdCSdX7VshOH6+lFSUDC6bbVfuWuzSRU2k50ozU514XjiE0SLKM1Q\nKD4acJ87by8yKG3zGxX6rNsyy4itT4bFfOAmj9+md0eijkXMPF5SCpvHepvcGLcOQa4FRNlHkVFt\nqz3LXYuSknQK4WBo4H2S3jzBLSsIG8xNHu809lI6G8w3hk75NZ4B6rbMxcARkvpxou2HZ1ByLJX0\ncOBc4N22l9u+uOWNOp+wfazDdle7Ub8odvqcT+EUO4KMalvtWe6R3uNc0pcJr+x/1y3LpoKkS4iV\n+BtsBVtB2ncTb88VhN/OnoRH9gaTHoVh+RZgRw/xc1OKjzrsYnvRsPJINo6RVlJJ9Ujaiei97Oc2\nX4zZiHRnE/5Z2469VCR9C7iwZeZnLP4i4FTbs1vDKpRpa2LL3oM7TP8nDWBT3T44GRDHGsDFVP8t\nuvmE82m517sNsFeH+PNoGeoNgfcQ+4SngmowqaSSDbB9IfAoSYdVmOw4+5Jif/L9KZaiFA6qY2Ei\n9gYbmpKS9Gxi54uLhpVHUg11uyAkzWUh8FFJt9oeeBM7SU8hvvAyD7hf0uG2v2f7AUkfAeZImgYs\nl7Qz8fWR3YilFEdK2ssVf2S0mBU+HnhFlekmwyFtUkmSNJoc7iVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ\n0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhS\nSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ0mhSSSVJ\n0mhSSSVJ0mhSSSVJ0mhSSSVJ0mj+D9v6gdzWP5syAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x8145860>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAABHCAYAAACwC8haAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEaRJREFUeJztnHu4XdO1wH8jOXleiSAESUgkqGgR+klReXDj05a6bj0b\nl9u4lDbeNKhXpcSjLqrVerbxOhrqtqUupZGHXo/rEvUoqUeIhkhQjyAiGfePMXYzs87aZ+9zzj5n\nnyXj933r23vNOeZa87XWGHPMOZeoKkEQBEFQJLrUOwNBEARB0FJCeQVBEASFI5RXEARBUDhCeQVB\nEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhC\neQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARB\nUDhCeQVrBCLSt955CIKgdhROeYmI1DsPQf0RkdEiMl1EXheRj0XkuDJy3UTkHmByB2cxCAqPiPQV\nkd1F5CAR2afe+UkRVa13HlZDREYAhwE7AR8D7wB/B6YCrwCNwPGq+kYm3S7A4ZhC/hhYH1DgYlV9\npB3yuSP2QuwFDAIeBc5S1YUZuaHA2cBHwEqgN3Cqqi7KyA0ETnOZnn7dC1X16TbksTfwkKpuWyZ+\nKvBb4DlgGbAZsDdwQ7YcLn8HMAz4ArAceAx4RlWPTGSOBv4T6AH8DbhZVU9tbRly8tATuB54w/O+\nKfBL4B5V/WqO/DeA6cAIVX2+VvnojFRqb5fZAuuPHwKfYP3ybFVd6vF7Aj8HnvS4ZVifLPGIqv7c\nZbcEzgfme1x/4BRVfTO5365Yf9gEuF9VJ7S9pPWnM9Z1O8ltA3wL+C7QqKqHlSuvy98CbI29Iz4E\nHvQyNQADPOxyVb21uetUhap2igPoA1zjlflNoFsS1x/4NfaSei6Tbi3s5XQvMCQTNx54H5hQ47yO\nBO4B+vh5b2AWsAjYJJEbCiwG9knCJgBzgS5J2LrAfwEDkrAhmFIZ1so8fhH4X2BFMzIrM8dy4PsV\nrjvKZS8qE7+O33ffduon9wGnJefdPT83lJG/DXi83v27vY8q23sEZgCO8vMBwEuY0VWSORFYUeb4\nFBjvcn2BBcDBSdrTgKeAhsx9e3rfOqbe9fRZrutayyVxvb39jqiyfrb2Z/KCnLgDPO47bW6HencE\nL9BQ4FlMS/crI7OlF/qnSdgQr/Ab8VFkTrqLMG2/cQ3zexewWSZsO8/fLUnYb4AlGbmemJV1aBJ2\nMvDdnPucBkxtYd4+5/m7HniowgM2H7P87vB6+nwV1z/FH66vlOm0lwPrtFM/ORIzYFLFP9Tr/bQc\n+bW87Sd3dJ/uqKPa9ga6YsbQMUnYIMzgmpSEXQlsDHTNpN8ZuDQ5Pw8b/aZtsQ42wvh2TtoVwLb1\nrq/Pcl3XWi6JG+/tN6LKejq63DvC4xcD89vcHp2gQ6wDPO+N3beC7F+A/fx/L0xxPU6OtZDpCCup\nMKJoYZ7fx6yq/pnwt4E3/X837wwP56R/DvhdphP/OkfuBOBHbcjnL8o9YB4/oxXXvAuzwvpkwvfD\n3KEd3X/29gdl95y4gzzucx2dr3oczbU3MBFzp1d6xn6cE7YW8HugRxL2PPDbHNk/Y+7BNOxU4K16\n189nva5rLZeET2lJ+wG3YiPHJuUHBFgKvN3WNugMCzauBIYDR6nqexVkFwMP+P8rsKH5Mar6aYU0\nYEP9WvEyNqf2T5nwZZhSBXMFNmCdOMu7wI7J+VxgXxG5WUT6AYhID+AQbKTRKfDFMjsDT6rq+x7W\nRUTOAJar6gV1yNZOmIJ6KCdub+BlVX2uY7PUKTkIeKHSM6aqx+YEXwicqarLAERkLWBz4NUc2YXA\nDpmwMcCcFue4uHR4XddaLsMY8p+vcuwKPF2m/KOwd+SDLbheLg1tvUBb8EUPBwKzVHVmFUl+pqpv\nich22CTio6r6pwpp1vXfWpZ1FDbySCemN8L82jM8aDHmsuqZk35jYH0R6aKqKzEFdThwMDBORE4B\n9sRcYa1esFEFPURkMqaIV2KLMU5V1b+Wkd8W6AfMBBCR9bEFNBeq6n3V3lRENsfmCBtV9aTWZl5E\numDK9M/AMhHpmkQ3YHXY9onhzwZfBh7xBRR7YBb+psC5qjq3XCIR2RlzyT+eBG/qv3kvp6VAXxHp\npqrLvU12AaaJyMWY5b0Ntujq2eQ+u2Huphcxb8xszIU1OpHZD3uRDsaelf0xA3YQcJmqPlZ1bbQv\nHV7XtZZT1eWep56YoX2On3fHFqF0BdbVZLGWxw8HNsKmIvI43u/9PZev2O7lqKvywl7YClxXjbCq\nNvrfUoXdVkWykf67oGVZazYfH2HzVinHYCOA77vMShH5FWb9/wMRGYApLzDFukRVPxGR3bHy7IHN\n4d2Fjcjakw2Am1T1b563CcAcEdlGM6uOnNFYe80RkR0w3/k4bKVl1coL2NDv/fnWZNpfiL/EDJ8G\nz9PyHFFl1Ui90yAi1wHbY/mrKO5yx6vq7Fbebz3MiNoA2EpVz/TwMcBsERmlqn8pk/zHwL9mwkp7\n5j7JkV/qv/0wA2577OU9GPiGqq4QkROA2zHFg4gcjq0m3kFVF4jIxsA8zL1VKkMPjz9GROZhi7Qu\nwJ6TxzGXfRPltQbVda3lSh6rnbApkAdd+Z0FXIoNHk4Ukcmq+k5yjdI7YrVBhY/4zsQMl7Gq+lw1\n7d4c9VZe4/x3RrNSTdnNf6vpYHtgldmSl2uLEJHNgEnA+br6svzJwC4icoSqXuMv3UmYUtoOU3Yl\nJmFD+b0wl+hewFwRGa+qz7RT1rdQd0Q7jcDVwOmYhZRlDFaXm/mxD2YUHC4iZ5estUqo6hwffb3e\nhrxfiinNy4D/wJYbp+yPWXezWnsDEemqqisqS7YMVT281tesQGlEOhSYluRjloi8i7mqvp5N5AZV\nT1XNuphKdZKnELpl7jkGUywHJnU5H9hSRLbCVov+DDhMVRd4vhaKyDusbniMBR7yF+hgzOj6k4gM\n8uvfnlfwNaiuay1XYgxmGD6JGeYXq+q7vun/xoziKskD7CUipdFTg1/zD8DpbsBsS3XtXpZ6K69B\nwFLN2VOURUSGq+oLfjrEf+dVSNMf+Bq2suZuD9sRG9b3xVxOP2ytleXX6w7cDFylqmencaq6RERG\nAceKyCWYZXM15s76uNTwbonuoqp7+/kXgB8CxwE3sWr0WFMyiqs0WlyMKaU85bUrNuR/VlXv9bxe\nhymJAz2v1d775TbkewXwuIgcgs0f3pBVMiIyBVvRtDjvGolcA/DvmHX+JrYYZxlmOe6FTVaX3CcT\nsS0db2LbN9bFXKZ/b21ZOoi3/feF0lxKwmvA+NRVlHA08HDO9Zqr09I88Pv+OwaYk7nv4ET2HJed\nXooUkU2Agbh72nkHW7C1E6bwpgOo6mtY23UW6lXXtZYrMRqbCzsT2x7zLkBpRJnDaGCxqh7SzH3A\nvDbVtHt52rrioy0HZnm/VoWcAFck529hFkS3CukucbmJft4LGx2V4vfDFMpGbSjDDdjGw5akeRW4\nLzl/G3MxZOW+7fnfspV5a25F1Gxgdk74AuDDnPAR2LzYlZnwTTDL7H/q0H/mYZug8+KWAL+qkH5z\nzNU0MRM+AHtZ7uHnw7EFB+MycmOxF3OHlruV7b0ImJkTPtP72IBMeAP2cpmSk6a3p7k0J+6PJCvT\n/Fk9ISPTiLmt+nnfuSUTf5iH561WOwt4Pep69bqutZyfd8fm7e/BpjLuxPetlSn3Jv6OqPTcrd3S\nds876j3yehj4qoj0UptHKsfRWIcv8QTmctwUeCEvgQ9LvwNMV9XrPXg4MFlErlXVl7CNzb2wCeVc\nt0NziMjZwPOqel4S9m+qemMzafpjI86SRb8+1phNyqGqV4nIheQv+mgr2wF5CzP6s2rXfUrJl73a\nKFVVXxWRu4Cvi8hIVX2i1hnNw3f+D8f2nWXjBmOjomezcYnMQMxdfYaqTkvjVHWRiDwEzPL2uheb\nB3kgIzdTRLYUkTGqWrV7UkSuxkbTLZmHOUlV27Ji72GsvrL0wEaaWYt8R8wSX5JNoKofisgTrBpB\npQzH52q97kqb1vGwLsDumAtpGOZOyo44RgNzVfU9ERmiqvOTuHFUa5mz5tR1reWSfPXEDP7ZInIS\ncL+IrKc2T7+2+kjMKbkJZ+ZcO3uflrZ7U+psvXwZ07STmpH5ZzL7h4B9MeuhycZUj98Is8p/h/mR\n07gvJf9HkLN5EtiCZJ9FmXtMAM7JCb8q+X88ZoVtnISdjI28uidhC4Gdc67Vx2XTr40Mz5apmTw2\nZx1Ox1YLpWEjMcvp9Bz5Rq+rJpu9vY1WAte2oO0HU2HkXCH9FGzE2uQaSX6O8PP1smXCFseUHTWx\n6usG12OrYcvJvYPNr03CFOkprS1TW48K7X0Q8EG2X3v+G3PkD/U6bLJp1eN/ACzIhA3zNEf5eU9s\nv8/wROZAf+Z38L68EviXJL4HZjxd7OdXZOI+KpenNbmu20nuDC9HNz8v7alcD1P0WS/MNVSxr7Kl\n7V72Op2gExyHzaNMIPlKBmY5n4FZQXnprsBcEltnwnfDFNe56fXKXOMGMp85wlxBK4Hbmkk3Gpv3\nuDFzNJK4sbAJzpeADfx8JOYqHZW53gHYhuv001J9MQWzbxK2q3eO/66ybm91+V45cV/08qdKdBrm\nHuuWke3i+X6xzH3E4z8g4xIpI78L9lK7sw39Zh5wdZm4g70N78Cs/EdY/bM862Ev0EMr3KMPZinn\nymFfXFiJrTQd6GG3AyM78hmqsr0Fm8c7MdPvFgGDc+RP9rJ9q8y9NsSMhwlJ2GU0/RTR3cDe/n+g\n3+/YJP7/SnnyfnY1NjI52tvpnER2HG1wo68BdV1ruT8A9ybnpS9tdPP/+2Ty+SKwqMr6q7rdyx31\ndhuiqpeLyCPY1ySOF5ElmP/3NezllLvBVG3J7GzgEl9k8BG2JPdV7LMkLzZ3XxGZCCzUph+NXYRV\nYt5mvRJ3YO6Qb+bETUn+X4Ipoam+Oqcv1uCPZsoyXUQWApeLSGlTcxfgJ7r6YpJFmNLMdZV6udbH\nFOlAfCkyMF9EnsZGRo1+z8dE5CrgJhH50PP2FDZaKe3xGIp1qsHY0t9PRWQGcLuqXuky2wFXeTzY\nQopGVT25XB4x98hi8t2TFRGRIcD9+LaEHOb6PcZi7pipqvqbJH4YVr+5+4J89egr2Ai8ASi31+4I\nzPUhmML8EfYAD8Zc2+1OC9pbReRrwKW+haO0sf9L6qu9MvwV+yB2dhUnfr03RGQscJ6IbI/1n3WA\nPXX1jwYcCVwkIuOwep+oqr9P4vcHLnM3bgP2zMzAttHsgH0ircQg7GO1dfnAcmev61rLefhPkvMZ\nmIF+LTBPVc8T2986zetkCPCJiDwA3KWql+SVx2lJu+fS6b4q3xF4x9pAVX/h+0c2VNVXMjJnqeq5\n9clh0J74fpJXsRHSUznxx7lRNQRTRtur6pMZma0w335ppN9dVZeKyN3YC/oNgiBoNzrD56E6FN8s\nOAC4W0Q2BL6CDaOz9OjQjAUdhtrWjGmYi+IfiEhXETkKX7yjNmF8JzZPk8ptgc2F7auqz6jqcldc\nO2OrzEJxBUE7s0aNvNwN9iSr9jOUVhetraofJHJjscUM5T5xEhQc3zD+PcyV9QI2X/cRNtf5XiLX\nG9tztwxzJa6FLUT4qSYbNEWkD/adzfM7rBBBsAazRimvavCX2rmqWm4+JQiaICJHYqMxAUar6h/r\nnKUg+EwTyisI2oiIHIAtbFmOueJ31eSjs0EQ1J5QXkEQBEHhWOMWbARBEATFJ5RXEARBUDhCeQVB\nEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhC\neQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARB\nUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASFI5RX\nEARBUDhCeQVBEASFI5RXEARBUDhCeQVBEASF4/8B8ez7y/M5IXYAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7361240>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEYCAYAAAAXsVIGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VVW2wPHfovcuQXrvKFIECxBFpSZYcSwz1nHsij4U\ndeaBbxwVLNiZsSHqMIqKTm5oESEoVUCRKkR6S+i9paz3xzkhl5iEQO65Lev7+eTDvafcvXYCrOxy\n9hZVxRhjjAkXJUIdgDHGGOPPEpMxxpiwYonJGGNMWLHEZIwxJqxYYjLGGBNWLDEZY4wJK2GbmETk\nAxFJE5Glfseqi0iSiKwWkWkiUtXv3FMikiIiq0TkKr/jnURkqYisEZHXgl0PY4wxZyZsExMwFuiT\n69gwYLqqtgJmAE8BiEhbYDDQBugHvCMi4t4zBrhLVVsCLUUk92caY4wJI2GbmFR1NrA31+FBwDj3\n9Tjgavd1PPCZqmao6gYgBbhQROoAlVV1oXvdx373GGOMCUNhm5jyUVtV0wBUNRWo7R6vB2z2u26r\ne6wesMXv+Bb3mDHGmDAVaYkpN1tPyRhjokypUAdwhtJEJEZV09xuuh3u8a1AA7/r6rvH8jv+OyJi\nSc4YY86Cqsrpryq8cG8xifuVLQG43X19G/Bfv+N/EJEyItIEaA786Hb37ReRC93JEH/yu+d3VDVq\nv4YPHx7yGKx+Vr/iWL9IqVtWVhZTvviCR7t1Y2qFCvxvz56Fus8LYdtiEpHxQCxQU0Q2AcOBF4Ev\nROROYCPOTDxUdaWITABWAunA/ZrzHXsA+AgoB0xW1anBrIcxxoQzVWXaV18x9aWXueqXZbx6/AgC\nzJOANoLOSNgmJlW9OZ9TV+Rz/QvAC3kcXwx0CGBoxhgTFfZv2s/frrsNXTyJNzSD0KWiU4V7V54J\nkNjY2FCH4CmrX2SL5vqFW902bIDxTy1jcc2rkEYNuHXDcZpcfAcPtr+AqRUqhMWMMvGqjzDSiIja\n98IYE22ysmDRIkhIcL5SU+Gmy1K5qfE82g+5kkp1KgFOl17SxIlMfekl+ixbxrwuXXh21qzTfr6I\noAGe/GCJyWWJyRgTLY7sOsLy17/j4MRv+dPu0VStUZL4eIiPh27doGTJ/O/NTlBLZ89m6OjRpy3L\nEpOHLDEZYyLZjqWprH4lkbLTEmidlszaap3Z3yueBv+4j2btynlWriUmD1liMsZEElVYvtzpnvP5\n4OmfrqNWndJoXDxtH+9H9abVgxKHJSYPWWIyxoS7E4fTmZd0kInJNUhIcI7Fx0NcHPTsCWXKBD8m\nLxJT2E4XN8YYA/vW72XFy1MQXwJtt0xjRb2h1L73aRISoH17COHjRp6xFpPLWkzGmHCxdi3Mfncl\n5737AM32LWZVTCwn+sTTcsgAYjqeG+rwThH2XXki0hh4HNgNvK2qOwP24R6zxGSMCZXMTFiwwBkr\nSkiA3bvhxiv3cEvjObR/pDcValUIdYj5CqvEJCLfAxWBmUAy8L2qHnDP1QRGqurdAYrTc5aYjDHB\ndCj1EMtHf8vxb6Zw8563qHluGeLinDGjrl2hRIQsfxBuY0z/cr9qA48BmSKyBCdJrQMaFTk6Y4yJ\nItsXbiFldCLlpyfQaudsStfoxvHL4pn79wwatQnBzIUwVZTE1BNoqarbRKQhcJl77AacltRDAYgv\nTyIyBLgLyAKWAXe4ZX6OkxA3AINVdb97/VPAnUAG8IiqJnkVmzHGZFOFJUtypnQ/vuyvNKybQfot\nt6ND/kPnhlVDHWJYKkpX3ouqOiyP42WBN4FXVHV1EePLq9y6wGygtaqeEJHPgclAW2C3qo4SkSeB\n6qo6TETaAv8GuuLsxzQdaJG738668owxgXD8wHHmTNrHV7NjSEiAsmVh0CBnSvcll0Dp0qGOMLC8\n6MorSi9mMxFpkPugqh4H7gXuL8Jnn05JoKKIlALK42z+NwgY554fB1ztvo4HPlPVDFXdAKQAF3oY\nmzGmmNm9ehez7/mYefWv52jVGNY/+U8aNYKkJEhJgVdegdjY6EtKXilKV94YYLGIPAJMUNXM7BOq\nmiUiGUWOLg9u1+ErwCbgCJCkqtOzd7Z1r0kVkdruLfWAeX4fsdU9ZowxZ231avjhgzV0/dddND6w\nlFJ1ryCjXxwZj4/hrjbnhDq8iHbWiUlVZ7hjN+OAt0RkGjAfJ2E0BVoEJsRTiUg1nNZRI2A/zsaB\nt8DvVmu3fjljTMBkZMDcuTmrdB85Atf3OZfzH3+asg9fRvdq3q1HV9wUOjGJyP3AE0AVnDGeJ1T1\nAxFZBPwDZ9LDH9zLf3bfe+EKYJ2q7nHj+hq4GEjLbjWJSB1gh3v9VsC/y7G+e+x3RowYcfJ1bGxs\n2O2jYowJrgNbDrDi1Wlk/DeRW/a+Ta3GlYiPh88+gwsuAJHKQL9QhxlUycnJJCcne1pGoSY/iMgf\ngPE4D85WwBnXOQDEquoS95qqQHNgv6r+5lnAIhcCH+BMZjgOjAUWAg2BPao6Mp/JD91wuvC+xSY/\nGGPysWXuJtaOTqDSjARa7JnP6lqXcPSKeJoO/yP1W1cKdXhhJ2QP2IrIPGC0qk4QEcH5T/5R4Dyg\ng//4UjCIyHCc1lk6TuvsbqAyMAGndbQRZ7r4Pvf6p3Cml6eTz3RxS0zGFE9ZWbB4cc6qCw+vfoCW\n9Q5T8pp42g+5ksp1K4c6xLAWysT0i6qen8fxkcBPqvp5IIMKBUtMxhQfR/ccZU7Cbr6YVx+fD6pW\ndaZzx8XBxRcXvJGeOVUoV35Iy+f434HXcR5sNcaYsLVzeRq/vpxImWk+2qTOYHvDh2n58HMkJ0PL\nlqGOzvgrbGLKc+q3qh4SkaB24xljTGGowooV8P249fT45800PLSKkg36kH71DWQ8/iF/bF4j1CGa\nfBQ2MRX0IK4nzysZY8yZSk+H77/PGS/KyoJr+59Lt2f+j/IP9uLiSrYeXSQobGK6VEReBGYBc7JX\nETfGmFDbt34vK16ZivgSuHXfW5zTuiZxcfDNN9ChA4iUA64MdZjmDBQ2MVXAeYZpKKAishz4AZiD\n81zT74jI46r6SkCiNMYYPxuT17Ph9f9SJTmBZvsWUSomluNXxTH3b2Wo48mj/SaYCj0rD7gZZ/Xw\nXkAP4FxyVlfYidOaSgZmquqvIjJTVS/zImgv2Kw8Y8JXZib8+GPOqgv3bhhGx/q7KHN9PB2GXBHW\nG+lFu1BOFx+vqjfnOtacnETVk5z9lxTYBVRR1fKBDNZLlpiMCS+Hdxxmztc7+GxBEyZNgtq1nU30\nIm0jvWgXVjvY/u6DnD2ZshPV5UBjVY2YpwEsMRkTeqmLt5IyOpFySQm02vkDkxvdz47HXiQuDpo0\nCXV0Ji9hnZh+98EiK1S1nScf7gFLTMYEnyr88gskf7qFq8ZczblH17GyYT9kUDxtH+tLtUa2kV64\nC7et1U8nz4VSjTHF2/HjMGtWznhR6dJw9cA6HH/uZSr95RIuqWCbFhV3RWoxiUh1Vd2bz7lzVXX7\nWX94kFmLyRjv7Fmzi1WvTKbEJB93HniNGh3qERfnjBe1aQMS0N+3TTCFVYtJRN4FbheRT1T1LvdY\nVeAFYJqq/jdAMRpjItC6pN/Y9MY3VP8hgcYHfqHkub1J7xfP989U4ZymoY7OhLOizGvZAzwDbMs+\noKr7gQeAIyLyTBFjy5eIVBWRL0RklYisEJFuIlJdRJJEZLWITHOTZPb1T4lIinv9VV7FZUxxlpHh\nrLowdCi0agVfXf8fSqz7jROPDaPs3jS6b5tIjw9u55ymtlq3KdhZd+WJyD9wtsLY5XesDM72EweA\n91X1toBE+fuyPwJmqepYESkFVASeBnar6qh89mPqirNJ4HRsPyZjAuLAlgPMnZjK+EUtmTwZGjTI\nmdLdqZN10RUHXnTlFaXF9CzwaHbLRES64WwkuAM4BngyVVxEqgA9VHUsgKpmuC21QTjbvOP+ebX7\nOh74zL1uA5ACXOhFbMYUB1vnbWLW4LdZVKsPNKjPodHv0r07/PQT/PwzPPssdO5sScmcvdOOMYnI\nIOBanO3U56jqSgBVPSEizwLPiMhbwF+BEcAanMQ0w6OYmwC7RGQscD6wCGfTwhhVTXNjSxWR2u71\n9YB5fvdvdY8ZYwohK8tJOt+NT+PqMX2oeXwrJZv0J/2Oe5AhX3K9baRnAqwwkx/KAzfhLElUQkT2\n4fxHP9v9egX4G7AvSGvjlQI6AQ+o6iIRGQ0MI2d5pGxn3C83YsSIk69jY2OJjY09+yiNiWBHj8KM\nGc4q3T4fVK4M8XG1OfbqO1S/qxuXlomYZ+dNgCUnJ5OcnOxpGacdYxKR3sBAnIkOl5CzusOFQGmc\n7cq34bSUngfmqWq6ZwGLxLhlNHXfX4qTmJoBsaqaJiJ1cNbsayMiwwBV1ZHu9VOB4aq6INfn2hiT\nKdZ2Lk9j9auTKD0lgXsPvUyVTs1P7uraqlWoozPhKiQrP7hjOo1VdWmu4+WAi8hZK687UA44grPq\n+Ceq+mkgg/UrexbwZ1VdIyLDcVY/B9ijqiPzmfzQDacL71ts8oMxqMJvk9ew9c2J1JyTQMNDK1lR\n/yqyBsTTZtggaja2LjpzemG9JJE7I+9CIBYnUVVR1e4B+fDfl3U+8D5Oi20dcAfOZIsJQANgIzBY\nVfe51z8F3IXTuntEVZPy+ExLTCbqpafDDz/kbKR3257R9Gqwjko3xdH+gV6UrVI21CGaCBPWiSnS\nWWIy0Wr/xn3M/XwznyzpwNSp0Lw5J1ddOO88mz1nisYSk4csMZlosil5Hevf8FE5OYHmexcyo8ld\n7Bg2moEDoW7dUEdnooklJg9ZYjKRLCvL2Ugv6fO93DSmB9VO7GRVizjKXhdH+0evoGLtiqEO0UQp\nS0wessRkIs3hwzB9ujNWNGkS1KrldM/d1GIR7f7YiRKlbCc94z1LTB6yxGQiQerP21nzqrOR3iOH\n/kGF7ucRH++MGTW1hVFNCITV6uLGGO+pwuqE1Wx/4wtqL0ig7pHfKNmwLxmDb2bKE02o1iDUERoT\neAFvMYlIWeBToDPwEVAWWKyqEwNaUIBZi8mEixMnIDk5Z0r3LYffpU/DVVS5JY729/WgtG2kZ8JI\nRHTliUhL4Fdgp6rGuMdigStV1bOtMIrKEpMJpT0pu5n/2QY+WtaZpCRo25aTXXRt29qUbhO+IiIx\nwclElKaqq/yOlVTVzIAXFiCWmEywbUhaw8Y3E6j2fQJNDizhhya3kfbXNxkwAGJiQh2dMYUTMYkp\nElliMl7LzIR582DKl4e5a0xnymccZE2rOCoMjqP9w5dTvkb5UIdozBmzxOQhS0zGCwcPQlKSM1Y0\neTLUr+90zw1uu5y217e1Kd0m4lli8pAlJhMo2xZsJmW0jwrf+Rh2ZDilLu1+cryoYcNQR2dMYEXM\ndHERuQBnMdUfVTXVPdYb2J690WAAyiiBs0ngFlWNF5HqwOdAI2ADziKu+91rnwLuBDLIZxFXY86W\nKqz8ahU73/yMmIU+ah/bRMkm/cn40118/Xh7qtgSQMacES9m5Q3F2WJiLdABSFbVUSJSGkhV1ZoB\nKmcIzpT0Km5iGgnsdsvKa9uLrkB9YDq27YUpomPHnI30EhKcad03Zf2bgfWXUP22eNrdfRGlytkj\ngqZ4iJgWk6pen/1aRC4WkaeBUUBWID5fROoD/YF/AI+5hwfh7A0FMA5IxtlAMB74TFUzgA0ikoKz\nPccpGwUaczo7V+zgx/G/8cGqi/nuOzj/fGdK94wZ0KrVLcAtoQ7RmKjgRWI6KiL1cLZjH6Oqc0Vk\nGU5XWqCeDBwNDAWq+h2LUdU0AFVNFZHa7vF6OFvBZ9vqHjOmQJqlrEtcyeYxPmcjvYMrKdnsFq4Z\nfjHvvQc1A9L2N8bk5kViehsYgLMp3wkAVT0IvCsi+4r64SIyAOcZqSXu81L5OeN+uREjRpx8HRsb\nS2xsQR9volF6OsyZA5MmHuf+f3agXNYxpG08J54aQbkHetHXNtIzxVxycjLJycmelhHQMSYR6QXU\nBlap6vKAffCpZTwP3IozkaE8UBn4GugCxKpqmojUAWaqahsRGQaoqo50758KDFfVBbk+18aYiqn9\n+2HqVGe8aOpUZzHU+Hi4/vwUWg9sjpSwZReMyU/YThcXkWqAD2iF011XBWcM58+quqLIBeRfbi/g\ncXfywyicyQ8j85n80A2nC+9bbPJDsbf5+/Wse91H5ZkJDD/2FHp5b+LinCndtpGeMYUXzpMfngT+\npqrJACLSBrgbmCEi16jq3ACVU5AXgQkiciewERgMoKorRWQCsBKne/F+y0DFT1YWLJuwir1vfkq9\nxQlUO7GDks0HkP6XB/lsSHcq1j79ZxhjgiNQLaahqvpSHsfbAB8C/VV1b5EL8pC1mKLPkSM5G+kl\nJsKNZb7mmvo/UuuOeNrefiElSpcMdYjGRLxw7sq7Q1XH5nOuJc7Drs8VuSAPWWKKDmlLtrPok1X8\nc83lzJoFXbtysouuWbNQR2dM9Annrrx8O0JUdY2IHAtQOcacQrOUlInL2PbPBM6Z72ykV6bZjdz8\nf5fz8cdQvXqoIzTGnKlAJaaDInKZqs7M5/yhAJVjDCdOwKxZkPhNBg+/245ypCPt4zk+4kUq3d+D\nK20jPWMiWqAS04fAtyIySlV9eZxvFKByTDG1Zw9MmeKMFyUlQevWEB9fiszJSTTt3ZCGNqXbmKgR\nsOeYRKQ5MA3YAnwALAcygRuBcqr6WAG3h5yNMYWfDd+msOEtH9VmJfDCicc4flU88fHYRnrGhJGw\nnfxw8sNEauGsiXcLOa0xH3Czqh4JWEEesMQUepmZ8Mt/VnLgzXE0WJJAxYz9pLQcSLnB8bR/pLdt\npGdMGArLxCQiJYGncR6onaWqx0WkMtAS54HXDUWOMggsMYXGoUOnbqR3XaVp3FhvNrXvjqf1LZ1t\nIz1jwlxYJiY4uf/SDJzFUker6rciUlJVM4v84UFiiSl4ti/cwk8fLeWtdf2ZMwcuushZAmjgQGhk\no5HGRJRwni5+CdA6e3VvVyMRiQO+VNWtASrHRCDNUn79z8+kvZdAzI8JxBzbSPnmN3DnP/rz+edQ\npUqoIzTGhJNAJaayuZISqroOeF1E7hWR8ap6IEBlmQhw7BjMnAm+/2Yx5IN2lJcMOG8QJ0a+RpU/\nX8zltpGeMSYfgfrfoXIB594DbseZqWei2M6dMGmSs6Pr9Olw3nkQH18C+e47Gvc4l8ZiU7qNMacX\njJUfMkUkYNOp3N1rPwZicHbEfU9V3xCR6sDnOM9MbcBZBmm/e89TOBsVZgCPqGpSoOIpzjRLWTf5\nVza/k0CN2T5ez7if/f1vZtAg+Ne/oFat7CttuW5jTOEFavLD3UCWqn6Yz/lhqvpikQtyPqsOUMfd\nKLASsBhnW/U7cGYBjspn24uuQH1gOrbtxVnLyICf/72SI2+8T6NlPspkHSOlTTwVb4yjw0OxlK1a\nLtQhGmOCKJwnP3wEzBeRTFUdl8f55gEqB1VNBVLd14dEZBVOwhkE9HIvGwckA8OAeOAzVc0ANohI\nCnAhzvR2Uwj798O0ac6U7ilT4Npau7ilXjWOjZtAoxs7UtdWXTDGBFBAEpOqZojITTj7L92NM660\nCCgJ3AesDUQ5uYlIY6AjMB+IyZ6AoaqpIpLdvVgPZxp7tq3uMVOALT+sZ+m4nxm98VoWLIAePZwp\n3SNHQr16PYGeoQ7RGBOlAjY1SlVTRKQ78BrORIcSgOK0XkYFqpxsbjfelzhjRodEJHc/nPXLnYGs\njCxWfbKInR8kUHdxAtWPp1KhxTU88OI1fP21UKlSqCM0xhQXAZ2z6z6vdIOI1ASaAVtUdVsgywAQ\nkVI4SekTVf2vezhNRGJUNc0dh9rhHt8KNPC7vb577HdGjBhx8nVsbCyxsbEBjjy8HDkC330HvgRl\nyEfnU65EJnSK5/jr/6TG7d2ILWMb6RljTpWcnExycrKnZZz15Ac3OTyFs0hreeBXYDzwH1XNCliE\neZf9MbDLf2FYERkJ7FHVkflMfuiG04X3LcV48kPqdiVxkpCQ4Gwd0bmz00U36JJdNOla6/QfYIwx\nfsJqSSIRGQN0An4DmgIXAGWAn4AbVHV9oILMVe4lwPfAMpzuOsVZq+9HYAJO62gjznTxfe49TwF3\nAenkM108WhOTZikpXy93NtKbl8C/sv7MzkF3ExcH/frZRnrGmKIJt8T0rqre4/e+PNAbeABoB3TN\nvRpEOIumxHTiBCz6ZBXpb4yh2YoEVIR17eKpfEs87e/rQZlKZUIdojEmSoTbdPG9/m9U9SiQCCSK\nyIPAc8Cfi/D55gzk3kjv6nqHuK1uHY6OSKT5oHY0sCndxpgIUZQW0w04Yzrf5XP+bVV9oCjBBVMk\ntpg2fvcbKz5cwEvbbmHxYrjsMk5upFenTqijM8YUB+HWYpoDTBYRH5AEzFfVdL/ztpFOgGWeyGTF\nhwvY/VECDX9OoFLGXiq2HMTjI2/i8itKUKFCqCM0xpiiK0qLaSZQEWgC1ASOAnOBH4D2wLuqOt3v\n+idVdWSRI/ZIOLWYVJVpX33FsjlzuO/vo0lKchZGffTTzpQrlcH2znGcc1c8bf7YxTbSM8aEVLhN\nfnhTVR9yX7cFYnGWA+gJ1AGO4az+8ANOwhqlqu0CELMnwiExZSck3/Mv02/FMj6s2IXpGbPo3t3p\noovvtZ+GHaqGNEZjjPEXbokpHicZzQYSVfWE37kWOOvWZX/VB1RVw/aJzVAmpqws5Z8vf0Xy66O4\nfdti+pGFAPe36cUL85KparnIGBOmwmqMSVUTRGQKTuKpDqT5nUsBUoD34WSisq0m/JzcSM8Hkz55\niisPv8PnehD/n27t2lhSMsYUO0UaoFDVdFWdfrrnldxENbooZUWDnTth3Di47jqIiYHnn4cmTWDq\njy9w/YSxPNatG1MrVLBF/owxxVpA9mOKBl505anC6tXOs0UJCbBsGVx5JcTFQf/+cM45ua9XkiZO\nZOpLL9Fn2TLmdenCs7NmBTQmY4wJpLAaY4o2gUpMGRkwZ46TiHw+Z6HU+HjnKzYWyhViH73sBLV0\n9myGji72DU1jTBizxOShoiSmAwdg6lQnEU2eDI0b5ySjjh1BbNEFY0yUssTkoTNNTBs3OokoIQHm\nz4dLLoFBg2DgQKhf38NAjTEmjHiRmIrN05ki0ldEfhWRNe62GGckKwsWLoS//Q3OPx+6dIHFi+He\ne2HbNmedunvvDd+k5PX+KaFm9Yts0Vy/aK6bV4pFYhKREsBbQB+clc9vEpHWp7vv6FFITIR77oF6\n9eC225yVu995B1JTYexYuPZaImJ312j/x2H1i2zRXL9orptXArqDbRi7EEhR1Y0AIvIZMAhnc8NT\npKU5ySghwXnOqFMnZ6xo6FBo0SLIURtjTDFUXBJTPWCz3/stOMnqFBddBKtWQZ8+MHiw0yKqUSNo\nMRpjjKGYTH4QkeuAPtkbG4rIrcCFqvqw3zXR/40wxhgPhM2SRBFmK9DQ731999hJgf7GGmOMOTvF\nYvIDsBBoLiKNRKQM8AcgIcQxGWOMyUOxaDGpaqa73XsSTjL+QFVXhTgsY4wxeSgWY0zGGGMiR9R2\n5RXmgVoReUNEUkRkiYh0PN29IlJdRJJEZLWITBORkG1K4VH9rheR5SKSKSKdglGPvHhUt1Eissq9\n/isRqRKMuuTFo/r9n4j8IiI/i8hUEakTjLrkxYv6+Z1/XESyRCRk82U9+vkNF5EtIvKT+9U3GHXJ\ni1c/PxF5yP03uExEXiwwCFWNui+chPsb0AgoDSwBWue6ph8wyX3dDZh/unuBkcAT7usngRejrH6t\ngBbADKBTlNXtCqCE+/pF4IUoq18lv/sfAsZEU/3c8/WBqcB6oEY01Q8YDjwWijoFqX6xOEMppdz3\ntQqKI1pbTCcfqFXVdCD7gVp/g4CPAVR1AVBVRGJOc+8gYJz7ehxwtbfVyJcn9VPV1ersnRXKGYpe\n1W26qma598/H+U8uFLyq3yG/+ysCWYSGV//2wNnTbajXFTgNL+sXDjODvarffTi/yGe49+0qKIho\nTUx5PVBbr5DXFHRvjLqbIqpqKlA7gDGfCa/qFw6CUbc7gSlFjvTseFY/EXlORDYBNwP/G8CYz4Qn\n9ROReGCzqi4LdMBnyMu/nw+6XWPvh3CYwKv6tQR6ish8EZkpIl0KCiJaE9PZOJvfViJp5kg4/Dbm\nlULXTUSeAdJVdbyH8QRaoeqnqn9V1YbAv3G68yJFgfUTkfLA0zjdXYW6J8wUJtZ3gKaq2hFIBV71\nNqSAKkz9SgHVVbU78AQwoaCLozUxnfaBWvd9gzyuKejeVLfJiju4vCOAMZ8Jr+oXDjyrm4jcDvTH\naVGESjB+duOB64oc6dnxon7NgMbALyKy3j2+WERC0WPhyc9PVXeqO/gCvAd0DWDMZ8Krv59bgIkA\nqroQyBKRmvlGEerBNo8G8EqSMwhXBmcQrk2ua/qTM4DXnZwBvHzvxZn88KT7OpSTHzypn9+9M4HO\n0VQ3oC+wAqgZpX83m/vd/xAwIZrql+v+9Ti/fUdN/YA6fvcPAcZHWf3+Ajzrvm4JbCwwjlBUPkjf\n4L7AaiAFGOb3zbnH75q33G/kL/jNQsvrXvd4DWC6ey4JqBZl9bsap4/4KLAdmBJFdUsBNgI/uV/v\nRNnP7ktgqfufwX+Bc6Opfrk+fx0hmpXn4c/vY7+f3zc449nRVL/SwCfAMmAR0KugGOwBW2OMMWEl\nWseYjDHGRChLTMYYY8JKVCUmEflARNJEZKnfsbBZRsgYY8zpRVViAsYCfXIdGwZMV9VWOEvtPBX0\nqIwxxhRa1E1+EJFGgE9Vz3Pf/4ozAyTNffYoWVVbhzRIY4wx+Yq2FlNeamt4LCNkjDGmEIrFRoG5\n5NlEFJHoajoaY0yQqGpAl4gqDi2mtMIuIxSqB9qC8TV8+PCQx2D1s/oVx/pFc91Uvfl9PhoTk3Dq\nooIJwO3u69twnoo3xhiTB1Vl6pdf8tKQISGLIaoSk4iMB+YCLUVkk4jcgbMp3JUishro7b43xhjj\nJzshPXbkL8h8AAAdg0lEQVTRRchtt3Hop59CFktUjTGpan6rRl8R1EDCUGxsbKhD8JTVL7JFc/3C\nvW6qyrSvvmLqSy9z1dJlvHrsCALMk9DtLBJ108XPloiofS+MMcXJwW0H+es1fyJrYSJvaMYpYyAj\nevViRHLyaT9DRFCb/GCMMeZsbdgA459axqJafdB69bj1t8M07vYnHmzbkakVKoTF7qdR1ZVnjDHm\nVJmZsGAB+HyQmAhpaXDzZbVoeudfkEe/pGvdynTF6dJLmjiRx156iT7Llnk2464wrCvPZV15xpho\ncWDLAVaMTuLIpBncvPstYs4tQVwcxMXBhRdCiQL6yrIT1NLZsxk6evRpy/KiK88Sk8sSkzEmkm3+\nfj3r3vBReaaPFnvms7rmJRy5fCCNnvszjVqW9axcS0wessRkjIkkmZkwf77TPefzwT9+G0yNBhUp\nfU0c7R69ksp1KwclDktMHrLEZIwJdwe2HGDW5MN8OedcJk+GunWd7rmBA0/fReeVqExMItIEeBxY\noKqfhDAOS0zGmLCzKXkd69/wUXmWjxZ7FvBpm+fRBx9iwABo1CjU0UVBYhKRksDNQAywApilqkfc\ncz2BS1X1+aAFdGpslpiMMSGXmQnz5sHP7y+m32d/okr6blY3G0CZawfS7tErqVSnUqhDPIUXiSnY\n08U/AgYBmUBV4KiITAU+Bb4F/hDkeIwxJuT274ekJGesaMoUqFcPbriiKcfHjKXWH7tQu1TxeuQ0\n2InpBFBNVbPcLrx+wNXABJyHfb8McjzGGBMSG2esZcObPsrM/o6Bx76iW48yDBwIzz0HDRsCVAcu\nDHGUoRHsxLRTVbMAVHU98A7wjohUBxoDv3hVsIgMAe4CsoBlwB2qesKr8owxxl9GBix/bx77PvqG\nBkt8VM7YQ4nmAylx911sfEKoVD3UEYaPYCem3SLSWFU3+B9U1b3AXq8KFZG6wENAa1U9ISKf43Qb\nfuxVmcYYs38/TJ3qTOmeMgVeKzGB+q0rc+yfH9GkGHbRFVawE9OrwEgRGa+qwV5TvSRQUUSygArA\ntiCXb4wpBjZ8t5aZ0zP59MeWLFwIPXo4U7qffx4aNDj9Sgom+ImpL/BH4BER+RGYCSQDc1T1qFeF\nquo2EXkF2AQcAZJUdbpX5Rljio+MYxlOF90nPhr84qNSxj5KXPIcDz/ekiuugIoVQx1h5An2dPFk\nYDKQDnQFegHn4kyKWAh8oqrvelBuNeAr4AZgP84kiy9UdbzfNTZd3BhTKPv2OV10qz5awMNJA9hR\nriFpXQZS+644Wt/SmRLFqIsuGqaLz1XVUf4HRKQFcBlOkroOCHhiwtkocJ2q7nHLnAhcDIz3v2jE\niBEnX8fGxob9Bl/GmOBJSclZ/mfRIujZE67u34ETf19Cm671aRPqAIMkOTmZ5ELs01QUwW4xvaCq\nTwWtwJxyLwQ+wGmlHQfGAgtV9W2/a6zFZIw5KeNYBivem8vej33ELPuWgdXm0Du+IgMHQu/e1kWX\nLRpaTF+IyBBVDeoIoKr+KCJfAj/jdCP+jDctM2NMBNu7F5b/47+U+HICbTZNpWy5RtA1Dn33fVJu\nLk8J28EuKILdYmoMfIIzI+41nFZLRtACKIC1mIwpnlJSnO45nw8WL4bX642iWaeqtBgykHO71At1\neGEvGtbKmwWUB5oCNYDDwBxyZuctzH4AN9gsMRlTPGQcy2D5v+Ywa2EF3lnYlUOHnNW5s7voKlQI\ndYSRJRoS0xuq+rD7+jzgciAW6AlUA5aqasegBXRqbJaYjIlS+9bvZeWrU1FfIm02TSWtfGOW93+S\npsMG06kTSED/Wy1eoiExxeMkotnAJFU97h4vAVwA1FVVX9ACOjU2S0zGRJE1a5zuubWfzuPFJX34\nNaYXx66Io8WjA6yLLoAiPjEBiEhpnKnhy1Q1LaiFF8ASkzGRLf14FnPmlTg5XnT4sLPiQlzfdC67\nNJ0KtayPzgsRn5hE5D5VHZPrWH0gPdRJyhKTMZFn37o9rHhlKpLoo8Xm77ju/LX0vroycXFwwQXW\nRRcMEZeYRKQBkJa9ireITFbV/rmuqQo8AhxR1Zc9C+Y0LDEZE/5UnS66DX99j5hvP6Xp/p9ZFRPL\niSsH0uLRAdTpbF10wRaJiWkrzqYiC4DvcVZ4uCKv7SZEpAvQS1Vf8SygAlhiMiY8pafD7Nk5U7qP\nHoXnWoyjXc+atH/4csrXtC66UIrExNQUiAcudb9q46y8sBCY5X7N9dtefZSqPuFZQAXHaonJmDCx\n57c9rHp1CrNWnsNLv1xF8+bueFEcdOxoXXThJOIS0+8KE5kPfIjTcooFYnBWYlgCbMCZldcjaAGd\nGpslJmNCRLOU9VNXs+ltH9Vn+2hyYAmr6lzGnsH3cf6TfalbN9QRmvxEQ2Kaoqr9/N63xXmW6VKc\n/ZL+rqpLgxbQqbFZYjImiNLT4YcfnO65LV/M5fXUG0lpNZAKNwx0uuhqlA91iKYQoiExDVbVCUEr\n8AxYYjLGe3s2HGDy7CokJsK0aeR00Q3IouMFgpSwPrpIE/GJKZxZYjIm8DRLWTf5VzaPSaT6bB+N\nDizlvn4b6X1tVQYMgHPPDXWEpqiiMjG5C7s+DuwG3lbVnR6VUxV4H2gPZAF3quoCv/OWmIwJgOwu\nusP/O5LzFrxHaT1OSqs4KtwYR/uHLqN89XKhDtEEUMQnJhH5HqhIzqKt36vqAfdcTWCkqt7tUdkf\nAbNUdayIlAIqZJftnrfEZMxZ2r0bpkxxxouSkqBFC3i09VQ6D6hDyxvOty66KBYNiekW4F/AXqAe\nkIkzIy8ZWAdcq6pXelBuFeBnVW1WwDWWmIwpJM1S1k1axeYxiSSva8jo7X/gssuc8aIBA6BOnVBH\naIIlGjYK7Am0VNVtItIQZ9p4T+AGnJbUQx6V2wTYJSJjgfOBRcAjqnrUo/KMiTonDp1g+ZgfODje\nR5PlPsppOiVaD6TPPT0Ydj+Usx46EyDBTkx7VXUbgKpuAsYB40SkLPAmzs6yXigFdAIeUNVFIvIa\nMAwY7n/RiBEjTr6OjY0lNjbWo3CMiQy7d8PkyU4X3Y4py3hLn0G7D+TovyfS8vrzqGdddMVOcnIy\nycnJnpYR7K68L4DHVHVzHudKAKNV9REPyo0B5qlqU/f9pcCTqhrnd4115ZliT7OUtdN+46ulLUhM\nhKVL4fLLc7roYmJCHaEJN9HQlTcGWCwijwATVDUz+4SqZomIJ9usq2qaiGwWkZaqugboDaz0oixj\nIs2JQydY/s73HBzvo/GKRMprOjtv+4VnnqlObKx10ZngC8V+THfhJKiDwDRgPrAJZ7v1WFWN96jc\n83Gmi5fGmWhxh6ru9ztvLSZTbOza5XTRVf3HE8SueZfNFVuz66I46v4ljhbXdrBZdKbQIn5W3slC\nnSTxD6APzlJE4Iwv3aCq64IeEJaYTHRThZUrc1boXr4ceveG29sv4qLBDTinvfXRmbMTNYnpZOHO\nQ6/Ngf2q+lvIAsESk4k+Jw6dYNlbszj4WSIzt7Tko4oPnFyhOzYWypYNdYQmGkRdYgonlphMNNi1\ndj+/vvgNJack0nbrt2yq1IbdF8VR98FraRHX2raLMAEXDZMfjDEBpAorVjjdc4mJcPyX7bxVNYGM\nvgM58djbdGhXO9QhGnPGrMXkshaTiRTHDxxn2ZjZjNt8OYmTBFWne27gQOuiM8FnLSZjiqmdK3aw\nevRkSk3x0WbbdMpWakfTRy8gIaEG7dvbjq4muliLyWUtJhNOVJ2Zcz4ftHv9HmJ3fM6quleQ0S+O\nVkP6c4510ZkwEbWTH9wliT4FOgMfAWWBxao6MYgxWGIyIXX8OCQnO2NFPp/TCoqLgxu6rOfCq+tS\ntor10ZnwE82JqSXwK7BTVWPcY7HAlar6TJBisMRkgm7nih38+sokSk/zMWt3BxI6P3tyvKhdO+ui\nM+EvahMTnExEaaq6yu9YSf9lizwu3xKT8ZwqrEzewc7n36PWfB8NDv3KynpXktk/jtZD+lGrzTmh\nDtGYMxLViSnULDEZrxw/DjNn5nTR1dfNPF/jZSrfHEf7+3tSplKZUIdozFmzxOQhS0wmkHYuT2PV\n6Km8sedWvp1Rkg4dOLnqQps21kVnooclpiJyt9ZYBGzJvVisJSZTFJqlrPlyKdvf9VFrfiINDv/K\nyvpXsenpf9L7hhrUqhXqCI3xRlQnJhG5AGgA/Kiqqe6x3sB2VQ3IFhUiMgRn5l8VS0ymqI4dy+mi\n6/vRjZx3YhEb2sdR+aaB1kVnio2oTUwiMhToBqwFOgDJqjpKREoDqapaMwBl1AfG4qxq/pglJnM2\nUrdlMWlKCRITYcYMOO88p3suvtd+WnWtYttFmGInqld+UNXrs1+LyMUi8jQwCsgKUBGjgaFA1QB9\nnikGNEtZ/cVSUt/zUWu+j9np3Zl59etcdx289x5+XXT218qYQAmXxHRUROoBNwFjVHWuiCwD7sTZ\n2K9IRGQAzlT0Je609Dyz+4gRI06+jo2NJTY2tqhFmwh07BjMnbCFUqOep9mviZSXMkiHOE4Mf547\n7+vBvZVCHaExoZOcnExycrKnZYRLV54AA4BmwDuqmu53brCqTiji5z8P3ApkAOWBysBEVf2T3zXW\nlVeMpabCpEnOdO6ZM6Fnm538T82x1L8vjqb9W1sXnTH5iMoxJhHpBdQGVqnq8iCV97iNMRVvmqWs\nnvAL296fzF/3/Q+r1pbhqquc8aJ+/aBmkUc1jSkeomqMSUSqAT6gFU53XRURWQD8WVVXhCouE72O\n7j3GstdncOwLH81XJ1JeylKyQxwvDj/MRf3LULrIncbGmEAIWYtJRF4Apqlqsvu+DXA3TpfbNao6\nN8jxWIspCm3f7kznTkyE2yffQNMKaey9NI6GD8TRpG8r66IzpoiiqitPRIaq6kt5HG8DfAj0V9W9\nQYzHElMU0CzllzmHSJhZGZ8PfvsN+vRxuuj6XplJzdolQx2iMVElqrrygF15HVTVVSJyG/AA8Fxw\nQzKR6Oieoye76FqsTuSnyoPZd+erjBwJPXrg10VnScmYSBDKxJTvTmequkZEjgUzGBNZtm2DWR+t\np+kbj9AmLZkyVS/gyKVxHH3lO+7o0xIpEeoIjTFnK5SJ6aCIXKaqM/M5fyio0Ziwpgo//ZSzQvfa\ntXBN75rcde2NZD7+ER2b1Qh1iMaYAAnlGFM54FtglKr68jj/gqo+FcR4bIwpzBzZdYTlb8zg6JeT\nuGvvy5SoXPHkJnqXXorNojMmDETVGJOqHhORO4BpIvI/wAfAciATuBFne3VTzKQu3sqa0ZMo962P\n1jtmUaZqJ45cOpApz2bSonOoozPGBEM4PGBbC2dNvFvISZQ+4GZVPRLEOKzFFALZXXQ+n/P10PK/\n0LLOAXRgHG0f60t166IzJqxFzXRxESkJPA0sAGap6nERqQy0BHar6oYQxGSJKUiO7DrCHN8evphX\nn0mToFIlp3suLg4uucS66IyJJFGTmODk/kszgHnAaFX9VkRKqmpmiOKxxOSh7Yu2kjI6kXLTfbTe\n8T3fNHqUnQ/9H3Fx0LJlqKMzxpytqBpjAi4BWqtqmt+xRiISB3ypqltDFJcJgKwsp4tu9ri19P3g\nBmof20jJhn1JH3wrWY9/yp8aVwt1iMaYMBXKFtPjqvpKPufuBcar6oEgxmMtpiI6cgS++84ZK0pM\nhCpV4Oq+x/hD0x9pf8/FlCoXLrusGGMCJdpaTJULOPcecDvOTL0ic3ev/RiIwdl48D1VfSMQn13c\nbV+4hZTXEik3fRI3HBlH0y41iIuDoUOhRQuAckDPEEdpjIkk4bryQ6aIlA9gWRk426kvEZFKwGIR\nSVLVXwNYRrGQlQWr/rOEne9+TcxCHzHHNlKiUT/S/3ArS54sT/W6oY7QGBPpQpmYfhKRO1X1w3zO\nB2yfUFVNBVLd14dEZBVQD7DEVAiHD+d00U2aBE+f+Ib2TY5wYuRrVPnzxVxqXXTGmAAK5f8oHwHz\nRSRTVcflcb65F4WKSGOgI85UdZOP7Qu38H3CPj7+qT0//ABdujjTuZ98Epo3HxHq8IwxUSyUKz9k\niMhNwAwRuRtnXGkRzhLQ9wFrA12m2433JfCIqtpafH6yMrL49dNF7PgwkTqLfJxzbDOZHYfxpyfb\n8+9/QzWbRGeMCZKQ9sGoaoqIdAdew5noUAJQYBzOahABIyKlcJLSJ6r637yuGTFixMnXsbGxxMbG\nBjKEsHP4MEyfDgs+TeGRiT0pU6o62jGO46PeoOrdF3GzddEZY3JJTk4mOTnZ0zJCviRRNhGpCTQD\ntqjqNg8+/2Ngl6o+ls/5YjFdfPPmnBW6Z8+GCy+EuH4ZDOq4kca9m4U6PGNMhIn4lR/cVstTOIu0\nlseZfDAe+I+qZnlY7iXA98AynBaZAk+r6lS/a6IyMWVlZLHqk0Xs/NBHnUWJXF9+EhcMqEtcnLOz\na9WqoY7QGBPJoiExjQE6Ab8BTYELgDLAT8ANqro+aMH8PraoSUyHD8PPr3yHfjqeVmsncbBUDTZ3\njKPGbXG0u/siSpaxnVyNMYERDQ/YllTVbtlv3GeVeuNsoz5LRLrmWqLIFNKmTTlddHPmwHN1V3N+\n+/M4+s+naXZ5M6yTzhgTKYLdYhqpqk/mc+5B4HxV/XPQAjq1/IhqMWVlZLFy3ELmzTrBW7/0YOtW\n6N/fmdJ91VXWRWeMCY5oaDEtEpHeqvpd7hOq+paIvB3keCLKodRDLB/9Lelf+2j92yTKlalFzdhH\neOedHnTvDiWth84YEwWCnZjmAJNFxAckAfNVNd3vfIkgxxOWVJVpX33FsjlzGPzoaBITYfFnKbw+\nuxOla3TneGwcR9/9K81jm3rzFLIxxoRQsLvyZgIVgSZATeAoMBf4AWgPvKuq0/2uf1JVRwYptpB3\n5akqUyZ8ycS/v0L8mmX8q3QXfqwwy+miG5DFVRcfokr9KiGN0Rhj/EVDV95yVX0IQETaArE4S0/f\nC9QBBorIIpxENRf4ExCUxBRKBw4or/79K34eO4p7dy/kPUCAme2EhEXZXXQlAEtKxpjoF+zE9K2I\nvArMBhJVdSXwDoCItAB6uV9/xHneKXJmI5yhjRudGXQ+HyyZ+RSDst7hm8yD+P/aUbWqjRsZY4qf\noI7pqGoC8CRwAKie61yKqr6vqn9U1YZAK2BTMOPzUmYmzJsHTz8N550HXbvCokVwzz2QsusFrvt8\nLI9168bUChWiNxsbY0whhM2SRHkRkYeDtaGfF2NMBw9CUpLTKpo8GWJinOnccXHOUkC5W0OqStLE\niUx96SX6LFvGvC5deHbWrIDGZIwxgRTxKz+Es0Alpg0bcrro5s2Diy92EtHAgdC4ceE+IztBLZ09\nm6GjRxc5JmOM8YolJg+dbWLKzIQFC3KS0Y4dMGCAk4yuvBIqF7SBvDHGRDhLTEUgIn1xttcoAXyQ\nexr6mSSmAwdO7aI791ynRZRfF50xxkQrLxJTsXigVURKAG8BfYB2wE0i0vpMPmP9enjjDWe5n/r1\n4f33nSS0aBEsXQrPPw8XXRS+Scnr/VNCzeoX2aK5ftFcN68Ui8QEXAikqOpGd6WJz4BBBd2Qmeks\nhjpsGLRrB927w5IlcN99sHUrTJ0KDzwAjRoFJf4ii/Z/HFa/yBbN9YvmunmluGxRWg/Y7Pd+C06y\nOsWBAzBtmtNFN2UK1K3rdM998IHTOipRXNK4McaEUHFJTIVSvz5ccokzXvT3v0dOa8gYY6JJsZj8\nICLdgRGq2td9PwxQ/wkQIhL93whjjPGAzco7CyJSEliNsynhduBH4CZVXRXSwIwxxvxOsejKU9VM\ndyPCJHKmi1tSMsaYMFQsWkzGGGMiR9TOMxORviLyq4isEZH8tnN/Q0RSRGSJiHQ83b0iUl1EkkRk\ntYhME5GQbWDuUf2uF5HlIpIpIp2CUY+8eFS3USKyyr3+KxEJ2R4iHtXv/0TkFxH5WUSmikidYNQl\nL17Uz+/84yKSJSI1vKxDQTz6+Q0XkS0i8pP71TcYdcmLVz8/EXnI/Te4TEReLDAIVY26L5yE+xvQ\nCCgNLAFa57qmHzDJfd0NZzfdAu/F2RvqCff1k8CLUVa/VkALYAbQKcrqdgVQwn39IvBClNWvkt/9\nDwFjoql+7vn6wFRgPVAjmuoHDAceC0WdglS/WJyhlFLu+1oFxRGtLabCPFA7CPgYQFUXAFVFJOY0\n9w4CxrmvxwFXe1uNfHlSP1VdraopQEBn2Jwhr+o2XVWz3Pvn4/wnFwpe1e+Q3/0VgSxCw6t/ewCj\ngaFeV+A0vKxfKP/dZfOqfvfh/CKf4d63q6AgojUx5fVAbb1CXlPQvTGqmgagqqlA7QDGfCa8ql84\nCEbd7gSmFDnSs+NZ/UTkORHZBNwM/G8AYz4TntRPROKBzaq6LNABnyEv/34+6HaNvR/CYQKv6tcS\n6Cki80Vkpoh0KSiIaE1MZ+NsfluJpJkj4fDbmFcKXTcReQZIV9XxHsYTaIWqn6r+VZ1NNv+N050X\nKQqsn4iUB57G6e4q1D1hpjCxvgM0VdWOQCrwqrchBVRh6lcKqK6q3YEngAkFXRytiWkr0NDvfX33\nWO5rGuRxTUH3prpNVtzB5R0BjPlMeFW/cOBZ3UTkdqA/TosiVILxsxsPXFfkSM+OF/VrBjQGfhGR\n9e7xxSISih4LT35+qrpT3cEX4D2gawBjPhNe/f3cAkwEUNWFQJaI1Mw3ilAPtnk0gFeSnEG4MjiD\ncG1yXdOfnAG87uQM4OV7L87khyfd16Gc/OBJ/fzunQl0jqa6AX2BFUDNKP272dzv/oeACdFUv1z3\nr8f57Ttq6gfU8bt/CDA+yur3F+BZ93VLYGOBcYSi8kH6BvfFWe0hBRjm9825x++at9xv5C/4zULL\n6173eA1gunsuCagWZfW7GqeP+CjOChlToqhuKcBG4Cf3650o+9l9CSx1/zP4L3BuNNUv1+evI0Sz\n8jz8+X3s9/P7Bmc8O5rqVxr4BFgGLAJ6FRSDPWBrjDEmrETrGJMxxpgIZYnJGGNMWLHEZIwxJqxY\nYjLGGBNWLDEZY4wJK5aYjDHGhBVLTMYYY8KKJSZjjDFhpVhsrW5MqLkbL96Ks/BvI+DPOE/TV8NZ\ngfl/VXV96CI0JnxYYjLGYyLSHLhNVR9x34/F2RPqNpxeix9wlkkaHbIgjQkj1pVnjPceBYb5va8I\n7FHV+cAm4BXgo8J+mIiUDGh0xoQZWyvPGI+JSANV3ez3fgswVlX/VsA9pYDbgU4426scBI4Dc4CB\nqvp397pyOBsfVnavq4Wz2PBIVd3nSYWM8Zh15RnjsVxJqTVQF2drkTyJSAvgPzgroN/vdzwG+BW4\n0X3fHBiLMz410++6WMAH9AhoRYwJEuvKMya4rsBp+czNPiAiTfxe1wNmAG+q6of+N6pqGjAPmCUi\ntYBpwCj/pORelwy0EpFeXlXCGC9ZYjLGQyJSTkRGikg799AVwFJVPeaeF+B//G55DdigquPy+cjR\nqnocGAVsUVVfPteVBmqL40ERGSoiQ4teI2O8Z115xnirP07iWSwiGUBTwH/s5xmcTeJwt5q+Grgr\nvw9T1W9FpDJwC86U898RkTZAFWAVMAD4WlW3isiXInKBqv5c9GoZ4x1rMRnjrVk440CdcSYpdAPW\nisgYEXkdmKeqC9xrm+H8m1yU1weJSFN3Rl5LnF8ql+dT5t3AAlVd7n7mTe7xtUCDolfJGG9Zi8kY\nD6nqbpxE4e+OfC7fgvMAbn7TweNU9XUR2e2+z8x9gdtauhW43D30DlDGfd0Be1bKRABrMRkTJlR1\nGzAOuM//uIiUFJF7gS/d6zbgzLq7Mdd1LYEPgWtUdYV7bbqqHhaRi4FkVU31vCLGFJE9x2RMGHG7\n6p7A6YL7DTgEHAW+UNUDftdVAJ7DmeG3EagElAPeVtW9uT6zMvCQqj4flEoYU0SWmIyJciJyD05L\nSoCeqvpdiEMypkDWlWdMFBORwThTy7cDqe6fxoQ1azEZY4wJK9ZiMsYYE1YsMRljjAkrlpiMMcaE\nFUtMxhhjwoolJmOMMWHFEpMxxpiwYonJGGNMWLHEZIwxJqxYYjLGGBNW/h/08PSWoPrTggAAAABJ\nRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x734bda0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMUAAABHCAYAAAC3QIMjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAB1tJREFUeJztm3usHVUVxn+rt6W1pQ1oRUIlKL22kACh1dikiY8IKok2\nRElAg1pFeSgqjYLPxki0JYi1FVMsTbQWSPgDY1INii/6ikojAaEQNfiogNKC0gq20OfnH3tfOOzO\nOWfmPnp6c79fMplz9qxZa+195pu9Z+85IQljzIuM63UCxhxtWBTGFFgUxhRYFMYUWBTGFFgUxhRY\nFMYUWBTGFFgUxhRYFMYUWBTGFFgUxhRYFMYUWBTGFFgUxhRYFMYUWBTGFFgUxhRYFMYUWBTGFFgU\nxhSM73UCY5GImA0sBbblounANZKeHClfDeyuA9YBfwL2AqcCC4BbJP0r25wHrAIeAJ7Ldoda3GyR\ntKquXd38GvqbB1wO7AEmAy8Dlkh66PBWLJDk7QhuwDTgMeD9LWVfBLYC40fCV5OY+SJr3fYDXy5s\nPgMcbLMdAN7e0K5uPer6O5sk7GNazl0J/Bc4q2u79voiGWsbsATYDoxrKTse2AdcPhK+msQk3alX\nAT8CvgGcURH3JuAkoK8onw8sH4Rd3XrU9fetLOgLWsrelctWdG3XXl8kY20D/gysqyh/EPjVSPhq\nEhO4u0bcGyvKjgXuBCYOwq5uPer6+yCwEzi3pex9WRRLu9av1xfJWNryD3gI+E7FsbuAncPtq2nM\nOqJok89KYG5Tu6G2SYO4N+Se58xutj1/0I6IucAHAAGnAJeSHpCOA2YAX5H0995lOKyckvfPVBzb\nDUyLiAmS9g+Xr0HEnBgRnwdeSbpYZwJfkPRIu0QiYj4Qku7rlHAbu0G3SYO4M4GFwCclbe1kCz2e\nfYqIfmChpKvy9zXAPaQKjAM2A/cBy3uWZMrre8BcknC7mme7RZI2Fcem5f2+ivN25/1xwFM14tT1\n1TTmCcBtkv4JEBEXA5sj4iy1nx27EXhvjZyr7IbSJh3jRsT5wDnAO4BlklbXyLHnPcUi4JqW71OA\npyXdExGvBpYBP6jrLCL6JB0c3hRB0keHydVAblXimpD3fcPsq2nMWcrjjcztwGrgS6Tf6yVExDnA\nJEmPdkq2g92g2qROXEnrgHURMR74RUQsABZI2tkp116L4npJz7V8nw+sAZD0OPC58oRcwQ+T7txP\nAs+S5qt/A7wb+Fq2mwRcAkzNdtOBl+eYu0amOl3p1ANMyftnh9lXo5iFIJB0KCKeAs6nQhTAx0m9\nezfa2Q22TerGRdKBiLgWWE+aWbuok31PV7QlPTbwOSJOI023rW9nHxGvIzXEIUmfkPRVScuAO4C7\ngS3Zrh/4JfBHSddLWiPpBuDnwE9GrELd2UG6Ix5fcWwKsEvS7opjQ/FVO2ZEbIqIcsgH6U79qrIw\n36DeCTzRKdEudo3bpFvciJgdEWcWxQPPHRdExORO+fa6p2jlXNId/7cDBRHx2oGH7IiYQbrwF0ta\n23qipB0R8TtgY0RMJ138iyStL+w25AZ7i6SNdROLiNXAHJo9U3xW0uYi/p6IuB84ueK8fuAPdXOq\n66thzLOBqgfq6by40tzKG0kX7r+7pNvWbpBt0tZfREzN5/RFxOyWSZqBYVrQZYjaM1Hk4c21pNcH\nHiaJ4kFJz+fjAVwNXJlPWQFsKwXRwnJJeyPiu8Djktr1CBOAE7L/K0nL/+SepBJJlzWrXUfuJA3r\nXiDPjpwMXFeU95Pq8vwQfdW1uwu4orCbA0wEbq2I35/37fKra1e7TWr420e66P9GWqsY4PS8/72k\nzkPUwcxJD8dGmjU4CFwIzCYt1GxqOb4YmJc/v4L0usGHuvicSuptKu1ywxwEziA9f8zI5T8E5hyh\nep8IPA1c3FK2gsNfaXhTzvVnw+Crrt0bgFt46esRa0mzgBMq4l9Nmrb9SJc6d7Srm18Df18HPl2U\n3Uqa9u36O/dy+LSR9FD9+rzNA27Kd/p9wI8lbcm2M0nPP/dWOYqIU4F/ALNIvV+7l74+Rnpp7KE8\ne3Ea8E3gr6S70v3DUK+OSNoeEW8FluQ1mmmk8fR5kg60mO4gTRD8Zai+GtjdGxE3A7dFxJ5stxW4\nVNVrJ48Au0gv6HWio12DNqnrb3FELIyI20k30xOB/5AW+dq25wCRVXRUExEnAY+SVH7Y4ktEXCXp\n2xHxGtIFPlfSA4XN6cAG4G2SHs4LW8dI2h0RPwUukbR9hKtiRgGj4v8USq8sryVNw71ARPRFxBWk\n4Q+StpFmly4q7GYB3wfeo/T8gqT9WRDzgQ0WhBlgVPQUkARAWreYSRpS/I/0Tv0dkp5psZtMGlPu\nJQ2pjgUmAStVLNrkmYpPSVp6RCphRgWjRhQjQURcRupBAnizpF/3OCVzFDAqhk8jQURcSPq/wBOk\nd/k7LkCZscOY7imMqWLM9hTGtMOiMKbAojCmwKIwpsCiMKbAojCmwKIwpsCiMKbAojCmwKIwpsCi\nMKbAojCmwKIwpsCiMKbAojCmwKIwpsCiMKbAojCmwKIwpsCiMKbAojCmwKIwpsCiMKbAojCmwKIw\npsCiMKbAojCmwKIwpsCiMKbg/wwQq0MoM1WVAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x85bef28>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKsAAABHCAYAAAB4brfgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAABPNJREFUeJztnFuIVVUYx3+fM+J0EdKuZNnNLOki6YMiaWVqEY6RoBVE\nlmRWZDdw7CF6KQQjIiGJogs9lj1ERUYWZVLmpcKyhyApKdKkUrIQ8fL1sNbQZjNn5pzDnLPni/8P\nNmfvdZv1rf07a691Noy5O0JEYFjVHRCiXiSrCINkFWGQrCIMklWEQbKKMEhWEQbJKsIgWUUYJKsI\ng2QVYZCsIgySVYRBsoowSFYRBskqwiBZRRgkqwiDZBVhkKwiDJJVhEGyijBIVhEGySrCIFlFGELL\naonPzezsfso8YmYPtLNfojVYlf8+yMzmAbOAicAiYDSwIGdfCax093UDtDEVWAPMdffdpbz7gGuB\nBe5+bIB2JgG3AQ6cAywBlgInAWOAx939x4YCHOIMxvi3FXev5ACGA8/k8y3ARuDhQv4KYFedbc0A\ntgKnFtLuBN4FOuuoPw5YXbh+FfgemApMA44W+1blAbwMfA18VcfRW25GK8e/bbFXOOizgPn5/Hfg\n9VL+o8CBBtqbDWwCRgG3AB8AI+qs+xxwXOH6DWBTPj8LeAoY1UBfOqq+se0e/3bE3lnf/NsSvgX2\nm9nlpMfPs6X8icD2ehtz9/VmNgLYAPwB3ODuh+qsvsrdDxaup5FmV9z9F6CnXMHMOoE7gEnAXuAA\ncAj4DJgLPJHLdQGLgZG53CmkeFe5+/5642sBTY9/ZbEPgW/4QznYzkJaJ7AP6Gmwre48wB8DJzTZ\nn4uBY8DMfspcCGwDFpfST8/9npOvx5Eer9eUyl0NbKx67JsZ/ypjHwqD9RbwfiltHnAEGEv6xWJs\nHe1cD3xB2hDdDHwIdDXRn/uBg8W6wHmF8zHAz8CiGvXfA0aQZpGdQHeNcnuBq5ro34uk9fmWOo7e\nctMHY/wrj71iUYcBfwIrSulrgfX5fA5w4wDtzMw3ZnQhbRGwDhg+QN0uYBVwSeHmbS7kG7Cm1Lea\nMwMwO3++Amzop9w+0s7b8hdkObB8KI9/C2JvKO6qZZ1MeuROKaVvB5YBHcBL9LNoB6YDXwKn9ZG3\nFHh7gPrzSbv9hcBFwDfAp4X8x3r7B5wMHAZuHyCukaQ1XJ/lgAn5b15KWuONyelvAlcMxfEfxNh7\nl1nLGo276pcCZ5Lk2FpKfxK4jrRLf9rdj/ZV2cyMNCt2u/vecr67v0BaDvT3UmADaTM1mbQZmALs\nNLPnzWw16VeBzbnsBaTZaFuN/pxvZh3AeNK6b0eNv3kXafbekdu8NafvBGq+4GgBjYz/YMW+hLRc\nMxqNu8qZNdqRb+4R4LIa+Q/mz3NJM+fEPspMAH7jv2XHcPJmkLTmO6PqONsRezNxVz2zhsLdfwVe\nA+4tpptZh5ndQ3qc4e4/Ae+QNnrFcuNJ67mb3P27XPawu/9jZtOAT9x9T8sDaYLBjr2ZuCt93RqR\n/KjrIT0WfwD+Jv16sNbd/yqUO570OD0E7AJOJG3m1rj7vlKbI4Fl7r6yLUE0yWDH3mjcknUIYGZ3\nk2YdI70a/ajiLrWFRuPWMqBizGwh6XXubmBP/vzf00zcmllFGDSzijBIVhEGySrCIFlFGCSrCINk\nFWGQrCIMklWEQbKKMEhWEQbJKsIgWUUYJKsIg2QVYZCsIgySVYRBsoowSFYRBskqwiBZRRgkqwiD\nZBVhkKwiDJJVhEGyijBIVhEGySrCIFlFGCSrCMO/MmsHX0k9++8AAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7b02d68>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAN4AAABHCAYAAABoDvk8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAB71JREFUeJztnH3MllUdxz9fnsdEiGJZVFImSoTTIqHGhqDGSJSQ3kyj\nN8pSSkHJ5cNireVqOtSmloa5Esz+6G3qtIwWDMQCfKmmRKtNBhnrBZe4rNkTwbc/zkXP7cX9cj3c\nN8+5n/p9tntwX+d3nfM7v/t8z/ld51wg2wRBMLSMyO1AEPw/EsILggyE8IIgAyG8IMhACC8IMhDC\nC4IMhPCCIAMhvCDIQAgvCDIQwguCDITwgiADIbwgyEAILwgyEMILggyE8IIgAyG8IMhACC8IMhDC\nC4IMhPCCIAMhvAZI6s3tQ/C/SwivDpLOBz6U24/hgqQvSHpzbj+GEyG8EpJmAzNtr2lQPkrS40Pr\nVddzLXCdpAm5HRkuKP57vwEkvQRYB5xh+591yt8CrAKm2u4Zav+6GUkTgTXALMegakmseC9kBfDt\nsugkTZb0Q+BS4N9ZPOtybD8JPAV8ILcvw4FY8QokjQL+AEy0vbeJ3WrgI7HiHYqk6cAdtk/J7Uu3\nM6xXPCU2S3ptE5srJV1eobp3ADubiS5oyaPAeEkhvBZk3TKXtACYA0wBFgEvA95XFM8ErrH940b3\n27akK4F7Jc23/adS/ZcCp9fU2Yy3A5sH34uhQdJU0k6rgdcBFwOLgbHAeODztnfm8xBsH5C0BTgH\n2H6k22t3/OQkm/AkHQWcZftySY8AdwF32/5sUb4cuI00yBpie6ukTwP3SZpn++ni/o8B84B32T5Q\nwaXTgNsPv0dHjmLjYpHtK4rvq4GtpME2AngI+CVwYzYnB9gONDxakPRNYCppAmmFCrtltjeV6unI\n+MlFzhXvTOBnxd9PBNbbrh04Is1gLbG9SdIKCvEBc4GFwHm2q26GnAA8W9F2qFkGXFXzfTTwTDHp\nvAb4MmlHsTKSemzv75yL/2UvMKNRoe2Pd6idjo2fHOQU3jbgWUlvIgXoplL5FKDyeZntn0o6GngQ\n+Cswz3b/IPx5KR0UXtGvNYO45VdNBuVK28/XfJ8BrAawvRvoa+BDL/BR0gqzB3gO6Ad+DswHvljY\njQQuAsYUdi8n/SYrbQ82Js+QYnmkOazxI2ksaSJbDmwEfmT7FknvJ+1anwrcCqyxvaNR423HzHbW\nTxGE54Demmu9pJmzb5B1nVcEewMwepD39gNzK9itBvZnjNdk4AAwu4Xd64HHgItK119ZxPbs4vtE\nUqr6tpLdWcBDh+HfYuC33Tx+gHHAftIOdu31u4CvVmiz7ZhlGTwlZ+8F1pauLSCdlx1PeoY5vkI9\n55Cee8YCF5IOwkcOwo+/AAsr2OUW3hLg+dq+ARNKNuNJRyOLGtTxAHA0aZbeQUrJ69ntAc4cpH8r\ngIeblN9O2v18pMLnoN2sTo4f4IPA7jp17Qbe2aJ/x3YiZrl3NUcAZwArS0UfBjbYfkrS2cAxpMPZ\nRvXMJqVNc52W+e8WqcA9khbY3lfBnZ104TNB0Y+rgW/Z3k7axXvCxSG/JAGfAS6rue0mYJftOxtU\ne6PtfkmrSAPw/gZ2RwHjJC0h/QbYvr6Fy8eSYlkX25e0uL8ybYyfOaSsqLauSaSVcEMR08uo3+fr\nqRCzls7nmrmL2WEaKW2aXrr+OLAU6AG+AfQ0qWMW8AtgXJ2yxcB9ze6vsb0BuLWC3XdIacoxQxSj\n9xTtXQC8AXgC2FRT/rna+JEG/j7SIX+zeseQ0uu6dgyktEuB8cW1HwCntaj3fmB5N48fkgi/R3o2\n7iM9790NbC7K59frc4WYnVz8Vqe28j33AfpxpIH0aOn6l0g7k7cAN7jB7lsxM60kLft7yuW2v05K\nOascoK8l7ZTVa+cVktZK2sbAOdEuSeslLaxQdzs8SEpvp5Ee5qcDOyStknQzsMX2wzX2J5HSq8fq\nVSbpREk9wCTSs9CvG7R7MSl1F2mHGFKK1exlBZHOz9ZV61rbDHr8SJpMSsWX2b6u+BxcMQ/6fRL1\n+9wqZp8gpdmNygcYiplpOHyAFwFPA6/O7Uub/TiO9HzzxgblVxR/nkCanafUsTmZ9Mx7Cil1Gl1c\nfwB4VZO23wr8LncMWsRnCbCtdK2HtKM9s/het89VY1bFj9wrXtdg+1+kbeRluX1pB9t/BO4EPlV7\nXVKPpE+SUids7yKlhReW7CYBdwDvtr3d9j7b/5A0A9ho+89Nml/Kodv63cYc4Cela6eTsoStAI36\nXDVmVZyIl6RrkDQa2EL6Z0HdepjekiKV7COlTE8CfyfthH7f9t9q7EaR0rJ+4PfAi4GRpGfdvTV2\nY4Cltq9p0uYE4B5gmo/MwXxbSJoGvJc0sa4DvmZ7bfHixbmkNPIrwLVOr77V7XPVmLX0J4T3Qoo3\n7K+yfX5uX7oFSZeQZnSRJqX1pfJe0krQZ3tbBhc7Tqs+t11/CO9QJM0FJtu+ObcvuZF0AensbR8p\nHZtl+zclm6tJ2/cbh97DzlOlz223EcIL2kXSCFd7ET0oCOEFQQZiVzMIMhDCC4IMhPCCIAMhvCDI\nQAgvCDIQwguCDITwgiADIbwgyEAILwgyEMILggyE8IIgAyG8IMhACC8IMhDCC4IMhPCCIAMhvCDI\nQAgvCDIQwguCDITwgiADIbwgyEAILwgyEMILggyE8IIgAyG8IMhACC8IMhDCC4IMhPCCIAMhvCDI\nwH8ARAp+ZJvhvGsAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x3fbfcf8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANcAAABHCAYAAACUG9L2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAB51JREFUeJztnGusXFUVx3+rt5WKvQjVgBaCWKFAIyAUlRJatFQspC2+\nCghoK0SEirS0eGv4JD7AWuASWmo0QErgC1RLsSgkQKg8TeVlTAwmEGtpJKXhEXyQYnv/fth75Hg6\nM3emnT37zsz6JSc5s/Y+e9Y5s/5n733OXmOScByn9YzK7YDjdCsuLsdJhIvLcRLh4nKcRLi4HCcR\nLi7HSYSLy3ES4eJynES4uBwnES4ux0mEi8txEuHicpxEuLgcJxEurkyY2TgzW2tmh+T2xUmDiysD\nZnYRsBT4Ev4bdC3m+Vz5MLMh4DBJW3L74rSe0bkdcFqLmU0FjgaOBX4PvB+YBVwhaXNG13oOH5J0\nEWbWDxwp6TbgIWCRpJ8D/wTezupcD+I91wjFzC4FJgLlcbtF2zOS7iqVvQPcGfc/DdwDIOlrCV11\nauBzroyknHOZ2SbgUknPmNl+kt4qlH0SmAq8QhDrBOAFSQ+Y2SzgUGAL8GHg31VE7DSA91xdhJnN\nBo4A1gHHAM/FovnAylhnKTBG0k8Kxw0Ct5jZEqBP0opC2QYz2yhpW5tOo2vwnisDZnYecArwLeAu\n4HFJq1vQ7gLgBOAvwHuBIeBfwDpJ283sGGC1pGml4w4D3gOslzS5VPYQ8H3CjXhyK/zsFVxcPYSZ\nXQm8I+mmkv0AQu/2UUmLCvYPAb8DVklaaWarJF3WVqc7GH9a2FtsBsYXDWb2ubi7DRhTsPcBPwUu\njsIaB2xvk59dgfdcTWBmBjwBnCPp5Rp1lgA7y73DSMHMrgLeArYCO4BnJW2L5/YjwpByO3A4cJ+k\nv8bjLoif38zjeeeRVVxmNheYCRxHGJaMB+bF4lOAayTdn8m9qpjZScDNwGxJr5TKFgKnAfMkDeXw\nLwVmdjnhQcnbkgba/N0dFyMVsonLzMYAyyUtiY+NdxAm3oOxfBmwUNJHsjhYBzObDlwPnClpe7R9\nA/gy8AVJO3P6lxszu5XwYKWR4Kq8t1ss6dFSOx0bI5D3UfypwONxfyLwcOWiRYzS/GCkIOnROLz6\ntZmdCXwe+Cowp9eFBSDpohY11bExAnnF9SfgTTM7lnCBbiyVHwf8sdlGzaxP0q4W+FcXSQ+a2T6E\np2mvEXqxHam/t8dIEiPtIpu4Ki8lzWwG4V3MHyplZjaasNj02mrHxvIFhKHHq8A/CEOGJ4DZwA/N\nbCxwIdAf63yQ8AMtb+GkvDKkAX/y2nL2NEbMbH9gMbAM2Aj8RtIqMzsXWAh8nDBvXiPppVrfv9cx\nJCnrBqwHHijZ5gI7CctwRgGHFsqOAJ4GLiwdcxDwBnA64UnXY8BnS3U+AzzWIr9nEVad7w+cQ1go\nO7aB44aAXV2wDQG7apzjLwhC2NTAVqk3rVUxEssPjH4eXrLfAaxs4Hfa6xjKLaxRwOvAspJ9LfBg\n3D8dOCvuHwy8DMyv0d5vgUOAlwjzn2p1XgVO3Uu/Z8SgGF+wzQfuJywtynpdu2lrNkYK5ecDW6u0\nt7Vct0qdD7QihnKvLTyecOffWLJPIqx16wPOJiwTgjDm3izp9hrtDQJXEy7qhhp1xgAHxvc63yYs\nE0KF9XT1MLNpwArgDEmvV+ySbo/DiF+Z2RfVhnlfj9BsjFSYCTxSNJjZJEKP9kj8XCsGVtBADA3r\neea70hzgeWBUyT4PuA/4GXBU4W7yH+DrddrrJ8y9qtYhJBHuIoy5ZwMHR/svgeMb8NeAJ4EJdepc\nTkhMbNU1mkoY998InEsIonsIq+mz/n4jLUZK5VuAu4GBuC0jLGh+slBntxhoJoaG9T33xWviIn8q\nntTkGuUTgRNjnRNq1Lm+cnGBRcCVcX85MDf3OVbxtx9YUAiEp+L+HcBBuf0bqRtwVIyDCSX7OuAH\nhc+7xQAwhTCfHDaGhttyDwubYSvhyVxfjfI5wL1xf7chmZkdDVxAmC8BrCasBIeQnjFYPmYE0FDy\no+dn7cZM4M+S/l4xxOHjDOCGQr1qMTCWEGeNxFB9ct9lmrwj3UpImSja+oBLeLd7X09YElOsMwl4\nCji5SpsnAwO5z62Bc98ETIn7+xXsS4HvleoOAuOAJcB3S2Ub6PJeL8bAdSXbdMKaytHDxUCzMVRr\n66iFu/HuMwB8DHiRd/8bYq1ipq2Z7UtYgLoD+BshyMYCN0t6o9ReP/AdSde07SSaoJT8+ALwPklD\nZnaZwnubPc3PGpD0bDvOoZ2Y2RTCErTFhFcjqxV676uAMwgCuQm4VnHtZ7UYaCaG6vrTSeJqNWZ2\nMXAbYSg1XdLDmV36PxpIftyT/KyNwDcJPX7PJz+mjIFOmnO1FDM7m5Cv9GPCu5Rp9Y9oP5LWAGvq\nVNlMePL5P2J+1tOE/KxJBXslP+sS4BMKOVpfaa3HnUXqGOjpnqsb2Iv8rHHAUklX5/G8+3Fx9Sie\n/JgeF1cPkjP5sZdwcTlOIjxNwnES4eJynES4uBwnES4ux0mEi8txEuHicpxEuLgcJxEuLsdJhIvL\ncRLh4nKcRLi4HCcRLi7HSYSLy3ES4eJynES4uBwnES4ux0mEi8txEuHicpxEuLgcJxEuLsdJhIvL\ncRLh4nKcRLi4HCcRLi7HSYSLy3ES4eJynET8F6cuSq6g/6i+AAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7b33d68>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"total CO2 to absorb\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAABHCAYAAADiBDdUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE8BJREFUeJztnXe8VdWVx78/UBAUC4q9gA117KiooGBErElsiY6JmiGO\nFUtsqDG2qFF01InR0UTFEmssGeyjjqBYUGOJSiwoqMigjGCLNbjyx9oHDufd9uC9d9+7rO/ncz73\nnn32Obvcc9fZZ62115aZEQRBEDQmnepdgSAIgqD1CCEfBEHQwISQD4IgaGBCyAdBEDQwIeSDIAga\nmBDyQRAEDUwI+SAIggYmhHwQBEEDE0I+CIKggQkhHwRB0MCEkA+CIGhgQsgHQRA0MCHkgyAIGpiF\n6l2BIFiQkLQYsBfwLbAtcJhFKNigFYmRfBC0LYOBDczsJmAzYP36VidodBSDiCBoWyQtCvwDeAIY\nYGZf17lKQQMTI/mgLJI2l7Ri+r6cpP71rlODsBRwCnBiCPigtYmRfDsk6W1HAb8wsym59H7AAcBz\nwADgAjN7q4bztgVWBBYFtgNGmdkj6dgWwEBgcWBr4GwzeywdGwUcCMwCngEONLOJuev2AoYDJwN/\nAl4FugB9gEnAWWb2Xcv1zByq1HtVYDdc770scK+ZvVjlemX7KB0v2bfz2YaHgX3M7KOWuF4QlMTM\nYmtHG/Bz4HRcsK6aS+8CTAaWTfubAc9UOy8dmw4ckL7vBfwdF2bdgHNz+fZOx1ZI+6cBvbIyy9R3\nFeAbYPFC+gxgWCv1UbV6/6aQ/4Yarlmyj6r17Xy240Zg93rfc7E19hbqmnaGmV1tZmcCKhzaFvjM\nzD5M+Z4D1pXUu8p5AIPwkTa4ii7zqloTGCFp9bT/IC5AB6R9mdn0rMwy7ACMN7NPswRJywBLAl9W\nae5sJO1YJn1oieRq9d5L0nq5/F/VUIVyfVStb5uFpPMlHZJ2V8Uf3EHQaoQLZcehN1B8rZ8J/AtV\nBIWZTcjt7omrUf4OvCxpgJm9nY6tAhjwRtpfVNL+uNpjB+BCM/tb4fI7AA9kO5IWBs4BbgHukHQW\n8D7QFdgeOMbMJpWoZjdJJ5jZBblrnQ/cVaI91ep9OfC8pEuAz4Hfleub3DXL9VFZJC0FDAO2Ac4F\nNgJ6pPrcDawMrA3MMLOL0mnXARtKOhi43aqokeqFpO7AU2a2UZnjWwAj8Ifryrg67zQzm1oi79r4\nm9AX+Fvfl8Dp+f5N9p5DUp7u6brnmNkrLdCW44CFzOz8QnqrldnaSLoRV1P2AvqZ2etlM9f7VSK2\n0hvwHXOra04C7ivkeQPYt9J5ufTNgV8CVwGLlCnzemBkbr9/7vv2wOslzvkAOB84GDgS188PSseu\nAo5K35fFVSBdKrR5J1xF1Am4CNi0xr4q1rsXcAMwEZgCbFvjdSr2UYnf5N/wgdLfst8BWAR/c9gq\n7a8DvFLv+6mZ995mwLPArDLHN8Ef7D3SfndgbLoXiqrC9YB3snsJWA54G38gZHk2Bv47f28AlwGf\nABvOZ1tWwx/0pxXSW63MNvydRgLTq+ard0VjK/sDFgXKYcD9hTxTgSGVzitx3UNww233Qvow4LxC\nWufc99XStTfMpW2Mj4IWLlHOhsCnQNe0PwR4sIZ27wj8tdY/WrHeuK3hjiRsuwBn4PaBVZrR9+X6\nqPib9EhC651c2pbA47n9/YHb6n0/1djudYB7gGuApyoI+XuA1QtpG6f+uSl//wCvAUfm0lZOD4Ph\nubSL0rl75dJ2TWmXzGebrsRtKUUh32pltuHvNQa4o1q+0Ml3HF4Dls92JHUGeuKjpLJI6i9pmqTV\nUtIYYFN81Jzl2RUwMztJUldJq6VX2RmSuqRsPXCVyDe5yw8Bnjazb0sUvT0wzua4CG4PPCRpyQp1\n7YqrSkYCP5VUUQdeqt7AUGCsmX1lZt+Y2Rm4+qas+2ctfVQKM/sM74P/zSUPAR7J7e8H3FKp3e0F\nM3vNzHYzs2H4/VaOQcCjyfaSnfsi8DHe/owDcTXjdbl8U8xsOTPLq9BewEfQn+TSeqTPL+alLQCS\n9sB/m1L3UauU2VZIWgQfUIypljeEfMfhMaCXpJXT/mDgVTN7s8p5s4BX8FE/wBq4oH4JQNIgfDR6\nn6TlgZ3xh8kU3EUzE+oDgCfNLP/nH0L5m+xj4P9SGT1w4T0W+EmpzEkHfBk+Kv8jrtO/WFLJe7RC\nvSfio8o8nYDx6bzvSSrqmSv2URWKQn32fhLs/XH9/LAartVRmISrxBYtpH+N67Uz9gUmWs4oXwoz\nu8HMljKzh3PJ/fAJYzfPSwXThLOdzezWtiqzjRkALEwNQr6uhldJP8D/FBvhT/2ewI/S4YG4m9z9\ndapeXZC0H952A86TNM7MLjezWckI+ktJT+FCfp8azntO0jXAcEmG3xy7mtlbkvrgAij7syqdv4SZ\nfS7pxWS06gysBeyRyuqfvg8GPpc01Mz+p9CUm4EBkvbBdbY34kbav5Rp+rm4Me59ADN7XtI3wKnA\nWYU+qlbv+yVdgD+ougIPm9l7Ke9w4HlyArxSH1Xq23T6mri9JGMZXNUBrpt/GlfZ3FOm3R2R/rg+\nfrbXlaQV8Idu/q1mIDBe0jb4G9ZiuNrvLKtgcJa0Bi4PhpvZy/NYx5OB39SauVqZyaHgFPz3ng68\njt/Pf8bVkqXkmOHG0QtwG8axwNL4A7IL8DMzm1WirHVS3s9TvmVwh4VpuWyDgY9q6p866pMWBi5K\n358BHscnmmTHR5DTddZ7A67GX/Ger2HL8tVk8IsttnndWuu+xCd+ldTJl8l/Lu6FlRlYl8b1268C\nB+fyDcKF4rolrvFD4Le4qmjEfPTJRvnzUz1OK5O3apm4fWcMcHMu7ST8bW94FTl2Im6DuBDondI6\npT7Yv0x9pgKb5NKOAZ4t5BuHe2dV74863pxDgD3T9/8Hbi0cPwn3C2/udTvPb91ii21B35oj5IHV\nk9A6M5e2bBKuX5CM77lj7wGjK1xvIfyNYBywVDPrLeBa3GUySysr5GspMz0EppEmx6W0HXE1379X\nkWO/SA+/TQvpM4HjC2kbpP46sJC+aWpD9gDtjqvGhldqU7bVU13zMvCxpA3x15tLCsc3ooxOVNJC\nwM/wxn8IfIY3+gl8Ovuvk2FiGG5M+RB/5ekJnG9mH7d0Y4JgQSQZ5m8ErjSz03OHZqTPidY0Ps8U\nYAdJC1sJo72Z/UPSmcCjwBXk1JI1cAgekuIfzTinbJnJBnYocKnNPW9iIG5zGk1lObY5PjP9+Swh\nqRuXwN9y8lyAq4JuKKQvnj5XxW1L2+APpTG1tK1uQt7MPgA3hOH+089mx5IQ34kSOjVJa+H63svN\n7PBc+nL4K9c+ktbERyKnmdmjuTyDcV3uNq3QpCBYELkKeMB8RvBsktCczhxhn+drXNfcE/hAUl/c\nXz2vX86E4l6SuptZVY+XJAPWM7Mrashba5l74zapBwqXGASMqSTHcvlGFdJ2xieEjc3VZ2lcx3+Z\nNY331B/X709K+9vh+viaJm21hxmvg4EnCk/eXfAR+C3Ju2JlM3tX0kr4K9WpZnZd/iJm9kEySE7A\nO++YvIBPecZI6itpkJmNpRlI+j0+CcRqyZ7yHWdmjxeu812N1wiCDOGuop2bHGih+3KeKiWdjk+Q\nOyeXtr+ZZSPRp3FDZZGuuKCfnjyvXgQ6S+prc2ZDZwZJ4UK2FoYAfSXdmUvLXID3lbQxPnHukWaU\n2Td9js+1sSs+Qr8+V85gCnIsDUhXoOmIe3f8wfiFpD6p/DVSuaUcEw7A34iey5WVBePrY6VnkM9h\nfvR287vhBogZFAweeAyRh9L3ocAPc+mPV7jeDrghamyFPDOBH9Wz3bHF1t43qujkcVfYM0qkX5n7\nvi/uIVLUyc8kGTFxgf8N/ha+ZC5PP1wP/XTh3DUpM2O7TD2zSXy/yqXVXCauTfi4cM1MH79G2i8n\nxw7GPay65dKWwnX0e6T936XP3qnsPQvXGIq7de6Y9rul8w9P+1dU64N6+8lvggeyGlNIXxsYnSb8\n/Bi4J73O7A78ocL1ngZ+igv6JkhaF9eFTZAzXNIJkk6Yv2YEzUUeq35rSb+qd12CknQDkNSteEAe\nlvliYA1JN+S2m3E3yYxbcbvaEblzf4wL2BEA5vr6kbj6NW8rOwZ/QByWO3cb3HWxSTyjCnQpfDar\nTOB2oHs28Usexvpy4H2bE+a7nBwbhHvF5AP19cYfCg+lfhyf6jQZD7S3ba69qwO/x2cMP5iSF8ZH\n/G9KysJPVKTe6poV8SnsxYqejfubrocHxZqV/Fg74dPNm5A6pCfepnK6qoPwp/SrknYD7jKz9yXd\nLmkTM3th/psU1MhaeOyQRpok1KGRrw9wA7AS/t8DmCzpFeAqM8smCd2Jj0j3K3GZX2dfzMzSrOSL\nJd2Kj0gBtjSzd3P5TpV0YHpIfItPavsI90iZmLv2B7gTRT6tXFt64PfX2iQVVdKbn29mo2st08z+\nIukw4BpJE3Bd+gw8XlFGOTm2DE2NqC/hD46RwBQzOzd3bJ/UV39I5fQE9rY5ahrM7FNJJwNH4zr6\no6v2RRryt3vkKxS9i/uPlpqscDT+o76F/1AvFY6viz9pv5eE/NF4zJUL5dEOnzCz0a3djmAOkgYC\nK1mZWYlB0N5IbzYfA4eaWdGg2i6pt7qmZsxDmF7H3K9SSOos6VB8YsBk3Htmn0KetfGgS3uYWea2\ndDnwX+n7BvhEhgUKSZ0knSLpSUl7Svq5pCvTKKi1yz7VzMYB35eHNAiCdoWkZSR9v5C8Ky43izO8\n2y0dZiQPs4NynYhboifi+rMvgT9Zio+RBMbZuPX+HVxHuAjumjSzxDW3Bgaa2cg2aUQ7Q9KRAGZ2\nadq/E/ijmd1ZJv8meMycb9L++sBbBb1jLeUOxnWzu5nZKfPegvaLpM1x3e3U5N7X28zGVzsvaB8k\nVc4euHH2qxS6YRxuXO4w8qJDCfmWJo1Yjyzoxdqi3LqsQSrpPOBuM3sil3YvcIqZvZSM26Nxw9YE\n3Aj0ZF6NJQ/8dARwKbA+0MfMbitR192AJ3Ed6n64Km154JPWVIup8tqv7+H9l49KeJOZHVGtf6uU\nWW5t3VFUXiN3SdzYNwKfDj/aUnRGSXvj+tw78GnzsyfTBG2DPO7S/rgevQvuqTPKOlo8rVpdkRpx\nw12cFsIt1tu3YbltvgYpPgFsGrm4JfiNOw33ux2Cu7ztApycjl9JWje1cK2u+My+JrE30vFVgJtw\nT6bOpMVOUhkHtGK/ll37FQ+edRTu3bAaPnvwUjyoWcX+rVJmpbV1a1kjd9l0bp9cWk/8Qdpi68nG\ntuBuHUYn39IkV66R+NTkaemzrWjTNUjTG8uG+Oi8eM2HzGyMmT1sZrfgOsf70vGVyLme5RgIPAws\nK6lnieNTcd/oT/DRdBaZ8AfAY/Jl82pCLbf2qwHXm9lkM3sHn0V4U6ojVOjfSlTp+1rXyJ1saUKL\npAHAUDO7zHIeKEEwryywQt7MbjOzJc2sl5ktbXOv8dnaZGuQnifpVGpcg9Tm6L1rWoM0x0G4v+1s\nQSRpU3y0OLNgaL0L2EoeBnoybpQmd95A4FszuwdfXecnJXypN8ZjgIAL+SzM7kfAZlbCNlKBbsV5\nDMkbqkmMcnOvq1Jrv75pZh9a8olOnlrrmdlTuXPnp3/Lsaik/SXtK+nq5OFVZAjuM91Z0jn428Mt\n81luEMxmgdbJ14vkj3wRsBVuFN7Pkt64ynmb4zPg+uAR6L4qHP8ON+69m0vbDXjbzCZIehSP2V61\nrPaEpJ2ALXCD+oW4YbiqjlrS9cA0MzuxkD4Kj5g4uZBesX+rlFWq7/tbMrRK2h6ffNO3cN67uNro\nMzy41t1mdlqt5QZBNRbYkXy9SIbLK/AQpevhAZ7+LGmVauea2bPmcUKeBcZVcz1M3gBLtfFbSotj\nZg/gMwNfBK6tUcAPA6aWEPC9gO2KAj6V06z+rYH8xL2JwFryaIVZXfriKrG3zINqjQQOL/FmFATz\nTAj5tqfN1iDFY2ysKOlESSPw2X/7SdpF0neSZrWj7TtJTVbJSe1vibVfM3bG1UYt0b+V6lDLGrk7\nAC/YHHfV2/AR/UHzWm4QFKl3WIMFkYlAcYLFXGuQ4mFE8zN252kNUjO7Nr8vnzR2U1LXdIgHfBpN\n/xY4x8wmJVvCxZKOtaYhWfNrv94rX/t1S9yoni14vj5NF2qutg5uqd+kGrWukTt7jVHz8B2XAMdK\nKhVyNgiaTQj5NsbMXlbbrkGKPETzUbjwO07SYmaWedC0d1pk7ddctk+BN/LnVetfSvwmuTLLra37\nvsqvkdsPd9McCnSStJOZPSAPgtUPd++8TdIpZvZGscwgaA5heA1aBEkn4UuunZ32j8fD0R5vZo+k\nEfah+GzBMfWraRAsWMRIPmgpOgMP5fY/wf3SH0n66Zlm9q/1qVoQLLiEkA/mQjWGJJC0L676WBHX\nZ/e33ApBuNHyP+QrF52X810PgqAN6RDGt6BNmQSsjE9mGg+sbmYP4cbLJQHkkfnWSnr9Z/CFWmav\n5SkPJJctSfdXfPmyIAjqQAj5oEi1kAQ9cde/u1P6rsATwIPyle3JzkszSq/CF1fPjKFBELQhIeSD\nIvmQBFvRNCTBDDw64hZpJmoWdbEHsJB8seQjgW8lLYHHjpkK/Kc86mIQBG1IeNcEQRA0MDGSD4Ig\naGBCyAdBEDQwIeSDIAgamBDyQRAEDUwI+SAIggYmhHwQBEEDE0I+CIKggQkhHwRB0MCEkA+CIGhg\nQsgHQRA0MCHkgyAIGpgQ8kEQBA1MCPkgCIIGJoR8EARBAxNCPgiCoIEJIR8EQdDAhJAPgiBoYP4J\n8Ag5ELYCRkEAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7ed4d30>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAToAAABHCAYAAACXiYv3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAC5NJREFUeJztnHewFuUVh58fcGkKglKMRKRYYo8aNaKgxhITRYIjGkVj\nDWImxoqgxja2CdGIPRIbiHEUTdTMWGOJphIsxJpYYklQwQjWoMA9+eO8N6zL3v5dvstynpmdb9+z\nZ9+6+9u37H4yM4IgCMpMh2pnIAiCoK0JoQuCoPSE0AVBUHpC6IIgKD0hdEEQlJ4QuiAISk8IXRAE\npSeELgiC0hNCFwRB6QmhC4Kg9ITQBUFQekLogiAoPSF0QRCUnhC6IAhKTwhdEASlJ4QuCILSE0IX\nBEHpCaELgqD0hNAFQVB6QuiCViNpdLXzEAQNEUIXtApJGwGHVjsfwcqJpJ6SdpP0XUmj2iqdELqg\ntRwM3Fp0QNI0SU9LqpW0RNKAhiKStIOkjyV9LumPkq5vkxxXCUkXSfq6pF6SuknaVNIkSeu0xK/C\naQ6WdJOkayRdJelGSf0L4ttI0p2SLknbNEn9CvwGSLpS0uWSpkq6WdJmBVkcBOwDTAf2a275moyZ\nxRZbizfgSaBLA8eHAk8AS4FdG/DrBEwGFgOXVrtcbVRXtbltMXBGS/0qlSYwGJgPjMrYxgLPAB0y\ntp7AW8BBGdtpwLNAp4xtTeDXQP+MbRDwEjC0II/dU76+31Z136kCWhmsokjaFnjOzD5rwG04cCOw\nIzAEeLQev6PxG6Ej8Egl89mOeBO4H+gHvAJMN7PnWuFXqTQvBWRmd2dsdwLXAYfgvS2AiUANcFvG\n7+fAucBRwLXJdiTwWzN7t87JzF6XNA1v59Ny6e+Ijy7/0JICNoUQuqA1jAV+2YjPjsDJwJW40C2H\npEHAp8AmeK/jiYrlsH3xmpmNr6Bfq9OUVAN8G3gqazezRZLeAPZnmdDtD/zFzGozfgskvQSMYZnQ\nDQH6A1flklsErFWQjRHAQjN7ocmlaiYxRxe0CEkdgF2Ahxpx7WlmHwKvU4/QAYea2XT8gn/ezBZW\nKp9Bo6yJd3gWFRz7ANgOQNLqwAZ4DzHPXGCbTPgZYLSkWyT1Sud3wXuHNxWcvzPwpxbmv0lUtUcn\naV9gd2BL4DC80scABgwDfop3u0/CnwR9gc7A4Wa2tBp5bisaqAuAnYALzey+KmWviG8AT2Sf7nnS\n4kPdjfEaBUIn6TvAPZK64TfL1DbIa3uhi6SJ+HVci89fTjKzl1voV4k05+O96a4F564D9E0PtfWS\n7cMCv0+AnpJqzGwxLmZHAQcBu0qaAOwFnJYfNkvqiovpOSncGTgbn8JY08zGZXxrgNOB9VO+/w7s\nAdxlZjMarIUqTszWAD9L+7Pw4cqJmeOnAu8CFwODkq1DquhDq5XvXBmuB57Gu/2NbXV+I1pQFxOB\nN6pd3lyebwB2aMTnYGBk2r8CmJ873gM4Ke3vht+IY6pdtkq3bya+l4EBmfBY4B2gX0v8mliGRuNK\n5ZyXO68/voC0FOgD7JDa5+yCNKYnv74Z2+rAfcleC9xTlH9g1+SzU7oPzk/pTQA+B3onv67AY8Ct\nmXMn4YsY4xqthypeRLsD+6X994DbcsdPTIXYOmdfAJzSzLQ6VqucFaqLScBHLYi3TcoNdAGeaoLf\n1UCvTHsuBXpkjk8AVkv756bj/ZuZl3bdtrm8KhfugPeGprTEr1JpJmF5ibTqifemzsNX1JcCvfFe\nVy1wVkEatya/tTO2Sfic3bfwRZBafIi7ae7cc/Bhc4+0v0aynwdcn/G7HBfo1TK2b6Z0N2isHqo5\ndH0WWChpC3yYNiV3fFtglpn9f5JU0mBgDeD5fGSSOgGHA1sD84CPgM/wlZx98Iqr6yofiVfsPLyR\n1wR+YtWbG2qsLrYE5hSdWKVy740/rRujdybuf6bfIcAcSdsAL5nZJ8k+HHjFMit1VS5jxbF0d2bC\ntZLmA6OAE5rrV6k0zew9SdsDP5J0CS6EU/Hh5iLzBYf5DSSzWvr9CEDSicCOZjYyhTfHe2rHAzOA\nrTLnjsAF8Exgspl9kPJ0Zp2DpC8D44ErMtcL+DXztjVlSN8OnnInpArqlLP/Gzg/Z/tBaoTuOfsG\nwGzgyJy9P94D3DOF18eHhbvm/HbB55vaXV3g86gLgFML/KtSbmAmsEkjPv34Yq9hC/ypPhrvVZyV\nOVaT2vUX7aWMbdC2jwOPF9jfAj5trl8l02zg/DeBh9J+d7z3tNw7jsDDwH8y4feBjQv8jklxbJTC\nnfH5wfuBm4HfANvXc18sBfYoKN+MJtVFO7gA7gLuz9k2SDfF7jn7g8CdaX9w+h2QGu6weuK/Fx9q\n9QFeJc0ZFfjNA3ZuZt6nAn/F59Ua2+r8hjezLvYFlgADk0AMrGa58ZdG/9wEv/1Jw/EU7pHa9GR8\nonrdzLFh6dghuTiq1raVbl98bvnJAvt/gReb69fE/Lc4rlSntWRe4sUfOHcU+L4BPJz2++KiVFNP\nvAuBLdP+8JTGiBQ+GX/Qd07humHsNSnOnpl4uqRyHN2kumhu41dySzfu+8DEnH0cPm7vlrH1xufs\nRqfwlel3Jg08sUlPAXzy/HcN+C3AVzkF/BCfP5rQDupiJsueqnuS3l6vVrmBIyjoXRb4XQb0ydnm\n42J+TM4+KV3I6+bspWjblIfb8VXErG2rdKOf3ly/ZF8f6FqBNE/AF/7WydhOwXt0nTO2c4G3cvEN\nTfGNz9jmAsMK8tMjxVmTwj8GPs6ER6brYK3UVlcn+0X4e3bZuOrm55b70qKwLlZkYxcUfJtUSdvn\n7LfkL/DUQEvx1ZwR+Ifka+Hi971G0umBz+kU+gEbp7g3w+d8BiT7HcBWVa6LOcBx+ATxdem3auUG\nHiAnSAU+/fB5x/xE+KxUng45+4PkVpXL1LYpva/hq5NZ4ZiGD7drWuA3PJXrvgqkeQb++k+/FN4K\neLvgWlwbfxiPzdimsPwnYAck28CMrScuvKNz7f5AJrxHKlNN2q97qG+Dr8D2SeGBeA/+zabWf7W/\njFgH+Bve7c/SBx+zZ5mDX5yTgX+Z2YWStsN7QrOLIpc0BO9Wb4jPddX3Gc3R+Bvfz0naDfgK/lrL\nq8C6+KsDbU19dXE+/l7dJsDFZrZU0lCqUO70kXdnM3urnnTXwj8d2hqfoH5F0sVmdk1ymY1/glSb\nFhjuwefavgoskvQo8CszuwLvKZSlbTGz2ZKuBWZI+hS/8Z/Fh4aLm+uH98Dm4SuarUoTuCQdu0hS\nz7Q/ysxm5eJ7R9IuwAWStk5+vYG9zGxJxu92SXOByyTVvYjcAR+FPZ6Jsif+xUwdj+AruNcB/zCz\nC1J8T0o6FrhB0gv4kPV94MX6yl5UGSvthovDEmDzeo4fn34H4U+KLQt8NsYvmk1TuIZlrzzcS2bJ\nvL1s1So3vmo2vrX5b89ljK39b0A3vBd/RFPPWak/ATOzuXhX/NisXVJHSePxHiBm9jq+onNgzm9D\nfH5ntJk9n3wXm9knkoYBj5nZO21ekGZSxXKPwYcfbc6q2rbBF5HUR9LInHlvvIf4YJPjSQq50iKp\nI/4VxVC8G/8x3rWdaf6NZZ1fd3wY+Bk+5Fkdf9v6KjNbkIuzB3CcmV24QgrRAlZ0udNweYqld6NW\nBKtq2wbLkHQr/kpSL/M/GvgS8HvgWjOb3OR4VnahawskjcN7A8KXvh+ucpZWCA2VW9KZwKtm1ti/\nlbRrVtW2XVmRdCC+8DgHf+9uPeBGa+Z33yF0OSQdgL8/tRjvHg+3Nvz7mPZCY+WWdDf+h4ufVimL\nrWZVbdsghC4IglWAlXoxIgiCoCmE0AVBUHpC6IIgKD0hdEEQlJ4QuiAISk8IXRAEpSeELgiC0hNC\nFwRB6QmhC4Kg9ITQBUFQekLogiAoPSF0QRCUnhC6IAhKTwhdEASlJ4QuCILSE0IXBEHpCaELgqD0\nhNAFQVB6QuiCICg9IXRBEJSeELogCEpPCF0QBKUnhC4IgtITQhcEQekJoQuCoPSE0AVBUHpC6IIg\nKD0hdEEQlJ4QuiAISs//AN7nJvhNkjpVAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7ed4da0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"water to absorb calc.kg of CO2 \n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAABHCAYAAABvRbJFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD6FJREFUeJztnXv0HVV1xz87LwgBzINApUiChGdBhASylmgIEJ6KFFxo\ntA0UWUsWKVJEIRYWr1pAErRVCo0WpEUoIpoFogKlloDIK6BQHg0VC0pEQiDhIYEQkt0/9rkwmd+d\ne+fe372/m8zv+1nrrHvnPPY5Z/aZ2TPnNebuCCGEEBs6Q3pdACGEEKITyKAJIYSoBDJoQgghKoEM\nmhBCiEoggyaEEKISyKAJIYSoBDJoQgghKoEMmhBCiEoggyaEEKISyKAJIYSoBDJoQgghKoEMmhBC\niEoggyaEEKISyKAJIYSoBDJoQgghKoEMmhBCiEoggyb6jZntbWZbp/9bmdnUXpdJCDH4kEHrIWa2\nqZndYGbbdFjuZDP7hpnNMrP5ZrZ9f9M1kTkbWGJmq4EFwEuZdM+a2XIzW5Fxl5UIm9KgLI3STTOz\nmWZ2gpldY2YH9udcCiE2INxdrgcOOAE4F1gDbNtBuSOAZ4At0/EU4IH+pGsmEzgHGF8Lz/hvBZwC\nTAQmANsClwKjG4S9p0lZCtOl8GXAsen/J4DXgVG91recnFz33bC2LaHoF+5+JYCZndth0dOA19z9\nhZTPg2a2i5lNdPdn2kkHTGoi09x9WR2ZDlzt7i8DmNkxwL+7+8tmtlVB2CtmNqNBWd4oSpfy3A94\nOv0fAmrjQgwWdLFXj4lkuvwSK4A/I9562kn33iYyR5nZLGA1cBBwibv/T80gAaQxtl3d/QYAd19a\nFNaoLO7+kwbpcPcnMmmOBv7O3V9vUO+uYWabAPe6+x4F4fsAc4CRwDbAA8A57v5cnbg7Em/0K4G3\nCMN+brZuaezyxBRnkyT3And/rAN1+SIwzN0vzvl3Lc92MbNrgQ8RvQaT3f3JLudXWo8pfmG7MLND\ngfnAI4SOVwFrM1Hud/f5mfgN20Wr8nJlqavzgaYlffb6FXGwO6JxdbLL8cvAT3N+/wvMbDddM5nA\n1Iz/gcCTdeRfBUwsyHudsLJ1KJIJ7A2cBVwBbNwjvU4BFgFrCsL3BG4FNkvHmwB3Akvz7QHYFfht\n7TwT3a7/R9w0a3E+CNwEjMj4XQa8Anygn3WZAPwxm1+38+zA+Z8LLBuAfErrsWS7OI0Yhqjn3gYO\narFdlJZXRufruz41KWQ9x8xOMrN5ZjY352p+n8oleQWwnN+mwItNsmqUrpnMBzP+TwE7mNkHMnUY\nD+zvdbo8C8Ka1qGRTHdf5O4XEDeOu9MT8YBgZjub2Y+JiTJvN4j6FWC2u78G4O4rgb8hnkK/mpE3\nlJhoc4m735+8hwOjgOUZeccCRyRX46fAZsBn+1Mn4Ezi7SNPN/PsL/sAdw1APmX1WLZdTALeRzwk\nDK054CPApe5+e5JXtl2UkleHIp33inL67LXlHeyOzr+h7Q/8KnM8FHgT2KHddCns4YKwqYQBGpHC\ndiOe/nbOxD8WeKgg3z5hZepQkG4q8DwwIR3vlM7v0T3S7VUUP4m/Rjxdb5HzXw68kDn+bKr75k3y\nmkV0y87I+M1M9b+wH3U4CvhUkpN/Q+tKnh047xunc/b5AcirlB5baBffrOO3KfATYKM22kUpeWV1\nvr7rU29o1eMuYHxmKcB04HF3/zWAmR1gZvXGdBqluwvYoiBsCTDP3d9KYfsC97j74ozs3Yg+/nrU\nC2tYhwbp1gCPAbWxi+2JcYVHCvJ+BwvuMbP3NYhzmpmd0kxWSZ4mnuJH5fxXse6T8UzgKXd/tZEw\nd/+uu49x9//MeE8m3gaua6eAZjYKOMzdrx+oPDvEvsTbysIByKusHkvh7vXa18XA2e6+KuNXtl2U\nlQc013mPKK3Pnk4KMbOPAzOAPYDjgLHAMSn4w8RT3i09Kl5XMbPPEHV04Ktmdre7X95fue6+Jk3Q\nOMvM7iWMQbZb8mTgl+Ru8o3SNQn7vZk9nAaQhxJvbUflivUqMQZWjz5hJepQlO5BM/sOcLKZOXEh\nfNTdf1OQdzatm9lpwI1m9jF3/0M23MxmJ3nH1BXQOlOJcZfsxJn3EuMg/5WJ92HgfjP7CHAw8XQ9\ngZjs8nCR8LRu7zjgZHd/tM0y/i1wUdnIRXk2uM6dGOyfR4xDnQaMIwzECOCv3H1NLo+dU7w/pjhb\nAKe6+/OZaNOBl/pR71Yoq8e2MLMPEbOIf5kLarddFMmr0VDnndRlktdZffbwNXI48PX0/wHg58AX\nMuFzgN/2+nU3V+YrgV8RBqGZq8Wb1utyy7Wk42nE2Nv4jN/xwI+JGV+tyCrsWiqIfyExU7Q2yD+O\n6PZ5HPhcJt5+hEHfpY6MI4FvAouBOf04D3tk09Og+6lRniWu8zOICRSXkCb4EMstXgVm1cnnOWDP\njN+pwKJcvLuBHzSoW1ev47we+9MuiPHp/CShlttFI3lldd5JXXZSn+vEbbfB99cRVv7o9P9F4Ppc\n+JeJtUg9K6Pc4HTE0oN7gTFE185/UDDe0EROKzeu96cL//yM35bpprIynz/wLPCjBvKGEW8IdwNj\nWiy3Af9KxoDnb25l8yxxnX8h3fz3yvmvAL6UOd49nYfjcvH2SmWrPQRsQnT3ndyjttNHj+22C2LG\n8GN1/NtqF0Xyyuq8U7rspj572eX4KPBymg03FvjHXPgelBj7EKLTuPvtZrYRMf36JeBwrzPe0CnM\nbARwLfAtdz83E1SbrfZUnfyXAAeZ2XB3X52X6e5vm9n5wB3EOqR8l20jTgSucvdGs/H6UJBns+t8\nb2IXmHe6wMxsO2LHmMcz8eYRu8B8N5d+8/S7LXA/MXtvGAMzfrYODfTYLicB99Xxb7ddFMmDcjrv\nlC6hS/rs2aQQd1+alHEAsT3RolqYmQ0DDgV+lE9nZqPN7Dwze8PMbjGzk5P/TDO7K+3x9xVrsn+h\nmW1sZrPNbI6ZHW9mp5vZRWY2uqMVFRsqRowLQPevkyuAW9399KxnurksY91p2DVWEWMOYwHMbCcz\n2z0Xp3Zj+UTZpQtpB5dd3f3OEnGb5tnoOk/sRxjALIcRi4DvTPmMI96ab3L3tbm4Uwk9PZ2O9yfG\nW3qxsLuuHtsh3QMPAf6QD2ulXZSRV1bnndBlyq9r+lwfdgqZDvwi92RwOLGW5XtmNgTYxt1/B+Cx\nbdLlwNnENM6nkv/3zOyjwCPufnajDM1sEvHaf46735Hxnw7cTDwV1Ev3bWIhpdcLz0dP8b7o7j/P\nyVlbUoboHEbM/RjaNGLsrnAWcYEeAtyUJoq82fFCxdZnT3qsm6v5zXL32pPrfcRaojwbETevZWa2\nGfAwMNTMdnL32s2gNghvxISdMswAdjKzBRm/Eel3ppl9ELga+FmLeU4nd52b2Q7ELjQLc2X4c8Iw\nrExP+OOTvIfqlPdY4k2lthZyOmm9kpltlynXO3TqOs7JbKbHVtmHmDlZtH60abtoQV4pnbv7jclv\nOm3qMuljezqoz3Uo0y/ZLUc8+S6n70DyDcDt6f/BwJG58L8AltSRtyQft06cccBvgCMKwl8A9uvl\neZHrnSOePhcBYzN+xwG3AMNblNVwrCS14/Pq+H8r838mMQMsP1ayArgu/d+IWJ6wGBidiTOZGI+4\nL5d2Ei3soELMnltLTPWm1TwbXOefI9YXjcz4jSHGYY5Kx/9EbIXWZz1huje8DRySjkemtLPT8fwB\najNN9dhKu0hxjk11PrEgvGm7aEVeGZ13Qpfpt2v67PUb2p7EzusLc/47Alek1fCfJPp3s8wg92pr\nsafZlsAdZmbAX5PWgbj7vEzUeYQxvLmgTMOTnEGLme0N/N7dn0vdERP93d0IKkuaAj2PWIfzTneO\nu/+bmW0M/NDMjvI6048LGJnkjnT3N3J5TQP+AbjNzLJP8cNYd6+964HPE+356yntJwljMieVb5WZ\nzSUW8r6cSXsqcdM7KVfHhcREl8NK1mNE7relPCm+zvcjZrRlz81E4qZ5ezpH97v7M2Z2GzEDdUGq\nx/uBbxO9NLeltMOJJ/9fm1lti6mu0oIesxS2iwy1e9BbBeGN2sUZbcjL00fniX7pEqCr+hyIJ5gG\nTwFHEN0WQ3L+xxDTpP+ZzI4TmfDfAd8nFHcGcWEvIBb0AnwM+NP0/wekaaFEN+Yq0udF6sjdhegy\n2a2X56VOuSYD3yB2ZpgPbN/fdE3CriIuxtXAL4BJmbBniSe0FRl3WYmwKQ3ya5RuGvE0egJwDXBg\nl86xAfcAWzeIcwqZacoFccYT63Ae5d0985YSXXSfzsR7keI99s7LyRyddHI9MengWmC7OnkfRyxo\nvpowWNdldZfi7EiMo1xa4pxsRsxaXJLKtTK1h4+3mGfRdX4bmWnnyW9IquflwJkZ/82J6fb/QiwR\nuAaYUqfMpxP3jkvz+XWp3ZTSY9l2kYl/ZLom9mqQd6l2UVZeGZ13Qpfd1GdXld2lBrRzOtFb5/wX\nEIsKIfZS+1L6f3FGGZNT2rpKBb5GMorri0PfN9P3zeTk5Eq5Xnc5tsMM4AnPfJohdU0eQHr1Jp4I\naq/KuxNdAvDuJ0nqrVjfBfjLJGd9Qt830/fNhBAl2BD3cpxBvN5m2Zeoy30A7r7a3V9P27ws9LSN\nSrpZ30xuTU4af/sOMXiZXy/RayZS/C2ydtM1kznKzGalpRBXJmOPu7+QMTy1b5Hdm8KWFoU1yq9J\nOtz9CX+3X76n3zcTQqzfbDBPu2Y2mehyOhgYYmaHuvutZnYm7651mGNmF7n72jSVebq7X5gT9Rng\n783sImKX7E2J3ZwPd/cVA1ah8mxB30143yT6uttN10zmDz1NAjGzZcCNxM71WS4Azi/IOx9Wtg51\nZaZJKgcT3Y1fK8hTCDHI2WAMmrs/RKxbODPnfyGxd1qeTwNzzWw4sQ/bz1L8lcRmmBsK3fi+2Zgm\nMut+38zd/xvW+RbZ8flMC8Ja+b5ZH5nuvghYZGYnEt83m5b0KIQQ77Ahdjk2JU1fnUvM5nqeOqvj\nNyAWA39SO0jjhWOJt8t20y0mFkH2CTOzqcByi218IN6inHWn+x5G3y7ERmFl6tAnnZlNNbPnzWxC\n8lpI7PV2aEHeQohBTCUNmrt/391Hu/t4dx/n7k/0ukz9QN83a+P7ZkKIwccG0+U4WHF936yt75sJ\nIQYf5u69LoMQQgjRbyrZ5SiEEGLwIYMmhBCiEsigCSGEqAQyaEIIISqBDJoQQohKIIMmhBCiEsig\nCSGEqAQyaEIIISqBDJoQQohKIIMmhBCiEsigCSGEqAQyaEIIISqBDJoQQohKIIMmhBCiEsigCSGE\nqAQyaEIIISqBDJoQQohKIIMmhBCiEsigCSGEqAQyaEIIISqBDJoQQohKIIMmhBCiEsigCSGEqAQy\naEIIISqBDJoQQohKIIMmhBCiEsigCSGEqAT/D7WJjQwC/wvdAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7b02d68>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAT8AAABHCAYAAABxoECzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAC8lJREFUeJztnHm0XdMdxz+/l7xEwnuCSFopEokh2hqrliGSEIoiomZi\nHtpUNaXEUKoVskxLW1qtmYeUooglEZq05gZFzRYaKUGRhCxJhOTXP377tjvHPfee+3JvzkvO77PW\nXe+c395n7/3b+5zv2dN5oqo4juMUjaa8C+A4jpMHLn6O4xQSFz/HcQqJi5/jOIXExc9xnELi4uc4\nTiFx8XMcp5C4+DmOU0hc/BzHKSQufo7jFBIXP8dxComLn+M4hcTFz3GcQuLi5zhOIXHxcxynkLj4\nOY5TSFz8HMcpJC5+juMUEhc/x3EKiYufU1dEZETeZXCcLLj4OXVDRDYERuZdDmf5RkRaRWQnETlQ\nRIY3Kp/OjUrYKSQHA+PLBYjIDcAmwKbAYmBdVX0nLSER2QZ4AOgCPAW8rKpH173EOSMiWwPHA/OA\n7kA34DxVfSERrx/wc2A+Vn/dgdNU9f2UdLsDj6vqpinhfYDTQ1orhXwvSOZboy/V8szkK9AX2AP4\nIXY/3d3eMlVEVf3nv7r8gKeBrhXC+wMPA4uAoRXidQYuBD4HLs3brwbW12bhwe4S2X4LfAxsEtn6\nAR8AwyPbIcCzQFOZdL8FPAksSsl3deDPQO/I1hd4BejfTl+q5ZnJ1yise2j/YxtV/z7sdeqCiGwF\nvKCqn1WINgi4DhBgvQrxjsEexE7AlLoVsuNxGLBn+JW4D2gBjopslwKiqnEP6A5gQ+DQkkFENhKR\ne4FRwBcV8j0KeFCjXqOqTgduwOo+MzXkmdXXEtth03KP1lKeWnDxc+rFIcAtVeJsB9wOLCBF/ESk\nLzYs2gAbkj1ctxJ2PJ7Bej4fR7aW8HcegIg0A7sDr8cXquoC4C1g38j2iqruoapHYS+PNNYDdixj\nXwA01+JADXlW9TXBDsAcVX2plvLUgoufs9SISBMwBJujq0Srqn4CTCe95zdSVW/Ebv4XVXVOvcrZ\n0VDVNlVdTVUfjMxbYj2o0tzp6tg0wIIySXwMfLsdWT8LjBCRm0WkB4CIdMV6kde3I72qZPQ1ZjDw\neCPKUiLXBQ8R2QsYhk2CH4419H6AAtsCFwGTgJOANYA1sQnwI1R1UR5lbjQV6gRge+B8VZ2YU/HS\n2BF4WFUXp0UIE+wzwumblBE/EdkbuEdEumEPxpUNKGuHRUT6Y21+gqo+H8wfYD2jlcpcshawpog0\nVar7MlwPHA0cBAwVkVOAXYHTdSkWPGohxddS2EqYqJ8Tzrtgiz2dgNVV9bgobjNwBjAAq6tXgZ2B\nu1T1pkplyE38QqGHqOqJIjINaAPuVNXTQ/ipwLXBfrmqTg89jDnYqmJbTkX/EiJyDbAFJtpVo4d4\no1X1oUQ61epkDPB7YN16lr8OHAxcVSXOYKDk77+AreNAEWkB1lPVu0RkJ2z49RAdjHq1dSLN4cBO\nwC7AJar6P9FX1cUicitLzpUhIr0x8QN7QX6Y1QdVXRjq+E8hzzbgXqxH2FAq+RqxDdb+j4Rn4mxs\n3vNI4CQRGaOqs4NITgLeVdWDQvqnAcOByVUL06iVlAyrQ8OAfcLxh8CtifCfYKs9WyTss4Gf5lXu\nnOvkNGBu3uVMlKkr8I8M8X4H9IjadhHQEoWfAqwcjn8RwnvXu7wd+Yd1RqYAjwCrRfae2HzaseG8\nE3Autrq+KI4bXXMdKSuv0b30B2A3bD5xMTAT+PpSlL9inll8DWHnYMP8lnC8arCfC1wTxfsN8F7p\nvgm274Q6Wb9qGXJs6N7hwdkkVPw2ifBbgEcTtn4h7m4Je49QSfOBiVhXGuBArPcwK1RcxWV8bGgx\nChiDvWVOAcaVHtoOUCfjgUfKXJeb/8A+2F6tar6Nj473DjfopuF8S2DPKHwK8GpKOitEW1co1+DQ\n9skX36rAWcAlwC+BtbGtJZ+mpJMqRNjLZ0J03i2k+wXwzFKUPbP4VfF1CjY1ciHQM+XarwELsd5j\nbB8LvJ0p/zwbOhR2NDAX6JywvwOMTdhGAZ8C3cuk0ys8UAMS9jbgsgzlGICtLA5N2Idg81m51gn2\nppwNnJpyTS7+Y0Onjauk3Qv4VXReEvcR2KLb2VFYc2jjq6qkt9y3NbZV5ZsJW0uomy/K3eeJuDOA\nB1LCKonfLGBgGfvxoV43bKc/lfLM5Cs2pz8PG862AROArcukNzqUdeeE/SHgpkzlXVYNXaHC7gIm\nJWzrh0oZlrBPBu4Ix/0SYYdQRvGBt4k2h6aUYQ3gDaLeRyL8P8DgCtdfib2Fp2X4leINqrFO9go3\nyTpBMNbJ23+gFXgiQxvvSxjOJ276k7GJ97WjsG1D2KEV0lvu2zrUwXys99IvsncP/i8xLVDm+p4h\nXtlNwKQIEbZouAhoTrluDqFHXuuvQp6ZfcUW9RYDO4Tzk7GOQJdwXhoCXxGua43S6xryOSZLefNe\n7W3CtjRckAgailXUo1Hc1YJ9/2A6GTghumYYMDWR/gZYL2FqOBfsk5luAKp6UYh6EfYwTUgpanNI\npywarT4tLRXqZCQwVVVniMgumA8zovA8/P8ecGcGtwZhQ1FCvnNF5KNgn6iq/47i7oAtEvytQnoV\nfa3gJ3Sctl6Izd29ifXoSwwMf59U1bkAIjIa+xRtc1WdGcKPwMT+hloyVdUPROR9YCvgsTgsLDp9\nArwU2QZg9VVuq01WMvuK9b7n8f9tLq9hItkiIrOwqYlRmEjPVds6RXRtFxL3RirtUfh6/bC5nsUk\nurXAzSSGH8DmmNKvgj0gIxPhM4DbgFPDbwz2YD4WxdkD6BOObw9ptgCfAYellHFgyPcbOdfJc8CP\nwk10NdApb/+B+4l6bSnX9wKex75QiO3Tgk9NCftk4K0qaVb0tZyf4bijtfVY4MSErQ0ToM0j25mY\ncPSKnoV3k/dIIp0/Bl+6lQnbP7TJOpGtNdTpiMg2KKQxMaM/lfLM6utk4P7ofOeQZnM4Hh49JwsJ\nc4LYiOgNYEbW+s/7HxusBfwTGx7E9OTLW1mew27kC7E30fmlABHZCOiDbSmYGdnvBOJNlf2BjYCL\nsYpaGxtCNgNp+5uOAf6uy2j/E+l1MhbbF7UxcLFG+xzz8D9steiiS/ba4vA1sE+wtgBWBl4XkYtV\n9YoQ5SngRrWtHJ2Be7AFn82ABSIyFdvmc1ki3Sy+lvPzGeyrkc61+tooVPVnInK4iIzHdjZ8BfgI\n2+EQf9FxCSZO40SkNRwPV9VpcXoisib23PTB7hOA6SLyAnC1qo4P+d4mIjOBX4tIqUfXhG0pi7fk\nvI9NAyzxdUk788zqaytweXQ+BVvouxp4TVXPC+k9LSI/AK4VkZew4e4s4OW0sn6JZfGGWwZv0BOA\n5xO2TljXePvI1sz/t1PcFxqgL9HKYyKNgeEGaPfy/4rqP/Bj4Psd0ddyfobj5b6t/Zd6X3TDevVH\nZr1mRfm8bRg2BIspfRj9RMmgqp+r6qcisi3wV1V9T+2D7gnAAfHFYQ7pWmwY8GIjC18H8vB/P2yY\ntKyp6ms5P4N9Ost/WxceEekpInsmzN/F7oHqm5sDeQ97lwoR2RKbdN8FaBKRXVV1koicgW3enA+M\nEZFxGj7/CZO6QzQaNmNfKIwVkXHYx+KrYPvAdlfVeIK2Q5GX/+HTpNmqOquR/iXyrMnXFD9hOW1r\nZwkuw75N7qGqC0Tkq9gC4Zla4X9EJpHQZSwMInIc9pYXbDn9LzkXaZlSD/9F5CzgDVWt9l9ccqPo\n7bwiIyIHYLsfnsNWd9cFrtMav3kvlPiJyP7YPq3PsS7yIG3gv8zpaNTLfxG5GzhIVcv9K6LcKXo7\nO9kolPg5juOUWFEWPBzHcWrCxc9xnELi4uc4TiFx8XMcp5C4+DmOU0hc/BzHKSQufo7jFBIXP8dx\nComLn+M4hcTFz3GcQuLi5zhOIXHxcxynkLj4OY5TSFz8HMcpJC5+juMUEhc/x3EKiYuf4ziFxMXP\ncZxC4uLnOE4hcfFzHKeQuPg5jlNIXPwcxykkLn6O4xQSFz/HcQqJi5/jOIXExc9xnELi4uc4TiFx\n8XMcp5C4+DmOU0j+Cx1lT8+wY/PYAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x718c4a8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Actual balance: \n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAVAAAABHCAYAAABRTB9OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACZFJREFUeJzt3X+wFWUdx/H313sx5YJWpqmYgqHhgGIi0SBgmKGZOcWQ\nk1bqQEr5I8JRdByndCocQlOchKnRJI2s7IeNhdTEWGqiqIGiDf5gFGKmQU0oGpEUvv3xPHc4Lufc\ns+e555zde/28ZnY4u/v82ufsfvfXcy7m7oiISOP2KLoBIiJ9lQKoiEgiBVARkUQKoCIiiRRARUQS\nKYCKiCRSABURSaQAKiKSSAFURCSRAqiISCIFUBGRRAqgIiKJFEBFRBIpgIqIJFIAFRFJpAAqIpJI\nAVREJJECqIhIotIFUDPrLLoNIiJ5lCqAmtk04IsN5rnGzI5tUZNERGoqTQA1s5OACe6+uMq6gWb2\nZI2s1wHfNbNhrWyfiEiWleF/5TSzfYA/AZPc/Y3MuuOBRcBx7t5RI/9wYDEw0cuwQe8gZtbp7m8V\n3Q6RIpTlCvQq4CeVwdPMRpjZ74ALgR4PUHd/AdgAnN3SVko1C83soKIbIVKEwgOomQ0EzgfurFzu\n7mvd/XR3nw6szVHUAkIglvYaECeRd5zCAyjwKeBFd9/cy3IeA4aY2cgmtElEpK4yDBn6BPBwbwtx\n951mtgI4FXgmTx4zO47w1t+BwwhXwjOBdwNDgG+4+4u9bVszmdkZwMnAaOBc4L3A5+LqCcBcd7+v\noOblEl/4XQoMA5a4+10V6y4Fxrr7WUW1r5r+0O/QN/f5nhT+vbh7oRPhyvH8OmluB3bkKOt64M6c\n9Q4HFmTqeBb4KDAe2AHMLrp/Mm0eAHwvfl4JPFjZRuAKYH2b23Q7cGiDeRYSTt5fA1Zn1q0G7iq6\nr8vS78BtwCrgbzmm7nSTapTV5/b5sn4v3VMZrkCHAluaVNZmwo6Qx9eByyvmu4DX3P0RMzsEuIHw\nZj8XM+tw9x150yc6EXgofj4cWO7uN1Y2g3AGbjfLndDsBOABd3/LzE4FnqtYty8wijDqIm95/brf\n3X1GE4tr6j4Pbev/Wgo/HsoQQPeleQH0tVheHvPcfVvF/HjCGRl33wjMyWaIv5I6DzgOeBnYCmwH\n/gqcDnwrptsLmA4MjuneR/gi57l73W01s0GxLbNjW7qtAbaY2TGxvJsyWUcDtcbLNlpXNt3iWH7l\nMDEDDgXGmtn/MssdmOHuqzJFPQ+sNLODgSnA1Ip1k2LeBzJ1v2P7vcka3uehff1fo+4xwDnA48AJ\nwHx3XxdXN/V7qVNXdSW4DN8OnFInTd5b+JnA2oQ2jAB2Aif1kOaI2LHTM8vfT7jynRLnhxNuJSZn\n0n0MeDBHW2YA3yTcTlW9NSZcSWwFOiuWdcZ2zGlgu+vWlaOMH6XkBWbH9g6oWDYP2KR+b/2UZ59v\nZ//XqHtP4CXggDh/PLCyFd9L3rp2y1fEl5dp+CbgrDpp8gbQq4BHE9pwMbAN2Kti2bCKz0OAfwDn\n1si/FHgX4Yy7Dvh0jXQvAyfmbNPOHg7ke4BlmWVnEMbLHkoYXZH7wOyprhx5G34GGvPdB/w6s2wF\ncLf6/W1pfkh4T7Ayx9SdbmJv9/mi+j+T72RgTWbZVmBos7+XvHVlpzLcwr9I855T7BfL61G81bgW\nuMPdnyF03lMeB/KbmQGXARfFLDcBL7n7j2sUeaO7bzezRcBGd7+3RroBwAGx/IuAvQHcfX6urQtt\n24Nwqzsvs+pLwP3uvsHMpsSyN8Q8pxHeeP831ldrO9rpMOC33TNm1kW4RVxSkaav9/sxhDfDTxCu\n5PZ394vz1hnbeEEj6WtJ2Oeh+P4fCvwrs2wzMJJwtdjM46FuXVU1elZo9kR4c35LnTQ/I9zu7F0n\n3b3AFTnqnBrLOxP4EPAU4cVG9/qrgXHx837Am8A5dcocTHgcUTUdcFSscxThudGQuPyXwIerpK96\ndQKMievGZZY/CVwCdAC3Ah1x+SDim+64Lb/PW1fO7683V6A/qJi/JfbP0f2k348kPKMbGOcXAVc3\nq98T+jv3Pl9k/2fyXgkszSx7Dvh8s4+HPHVVm8owkH4Z4W3a25jZ/ma2zMzWsGtc10tmttzMdhsj\nGM9uEwi/qa/nL4QDfwzhofc4YJ2ZLTKzBcAKd380pv0g4Rbg8WoFmdnhZtZBOGA6gadr1PllwuOF\np2OZ3duwDvhAjjZ3O5iw8z+WWf5t4BTg+8D1vuvN6FvAPma2mrCTnNdAXa00CzjKzG42s/nA0cBm\nd18T1/f1fp9L+Hny63F+FHB/A/U1WyP7PJSj///N7iM8BgGvVsw363jIU9fu2nH2q3OW2RN4BTio\nl+WMBZ5tQfsOjp1+dI31s+K/Qwln2tE1zsKbgJFxfgDQFT8vBQ6skqdpVyeE51RnEE4u32lmXSS+\nRMqUYcA/gVv7S78Tnp+NiZ+7CLeDna2oqxVTUf2fyT8ZWFUx3wG8ARzRy23b7XhIravwLyo29hrC\nUIfelHEH8NUWte82YGFmWQfwFeItSVx2D+GXD5XpjiS8HBlfpdzx1HhL2IyDi/Cc8dXuAxeYBlzY\nzLqAY4m3Rw3kuYuKAfTAZ4HXgcP7Q7/Hcp7vLodwlfOHVtXVqqld/U94hnl8lXQdwEbgkDj/ceCJ\nXmxPzeMhta6y/Dm7LkJnT/KE8WLxp4G/IZzxmz6oN96qzCHcgrxAePi8jfDG+D8V6QYSbh22A+sJ\ntwB7EZ7xbs6UORi4xN3nZpafTXgUMRP4OfCQuy9MbHcX4aH9RsJV0EB3X9CKuhps1yvAT919VhwP\n+iBwpbvfnUnXJ/s9lvfJWN6aWOYf3f26VtTVKu3qfzNbQrgy/UyVNkwmPLddQRgSNdfDX19L2Z56\nx0PDdZUigAKY2Tjgcnef1mC+TsLLozm+6/lZ6ZnZBYTbXyOcOJYX3KS2MbOpwEcIZ/0DgZvdPfsM\nq1V1t73f499omO3uj7S6rrKr1f9m9gV3X9Jj5hIqTQAFMLNTgBGVZ4Ucea4lDFf4c8sa1mRmdiZh\nfN+bhAf1E93978W2qv9rV7+b2WXABnf/hZmNAH4FjPIyHWwFqNX/ZvYe4DQF0AKY2R7uvrPodoh0\ni6MKthBuZ8cS/uDF+mJbVV5mNhF4uBWP31qtzwdQEZGilGEcqIhIn6QAKiKSSAFURCSRAqiISCIF\nUBGRRAqgIiKJFEBFRBIpgIqIJFIAFRFJpAAqIpJIAVREJJECqIhIIgVQEZFECqAiIokUQEVEEimA\niogkUgAVEUmkACoikkgBVEQkkQKoiEgiBVARkUQKoCIiiRRARUQSKYCKiCRSABURSaQAKiKSSAFU\nRCSRAqiISCIFUBGRRP8Ht4kNFL8B6wIAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x87010f0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMEAAABHCAYAAAC+qyNZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAABmRJREFUeJztnGuMXVUZhp+3DBi5FLUCAQlQAgTBABVKE61lIAKKSX8V\nfqCISRNJuBMEA8aUBFtEDBcTucmlWEzghzWBRLyCgUq1QkCaJhIghQIJwdrWDCmXtH35sfboZjNn\n9jlzzpy92/U9ySQz6/Kt7zvrvOuekW2CIGdmNO1AEDRNiCDInhBBkD0hgiB7QgRB9oQIguwJEQTZ\nEyIIsidEEGRPiCDInhBBkD0hgiB7QgRB9oQIguwJEQTZEyIIsidEEGRPiCDIntaJQNJI0z4EedEq\nEUhaBHyrxzrXSTphmlwKMqA1IpB0GjDf9vJS2smSfi3pt5JekHSPpIMqVW8AfiJp9jD9DXYd1Ib/\nNiFpJvAnYIHt94q0OaQv+Nm2xyTtCTwGHA3Mtb2hVP8IYDnwFbchoCkgacT2tqb9yJG2zATXAg+O\nC6DgeuBC22MAtrcClwH7AT8uV7b9MrABOHc47k4Lt0s6sGkncqTxmaAY4V8HjrC9uZQ+BmwCTrS9\nsZS+Cdhme/+KnXnAfbaPHY7ng0XS/cCS8gwXDIc2zATfANaXBVCwnjTq71VJfx/45AR2/gF8TtJO\nKYKgOdpwHHk68PQE6fOAfWy/PZ5QLBcOAB6vFra9Q9Jq4GvAurpGJS0EvgocD5wPfAY4u8ieDyyz\n/VhvoQyXXSEGaD6ONohgDnB3NdH2u8C7leRLgO3ADzrYWgfUHpdK2h0YtX2ppDXACmCl7WuK/O8D\ndwKHdhvEsGk6Bkn3Al8EullPqyh3ue0nK3Ya74s2iOAwYEtdIUmHAxeTRoW/dyi2GfhSF22eAqwq\nfj8c+LPtW8rNkUajYaMeyjYag+3FAzLVeF+0QQT7UiMCSXsAvwLusr1kkqKbCnt1rAW2SDqO9AHf\nWsk/HvhnF3bG/dsbuB+4wvYbNWWXF/bLI6iAQ4C5kj6opBtYbPu56Yyh1zgGyMDikHQi8G3gGeDL\nwE22X6mtaLvRH9JG98yaMr8knZzU2boA+FcPbV8OjAEjpbQR0oxydZc2FgNLSMu0Q/r4HO6bSv1B\nxDDIOPqIv684gD2AV4H9i79PAtZ003YbZoItTDLdSVoCvGh7aSntPNsrJig+C/hvD22PAn/1Ry+p\nzgL2AR6SNAM42JMcW9q+t+RnP/SyFCozSp8xQO9xSLqbtJ/rZU9wpe2nOpQZpb84FgBjLg5SbD8j\n6fOSDrP96mTOtUEE6+kgAknfJN1lLK1kzSdtoKrMKuzVUnyoC4AbK1nnAU/Y3iDpDNJx7IaizlnA\nbOAdANsPdNPWdDHFGI4jncA8CxwJ7Gf74l7btv3dfnwvM4i+AHYH/lOpvxk4ljRDdKQNIlgFHFNN\nlLQAuAX4vaTyF34E2NHB1lH8f5NVxxzgU8BfJrBxj6TdgHNIS6zx9fIy2ydImkVaojUqAnqP4SjS\n3mqe7a2S7gDeHJ67HRlEXzwFbK3Uf480k0xKG0TwOz6+GQJYCXyaiZ9CXF9NkCTSDHFdl+0eBLxA\numQr8yPSSHkM8FPb24v0bcBMSc8DfwS+02U700mvMSwjPU8Z/7J8AXhwGI7WMIi+WMTHl5R7Axup\nY9gboA4bmn8DB/ZpZy5p7zCdvn4CWEh67Le0kreDBjbGPbYxRnqGAukmfjOljegg4hji9+YjfQGc\nCjxfyt+NNBMcWWer8WcTtj8Afk46HeiHS5h4RukbSYdK2ghst/0I6fJm0MuIn02DzSpvkQYcSDey\na7yTvVydpC+eBD4r6eCi6CiwzvZLtTYL1TSKpL2A1aSn1LUXZxPUnw38hjTKba8rP0X/LgLeII2g\ne9q+rcg7l7QMuwB4GFhl+/ZB+zAIJH2d5Otakr9/sH1DkbdTxFHTF6eS9g6rSSJY5vTCeHKbbRAB\n/O8V6FW2F/VYbwR4lHSWvHZanNsFKd5ZXWH7b0370jSNL4fGcXoK8QtJl/VY9YfAjSGAyZH0PUnn\nFL8fDcwEOj0/yYrWzARTRdIM252OTIMCSTeRLiZfIx0i3Gz7tWa9agc7vQiCoF9asxwKgqYIEQTZ\nEyIIsidEEGRPiCDInhBBkD0hgiB7QgRB9oQIguwJEQTZEyIIsidEEGRPiCDInhBBkD0hgiB7QgRB\n9oQIguwJEQTZEyIIsidEEGRPiCDInhBBkD0hgiB7QgRB9oQIguwJEQTZEyIIsidEEGRPiCDIng8B\nzmIAwqp/BqgAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x836e358>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAABHCAYAAAAZfwDOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACzZJREFUeJzt3XmwHFUVx/HvyUIgkGA0QCAmkAQIWyBhrRJ5iYKIAiJQ\nggQBC2QREtYClEXKUjYVjVQhEEEqBBJEi6oUqwgECBJZFMtEBdmCIJJQEAUTyPaOf9z7SNPpubP1\nm3k+fp+qrnlz+3b3nXNn+kzf7p5n7o6IiEglfdrdABER6dmUKEREJEmJQkREkpQoREQkSYlCRESS\nlChERCRJiUJERJKUKEREJEmJQkREkpQoREQkSYlCRESSlChERCRJiUJERJKUKEREJEmJQkREkpQo\nREQkSYlCRESSlChERCRJiUJERJKUKKR0ZnZou9sg5VBfCihRSMnMbCxwTLvbIc1TX0qXfu1ugPQ6\nk4HZRTPMbBawIzAOWA48BnQS3oebxbKfuvttrWiomQ0E5rv7Lk2sYyxwGbAoFg0FznX3JY1s08z2\nAk4mxGIgsAFwqbsvzNXbEzg/zv8k8CTwHXd/PVfvcmAO8CywAhgNHAzcnK9bINWXil2LtCPW63B3\nTZpKm4A/AAMS83ckJIcrCuYdEeed2oJ27g48BaxpYh2DgVeBozJl3wYWAP3q3SYwnrBjWi9Tdg3w\nH2DnTNkE4D5gUHw+EHgEWAyMzK2zMzetAi5spi8Vu5Z+nloe68J1tPJFa+rdE7AHMKNKnW8Ca4Av\nVJj/JrCoG9u4HXAX8AtgfpMfwEuBN4A+mbIhwErg5Hq3Cfw47pAOz5QdGMumZcruAkbnlh0f683K\nlS8CrgPuAH4A7NRoXyp2tcXu//V9mlxHq164pt4/AdOAz1epcxuwGhhcMM+AZcDbLWrvTU1+AJ8D\n5hSU/xl4oN5tEs4HLAX2y5R9Ne7ELsuUvQu8AgzNLf82sCRX9lB39KVi17qpHbHOTzqZLaUwsz7A\nJOC3VaruAyx093cK5u1FGDd+rNzWlc/MNgK2Af5RMPt1YLd61+nuM919iLs/kCnejZBYs+cKXgY2\nATbMrWIFIX5NqaMvG11/r41dT1NWrNt6MtvMRgFnA6OAW919dmbe2cAe7n5Uu9rXSmb2JeBzwE7A\n0cDehPHJIYShmqnuvrp9Lazqs8A8d++sVMHMtgY2JxzKFzkTeAc4r/zmlW7L+FiU8JYBg82sv7uv\nanQDZjYGOA6Y4u4LMrP2IoyxL8nU3ZxwQcBDudUMMLPzCTvHTmAM8C13fz6x6ap92aTeHLueppRY\nt/uqp3OB04FTCVchZDP/scDf2tGoWpnZjcCugNdSPdY7090fza2nPzDJ3aea2ZPAPcA57n5+nP8E\n4eTT98psf8kmAz+vUqeDEIPfZQvjt56LgZ0JcXg2N7+UOJdscHxcWTBvWXz8GOGcS13M7BBgX2B/\n4Cp3n56d7+7vAe/lFptK+EJxYa58U+AWd/9nXPfRwDwz29krX/FSS182o1fGrje/T9uWKMxsb+BR\nd19tZgcAf8/M25jwzfraGtfV193XdE9LK3P3E0pa1UTWDreMAq5z9wcz818AjqTGRNHqeJjZAGC8\nu8+vUnVifDzIzDri3/2AvsD9wAVF7S4xzmXqamfRTqF/fOzbyIrdfQ4wx8z6Afeb2cHAwe6+tKi+\nmY0GphDG4p/Izd7W44B0NBuYDlxAOILLr6vWvmxGr4xdb36ftvOI4nngSTPbgpD9D8vM6yBk3A8y\nbez4rxMy9hLCSakVhG+nBxF3oma2PnA8MCjWGwp8HLjS3f9drVHx2+1NwFnu/lpTr7B2C4ClZrYD\n8AnCTjNrNLnx01bEo45YHAjcW+1FEvr1TXf/Wg11e7rUN7Cu8e93m9lA/BL1XWAu4eqbI/N1zGw9\n4Fbgene/pGAdnnveaWZvAodQsLOj9r5sRm+NXU9UTqzbeTY/9sNZhKsV+mfKrgQWZ55vAzwNHJ9b\ndrO47P7x+dbAPOAzuXqTCGOu1dpyAnAJIQuPbOT1NBmLUwmHg9lYbAC8D9zdynjUEwvgV8AOVeqM\nJIzz/rLd77lMmxq+moRw/f0a4CcF8x4E3qp3m8BYYFyubFCM22pgYMEyNwOXVFjfo4Sj9nz5q8Dy\nRvtSsSuOXW96n+andp+jgHA0Mdc/fDKlg3g0YWbDCSeZLnL3GdkF3X2xmc0HHjGzocBvCGN+c3P1\nHjazsWY20d0fqdQQd78xbnOdbxdFzGw64QaeesYkz3H3eRXqdACP52KxL7AeMCtusyXxqDUWZjYY\nGOHuf03Vi68N4OEq9Yq2UXacm+buy83sGWBEweytgT/Vsz4zGxSX6WtmY9395Tira+jAyA0RxL55\nzt0vzZQd4+4z49PxhCP3vKGsvUM3u75a+7IpvTF2cfle+z7tCYliS8IdlQCY2YaE4ZRbYtE0wg1Y\nMwqWhZApV5jZtcBr7n5nhXr9gU3NzIDTiEM57v7DRhvu7ic1umwFHYTD5KzTgD+y9kR/2fGYQnOx\nOJzKVzFlTSR8MOZWq5jXDXGuSbxK6zV3f79ClbsJw3rZZcYQPpSX17m5lYSd2UuEo8Iu28fHp9z9\ngyGCeGLVsju66NNA187uPuCUXPsmAAMydbJq7cuqPoKx693v01YeQlU4NLqXMEbY9fwawjeBnQjj\n9auAY6usYxBhfL6wHuEN07XOg4DhsfzXwISC+p20eOiJMJzUCdyeKZtCuP55VHxeVjy2i9ua2mws\nCEctI2p4fS+SGU7sCRPh5r81wAYF8/aJ8+5NLD+McKPW0ZmyaSR+GqHKNr8PnJ4rm0m4tHFCpqyD\ncL5pZm6aTbjMvKve7oThlezPWswgDEf2L9h+TX2p2K0bu972Ps1PPeGI4gzgBjO7mrBzGwcsdfeF\n8ce7+hDG49cRr1h4BdiWcHS0sKge8A3gibjOfQk7yh8Rdl4jgGdKfD2Nmkg4FzE9Hg10Eoac9nD3\nxbHOGMqJx4nA7wmHv0fRYCzMbDPCB+nVCvM3J3y4hgNbASvNbC5wl7tfVet2ymRmmxB2DMOBHWLx\nIjNbCNzga+/lWUzYobxQaV3u/oaZTQIuNbNdCZciDgEO8Mw9L7Vu090vMrPjzGw24QvBMOAtYFd3\nz7bjjridyQXN+uDKOHd/2syuB24xs+WxfQuAEz133Xy1vqzndfARi113aEesk1qZGWvInAb8KwYC\nYAvCiahxFeqfER+3ImTVXQrqbB+DuWN83h/YMP59DzCsYJl2HFHMpODkWa5OqfFoNhaEJH9Ku983\nmpqf1JeaUlNbf8LDzGabWfZkypeBjQk/h4uHn/KdQfghuexyfc3sFMJwCe6+CLiT3CVwZrYt4Ue1\nDnX3v8S6q9x9mZl9CnjY3d/ojtfWgImEw9qKyo5HCbH4CnB7nctIz6S+lIraPfS0H2uv5tmCMARy\nnLu/lKlzEnCemd1AOLz6L+HOyln+4d8Lmgx838JvyL8CbASsD3zRczfbxKskJrn7ZbnyyYQTWg5c\nYWaPufvPSnu1FZjZNoTfxX+8huqlxqPRWMSTYUvd/e26X7D0KOpLqcbca7mSq5s2bnYYsCfhioVh\nwNXu/lQLtnsS4Zu1AR3+4bugW8rMTifcSzKS8A9Sbnb3K1u4/YZiYWYXAy+6+6zubJ90P/WlVNPW\nRNEOZnYE4Tb8VYQTw/t4N1833lM1Ewszm0P4RyjLu7GJ0gLqS6nmI5coRESkPvp/FCIikqREISIi\nSUoUIiKSpEQhIiJJShQiIpKkRCEiIklKFCIikqREISIiSUoUIiKSpEQhIiJJShQiIpKkRCEiIklK\nFCIikqREISIiSUoUIiKSpEQhIiJJShQiIpKkRCEiIklKFCIikqREISIiSUoUIiKSpEQhIiJJShQi\nIpKkRCEiIklKFCIikqREISIiSUoUIiKSpEQhIiJJShQiIpL0PwWxUmK/LepxAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x8144d30>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAABHCAYAAADGMXrRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADrhJREFUeJztnXu0HVV9xz/fhBAkEBGQsJCQBCLIo/ImChKyeLQCvmDx\nRkRLQaEIKPKSKqUpYLAscLVSRAGlXVhBUSgLWtEqYJVQirTUQhGEAoZHKAFBHmLy6x+/fZLJydx7\nz52cc8+95PtZa9aZ2fs3e/beM2f/9v7t355RRGCMMcY0YVy/M2CMMWbsYiVijDGmMVYixhhjGmMl\nYowxpjFWIsYYYxpjJWKMMaYxViLGGGMaYyVijDGmMVYixhhjGmMlYowxpjFWIsYYYxpjJWKMMaYx\nViLGGGMaYyVijDGmMVYixhhjGmMlYowxpjFWIsaYWiTtLGmjsj9F0qx+58mMPqxEjOkTktaSdJ2k\njTuU31HSlyQdJekySZt1kp6k2ZIOk3SMpL+XtFclbhdJn5b055K+L2l25dQTgCckvQ5cD/xf89Ka\nNyqr9TsD5o2LpAMi4rsrmcbkiPhNt/I0WpB0DLAxcCBwagfyqwPfAXaJiGck3Q98E9ilg/S+A5wa\nEVdIeh64UdIGwBLgQxHx2ZLGQcAtkmZGxJPAI8AUQBHxzEoX2rwh8UjE9ARJWwBH1YTPlnStpCcl\nvSrp5AHOnyDpn4Azep3XfhARV0TEuYA6PGU28GKrMY+Iu4EtJU3vIL09gOvK/jiWdR5nAmdI2rQc\n/zPwJmC3cqyIWGgFYgbDIxHTK44ge8oASFoDuBJ4CvgycBPwdeCPgC/VnP8BYB+gVsmsgkxnRXPS\nImBr4NHBToyI/64cHgj8RUT8FrhP0m4R8asSNxUI4MFyPEnSUcDr5L34q4i4f2UKMVxKZ+R8lpVx\nfeC0poqt0/S6LVdkNwfOAV4Gfge8ApxT7kXPrtt23qnAahExry18RsnbK+QIdU3gzIh4erD0AIgI\nb966vgH/DkysHN8KnFU5Xr08rFcPcP51wD39LscI1NMSYJMO5M4Ebm4LexA4rJP0gJ2Bs4GvAWsM\ncI2rgQsrx7Mq+3sB/zPCdTMZeBw4vBJ2FnBfaQh7kl635Ur4VsD/tuqUNBP+Cvh8L6/blodpwEvV\na5bwGcBC4IOVsCOBe4FxQ9brSD4U3laNrTRY36gcH0eOOsZVwmaUBu+smvPXIntrZ/S7LCNQV50q\nkeOBW9rCFgB7Dyc94OPA3cCabeF/DHyhLWx8ZX9aSfudI1g355Ej1+pz8xayF//xXqXXA7nxwAPA\nJythGwNPAyf26ro15f8KsLhGiXwPeLYtbA1yVPKRoerVcyKmFxwJXNM6iIjLI+KjEbGkIrMNaTq5\nq+b89wETgRt6msuxxQPAhq0DSeOBdcne7YBImiXpKUnTStCPgR2A91Zk9gciIs6UNFHStOLO+1yZ\n0AdYm7xfv+tWgTrgIGB+9bmJiEVkXRzcw/S6LXc0aY78RkXuiYiYEhF/08PrLkXSAcC/0DZnJmkC\nsB/wUDU8Il4ln62D6tKrYiViuoqkccAc0nw1GO8me0U/q4l7P/BIRDzQ3dyNDSTtKWnbtuDbgbdW\n3HfnAL+IiF8Okdxi4L/IUQvAZqQi+I9yrT1I08rNkjYE9iWV1RPAFyOipTR2A346UvdE0lrA24HH\naqIXADv2Ir1uyxUOAx6KQbwMe3TdVtqTgH0j4ls156xLzo2/WhP3AsX7bzD6PrEuaQfgw2QvZxpw\nLDnkXgd4Gzn0eqR/ORw5JLUmk7che/O7ATuRQ9XF5HD49/3LYUfsCdzRNupYjqJodgX+E3it9Kpb\nrEb2kv+hp7nsM5KOAN5DPvdfkPSTiLi0RJ8I3ENp6AEiYnGZ5D5b0s9IJXLoUOlFxN2SrgROlBTk\nM7V/RDxcJlP/EZjUSqac/+aIeEnSvWUidjzZcB3Qm9qopTVyqmt4fwtMljQhIl7vZnrdliv5ew8w\nX9LuwB+S5tpppIPDvb3IX1u9nAVcUCMPORfyMmm+amcjsuMybrD/c1+ViKSZwNERcXI5vgq4kxz+\njQPuIP9MF/ctk0Mg6QrSPBCdiBe5UyLi9rZ0JgBzIuKTku4CbiZ9+88o8fPJh2FuN/PfA44AvloX\nUZTF18nGbzWyLuoagQB+1KP8NaZb9xogIq4hTX4n1MQdWJdgRPyIZfVy9TDSu6ZyeEkl/BFykraW\niLiJ9KLrmC7WUStfdeazljfTOmQj2AmdptdVOUlLyAZ6A2DLiPgcLB0B3i5pVqTHW7fzt7BcZ1vS\nNby2Ix4RSyR9ixz9L0XSFFKJQI5Wnq07H/o/EjkFOK1yPAl4LiLuLMP2i8hGZ9QSEcd0Kak9gJ+U\n/RnAZRHxw0r8Q2TjO2qViKSJwHYRUWeianExOQ9yCfAnVHrbhYOB04HbepLJlaCL9/oNSxfraHEr\nyZq4CeV3fE3cyqbXbbnWHMQMlp8TuU3SC8A80p2929dFkoBPkf+zwTgD2E3SsRHx1dLZO5H0ztqu\ncs1a+q1E5kXEK5XjXYGrICeeyMakYySNj4hBCzyKuQ9YJGkrYD3g+23xm5ILwTqiT3WxP3DLQJEl\nP/dI+jBpb726PY+S5gKPRkSnPcwVGOPPgUkGu/8t89uLPUiv23Kvlf2HIuK1NrkngH2KFaLb14Wc\nFrhqKBN4RDxbHClOknQROaK5nDQrv1om7Qekr0okIh5v7Ut6Bzl8GtSMIWk14KPkkPkZlt2ofyW9\neuYWuTVIt8W1i9z65LBsXkQ8P8Q11iKV2aeKMus5URb1SJpDutbdWcnPm4DtgerIZETqopzfaX0c\nTi5YGor3ke6qdQ39LNrKOUCeRqTspm88Tfa231ITNwl4PiqL9LqVnqSuygFIWgg8VyP3Grleat0e\n5G8KsFVEXFYjtwIR8QJtVo6Sxk+HOrffI5Eqe5OVujTTkmZUbXmS3k6ugr40Ik6ohE8h3dsOLccz\nyUbv88WO3JKbQ04k7j5QJoZ4B1Gd/OVkAz8cG/CpEXHHADKzSS+Y6lzBXuTDttS2PRJ1UeQ6qg9J\nk4Gpsfzq6Dq5d5Kv2zitJm4q+YcaKo0RKXvNdbtyr4udvJM0RisiXYJXMCd1q44i4mVJPydX0bcz\nkzS1dEyn6XVbrnBnCWtnItnmLSxzE9287t7AFpKur8S33LUPk7QdaQn4Xk06SFqf/N8PbT4faiFJ\nrzZysmkesHUsW/AyvxIv4MuV47eRqzSPHiC9m8mbsj7wMPD+AeSeAfboIH8dLQLrQb0sYMXFQLeQ\nC8TG9aMuOqkP4GPA6R2kM5fslU2oidu7XOfYcrwe8Nk2mREvu7f+bMC5wONtYZuVZ+QTbeEzGWAl\n/nDT64HcYeRK8YltsouAb/bqujXlby0Y/Vxb+CnkSGijSthnSDfi1Ye8T318QA4kJ2wOAbYg3T1v\nr8T/Gcu/duE60nV0oPT2Kb9XArcNIreInLwVOXl0GvnOmXa5EVcipBvlEuDaStiJ5WbO6FdddFIf\n5Mv7pnZQxgeByweIO7xc53py9DWfFRVqt8s+aLm99W8j16s8BxxZCbuEFV8DsntpS27pUnrdlhNp\nZv10JewQsuGe2qvr1pS/1b7MbQs/m3wFywbleHvgSSrt72BbP81Zt5Gmhh3LNgu4VNLfku5rN0bE\nfABJ6wEfAgb0/IiIWyWtTa6vOLZORtKWpIvc/eQk8Hcj4teSvi1p+4j4eddK14w9yEU/l5d6WEIO\nQXeOZXMmo64uihlp9ajMcQ0gNx34AfnQ1nEv6Uo4h7TvXhCV4XYXy/4O4M3kn/H6UfYMrMBgc1Jl\n7chUskGaHBEXl/DHyTqsrlC+JiL+VNJO5BuW7ybXjXwxIh7ufUmGR0Q8VUyP55X1ZJPJuYD3xvKT\nxU+TI8uHVkxl+On1QC6UbwW4uLjTtuLeVf3PdPu6Lcr/4QZgc4r5UNKe5LzgjaQX7GTggmKWnky+\nR6vubRK1FTvqN3LV5GJyoqguflPSrW3HIrfDAHIXkfMNkG+H/UzZnwd8oE22HyORv6MyGhstdTFU\nfZTzBxxGj9bnADhpqHL3eyMV5jmlPJu0xX0MOL/sTyM7IOuSK9BPIl+1MQ3YBPhrUnGuTr75tdXr\n3Am4q9/l9DZ2t75noKNMptfW74E/GCD+5PI7vfzZtq2R2ZLssbTmYCYAk8r+zcCGbfL9UCKPAeeN\ntroYqj7I9S3rjrXnoJNyj5atvf5L3heyvDlkevndAFinEn4w8O6yvzdwX1vaL7bO9eZtuNuYeHdW\nRCwgF+ocXw2XNF7SJ4BvF7lHSa+bQ9vkNidt5AdExC+K7OuRrnC7Aj+OiKd6XpBBKB5HGzOES91o\nqwvlJ1oXRUSdC2NX6XbZR9szMEx2JUcd0yUdIulC0uZNRDwTxX1Z+Y30rWLZAtDpDPxdEmOGzWhy\n8R2K44DTJX2NtH2+RK6nuCaWf7HZEcBfSrqAfAvlWqQn2H7Rtmim2ArnRMT5lbDB3mnUEySdRK4s\nDeBCSdtE20dj2hiRuijhQ9XHch+fGgG6WvaByj0GaL2SYnFEXCvpJuDXkrYuyrbFeaQ3T4v1yXcl\nVXmVXEdjzLBRRPQ7D31D0nFkz1TA7Fj+NSOrFE3rQtIN5Mdx2humMcFYeQbK2pLpEfFYOd6PHG2t\nGWUltKQFwLkR8ZVy/Fbg3yJieiWd48m5n30rYQvI70b8YKTKY944jAlzVi+QdAhwIenK9lT5XSVZ\nmbqIiA+OYQUylp+B1qKy6oK/YHnrwr6saLpq9F0SYwZilR6JGDNWaB+JlLAfkl8jvLWMOn5Jzn8s\nKPEXkhPqu1fOGU8qjHdFxBOS9iI/iTus73MY02IszYkYs8oxxJzUR4BzlC/t3JL07a/Oh/yGXNy5\nlBjiuyTGDBePRIwxxjRmlZ0TMcYYs/JYiRhjjGmMlYgxxpjGWIkYY4xpjJWIMcaYxliJGGOMaYyV\niDHGmMZYiRhjjGmMlYgxxpjGWIkYY4xpjJWIMcaYxliJGGOMaYyViDHGmMZYiRhjjGmMlYgxxpjG\nWIkYY4xpjJWIMcaYxliJGGOMaYyViDHGmMZYiRhjjGmMlYgxxpjGWIkYY4xpjJWIMcaYxliJGGOM\naYyViDHGmMZYiRhjjGmMlYgxxpjG/D9NZLeS8qMsNQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x8145e10>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUUAAABHCAYAAACQy1XiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACMVJREFUeJzt3X/sVXUdx/Hnmx9CgPRDJY1SMP2mUZCio5FguNKyYrYZ\nTa1sklJDJ2xKzWY/VtEIU2mhLVeKRlurzaatXOm0IBG0KJGVS8aPqMhMLCrEgHd/fD7f8elwz/d7\n7/meez/fy/f12O6495zPOef9Oed83ueczznni7k7IiISDMsdgIjIYKKkKCKSUFIUEUkoKYqIJJQU\nRUQSSooiIgklRRGRhJKiiEhCSVFEJKGkKCKSUFIUEUkoKYqIJJQURUQSSooiIgklRRGRhJKiiEhC\nSVFEJKGkKCKSUFKsiZmNyB2DiAyckmINzOxi4EO54+hWZvY5M3tL7jhEAEz/cdXAmNl5wFx3X5Q7\nlm5lZqOA+4EF7r41dzwytCkpDoCZjQceBGa7+4u54+lmZnYKcBcwyyvslGY2wt331x6YDDm6fB6Y\nG4DvKCEOnLs/A+wALq04i9vM7IQaQ5IhSkmxIjMbA1wJ3JM7liPICsKBpoqR8SMyIEqK1b0H2Oru\nu3MHcgR5HJhoZlNyByJDV/bHSMzsTMKdWwdOIpx9LQBeAUwEPjNIO9/fCTxaHGhmc4F3ANOAy4FX\nAR+Io88Blrr7TzoVZFU56uHuB81sHfAuYHOd827kSNlW0NXt6DDZt4u7Z/sApwArkt93Ak8DbwVm\nAgeAxTlj7CP2x4ErC8NGAjfH7xuANWn8wCeB7bljb6Ju2eoB3ATcU2G6O4ETu6GOcf7fAjYCv27i\n01tudsm8urYdDbbt4u7ZzxQXAdcnv8cCz7v7Y2b2WuCrhDuSTTGz4e5+oN4QS00CXigMOxdYG7+f\nDDzk7rck441w1BvsctZjN6EhV2EtlM26rdx9fo2z6+Z2VJS9DeVOisvcfW/yeybhKIe77wSWFCeI\nb458FDgTeBbYA+wDfgm8F/hCLDcauAI4OpY7lrAyl7l7MZkVlzEuxrE4xtHIyzk8KW4CXjCzqXFZ\ntxbGTwN+29eyC3FMBz4CPAG8DVju7lv6KD+VFnZ+YGNJ46y7Hs2sz17PE9Zt2bzuistPH9sx4ETg\nbDN7qTDcgfnuvrEwq1rrGGNrpZ51GpTtqEw/+3XWNgTkvXwunDafBhwEzuujzKmxclcUhr+acIZx\nvh+6nFgDzCmUezuwpp845gOfJVxylF6OEXagC0rGLSLsZCOSYSNijEuaXB9HAduACfH3WcCGDm+T\nOurR1PpMyi8Afl8h1m83M/921LFKPdu4zQZFO+pj2U3t1znbUJYNV1KBq4G9wOhk2OTk+0Tgj8Dl\nJdP/GBhFOJJtAd5XUu5Z4Nwm4jnYT1L8K3BJybgfAg8Uhs0F9hPOaIb113AIHc2bCsP2AJM6uE0G\nXI9m12dS7gZgfYVYW+pTbEcdW6znNwn90hua+PSWm9XEfAdVO2owXVP7dc42lO3yOZ6Wfx642903\nxwo86fFBaDMz4DpgYZzkVmCbu68qmeUt7r7PzG4Hdrr7/SXlRgIT4vwXAi8DcPflLVZhKw36Nsxs\nGDAbWFYY9WHgYXffYWbnx+XuiNNcCEwG/hVjWUXos/x7YR67gSmEo19bVazHVMLdwl8RzkYmuPtC\nWnMMYd22XU11PM7dr2512e5+1UBi79WF7WgS/ezXudtQzucULyRsrClm9gZCp+q+ZPyngbsBzOwY\n4CLgjrKZufvPzOxo4DLCnb3DmNnpwHjgd4TnDO+NG3GGmZ3RYvxrgTc2GH4G4TGIRwrDe4D7zGw4\nMA/4UYxpHOERg5Vx2LxY/ljgP4V5vEjo2+mEVuvRA6wGbnT37wLHA3+psNwewt3WTqijjrs6FGuZ\nbmtHzezXWdtQzqT4c8Ilz3RCR+4MYIuZ3W5mK4B17r4+ln09IdYnGs3IzE6OK6qH0O/wVMkyP0a4\nNHsqzvOSOHwL8LoW43+AcKes6DXAk4RLntQXgQuArwM3+aG7e/uB8Wb2G+BThM5vgH9w+N3UccBz\nLcZZVav1WEp45bF3J3wT8HArC4xnHecQ3ifvhI7XsQ26rR01s1/nbUOt9gnk+MSVtB94c8n4a+O/\nkwgd3dMalDmd0A84Jf4eCYz1Q/0oxxfK99eneBTwN+CEGuo3itBf8iDwpThsDuHucG+Z4YSj3Km5\nt0dJHfYA0+P3sYTLlLSTvN++NuBs4OmKy690o6XOOjZbz4zbqOPtqMH0bdmv62xDXfGan7v/GVgF\nfCIdbmbDzezjwA9iuW2EP0H1wUK5HkKjeb+Hfhfc/b/u/m8zmwk84u4tXQa5+0vASsJdskrM7CQz\new444O73Ad8A/hRH/wI4Lj5nBuGO32Z3/0PV5bXZLsJBAsLbBxu89b9acw2HP4LRrK9xaN21Sx11\nzKaT7cjMZpvZWQ3CqHW/bkcb6po/HRZP65cQTtefIXSo7gW+7+7/TMqNIZxm7wO2E06XRwMrvfCe\ncuw7ucbdlybDLiVcwi0AvgesdffbSmIaC6wjvGnQ8jNbcfqFwE7CmccYd1+RjJ9D6B9ZR9igSz38\nNZlBx8zeTVhvmwjr7qfu/uVm16eZTQbuJZyJ5XpwuE9ldYzjmt5vcupgO1pNOIO8qEEMte3X7WhD\nXZMU28HMriIc+YyQ2B6qMI8ZwPXufnHd8XWr+P7yYnd/rMnyIwhnJkvcfVNbg6tJq3U8kpW1IzO7\nzN1XZw2ugq64fG4HM5sHfIVwh3QX1e6U4qET+w4zu7bG8LqKmV0X1ydmdhrhzuT6vqf6PzcS3pAY\ntAmxhjoekcrakZm9MmdcAzGkzxSlHma2nPDK43bCzZKb3X17C9MPc/eD7YqvDgOt41BjZrOARwdr\nV0hflBRFRBJD9vJZRKQRJUURkYSSoohIQklRRCShpCgiklBSFBFJKCmKiCSUFEVEEkqKIiIJJUUR\nkYSSoohIQklRRCShpCgiklBSFBFJKCmKiCSUFEVEEkqKIiIJJUURkYSSoohIQklRRCShpCgiklBS\nFBFJKCmKiCSUFEVEEkqKIiIJJUURkYSSoohIQklRRCShpCgikvgfvEphdnhkrlsAAAAASUVORK5C\nYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7dac9e8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoMAAABHCAYAAAB8iE0FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFpNJREFUeJztnXu8VVW1x78DVJ4+QJHAEkhFKNNU0rymkKGkHy2z9Hot\n4JoWaUYoXS0rzSyviWWmV6xbV7OyzEdpphKVaObbtCxD81NqaQImUgmowbh/jLlhncV+rL332Wef\nw/59P5/1OWfP92utNdacY45p7o4QQgghhOhM+rW7AEIIIYQQon1IGBRCCCGE6GAkDAohhBBCdDAS\nBoUQQgghOhgJg0IIIYQQHYyEQSGEEEKIDkbCoBBCCCFEByNhUAghhBCig5EwKIQQQgjRwUgYFEII\nIYToYCQMCiGEEEJ0MBIGhRBCCCE6GAmDQgghhBAdjITBNmNmQ83sajN7dbvLIoQQQojOQ8JgGzGz\n44C5wBGoL4QQQgjRBszd212GjsfM1gJj3f2pdpdFCCGEEJ3FJu0ugGgNZrYPMBHYFbgb2BJ4O3Cy\nuz/RxqIJIYQQohehpcmNEDPbHNjZ3f8P+CnwUXf/KvBPYFU352Vm9sXuTFP0DVql72pme5rZhWY2\n3cwuNbMdmonTqF/yn25mp5vZcWZ2cnekmQl3rpntm/m9ewp/Yoo/qXirCSFE42iZuBdQbZnYzE4A\nXgvkO8qS2wPuflUuzgBgjbv/y8zOBv7h7ue1oNxbAMcB73V3vbg6iKTv+mrgDGBcd6k4mNlmwGPA\nXu6+NAlEl7j7Xo3EadQvpXsssJO7n25mY4BHgdHER1VDaWbKvB9wNXCUu99uZlsCjwOT3f0RM9uW\nmNHfwfWQFkK0GC0T93LcfX4DcV7K/JwGnAAhvLn730seZvYmYB/gr4RwORpY7O63mNnbge2Bp4BR\nwMq80JnSusDMDqu3jKJv4+7fADCzM7s56f2Jj5elKZ/7zWyimY2tot5QMQ6wY4N+TwPnAXskvyfN\nbIK7P29mUxtJs1T+NHO/K/BIpg5vA4YDi1O8pWY2EHgzcFdjTSmEEMWQMLgRYmaHAjsB1wFvAB5M\nXjOBi1KYucCm7n5uJt4FwNfN7BSgv7vPy/j9yMwWufuSHqqG6EzGAn/LuS0HXg880UCcUQ36jSGE\ns7FJ/3YSsDCVodH8SuU/HrgYeE8mTOkjbTNgdfp/MLAbHSgMmtlg4C53362C/17AacAgYob6XuAM\nd3+mTNjxwJnASuBlQlXmTHd/MRNmb2BWCjM4pft5d/9tN9RlLrCJu38h596yPBvFzL4D/BswAtjT\n3R/tgTwL92UuXtl2LRqu3nwLjMlxxDhbBawl+vTj7Xxn1tOf0hlsI2Z2jJldQiz3nmtmJ3ZT0tsA\n44BDgU8Dc8xsFvC9lO8bgMOzgmDiQmJ28PisIJgYBOxkZlO6sZxC5NmGeDlmWQ1s3mCcRv1Gp99r\n3P37wGeA75vZ6CbSLH2oLXD3V3JhbiU+2ialcG8mns9blqvwxkxaWr8N2KWC/+7AZ4H/dPdDiNnT\nnYAHzWz7XNjXEUL8V9z9AyneEYRJr1KYNwKnAx9y95Pc/f3A88AvzWzXJusyBjgLGJBzb1mezeDu\n7yXUF1b1kCBYuC9z8cq2a9Fw9eZbYEyOI4TJH7j7Ce7+YUJff4GZtU3Oqqc/NTPYRtz9SuBKoFuF\nK3e/HLi8SpBpxADJs4KYPVyYdTSzVwGvAXZ394vM7D1l4gqxAQ3ovK5IflmGAs9VyaZanGEN+m2W\nfj8A4O4rzWwVcFij+ZnZKGCYuz+S88fd15jZAcCMJHA+BrwIVJ0d2ZgwswnA+cBS4F9Vgp4NnOju\n/4B1ffNR4FfAucAxKb3+xOrI+e5+T4q7KTCEELxKzCD69TDg2uR2E6Fe835gThPVOp34kM7Tyjyb\nZS/g9h7Kq1BflqFSuxYNV3QMFR2TFxB7MK7PuF0LfB14H3BFgbK2ikL9KWGwM3mC3BeOmR0I3A8s\nAcZn3PsTulMfdPfbzGwosCyXXv7lJwTQkM7rYuCDpR9p/A0HnmwwzhpiKa5ev9ISYv9sdYhn5iMN\npjkNGGlmpxL3zHjgGDMb4u43Jx3ci1O8rYlZwS4fZhsz7r6YWM3AzC4jXmLlmAzcamZ7uvtzKe5D\nZvYCMDUTbiaxpP/NTB5/AUbm0nuQEPBXZNxKM9H5Wd7CmNm7gJ8DHyjj3ZI8myWjp/pfPZRl0b7M\nlrFauxYNVyjfImPSzDYFDiEESTJxV5vZk4Q6SFuEwXr6U8vEHYi7XwO8bGYnmdnhZnYw8Bt3X04s\nJS83sxnJ/URCv+a2FP1wYjkZMxuYvqYmmNkci13MLcWCO83sNVXCnGJms1tdFtESbgdG2HpzNVOA\n37n7HwDM7AAzy+vsVItzO7BNvX5Jb2gRsG/KdwQxo3RdE2le7u5fcPfzkv7Sy8CV7n5zyuOptDwM\nIVDOd/dn62u+nqcN9+SfCB2oITn3l+g6C3Q08Hh201w53P1b7j7M3X+acd6TmAn6biMFNLMhwMH5\nTXetzLOb2JeYPV3UQ/kV7UugdrvWEa6ufGswnPhIXF3GbwWVP2p6gsL92daZQTN7ByGF70Z8xQ0H\njkzebwHOKT0oRffi7udUcHfgk+X80sN8J2In5KnuvpoQDC9sVTnLlS9tcPmhmR3q7n/NlfFE4gY4\nsmwC68Np7DWBmR1DtFNJ3/UOd7+k2XTTcul04JNmdhchTP17JshJxBf4r4vEadQvMQM4M+mdTQTe\nWRpvTaSJmW0HzCZmqOaa2VB3vwn4MjApLRcPpudmZ5qiu+7JOtgb2Ly0YzvlMYpoz59nwr0FuMfC\njM9BxHL9GOCz7v5QpcQt7ELOBE5y94cbLOMngP8uGrhSnlWeU05sDJgH3AKcAmxNCDibEbpwa3J5\nTEjh/pnCbAPMyX1wTAH+1kS966VoX5Yo2q61wtWbbzWWEbO5A8v4jSY+VPu5+9pe3Z/u3paLkFa/\nlP6/F/gFcTpGyf804MkW5f0NYpr+VwWuUrj929VWusr24f7AfcCIjNuxwI3EzjGNPV26evBq5p4s\nk9ZlxOadouHPAV4B9k6/tyZ2dP6OUHEphZtM7NyeWCaNdwJfIdQOTmuiHXbLxk/lOKNC2Ip5FnhO\nnUqo9ZxP2KmFWO37OzC9TD7PEHrfJbc5wH25cHcA19SoX0ufYfm+rLdd62n/IvkWGZOpTZbm3EYS\naiNrCEGtV/bnurCNDvhmL0I6PiL9/xxwVc7/44S9rraVUVfvvoADCbMbw4gloZ8AAwrE09jTpasF\nV6P3ZJl0CguDxAalvwNnZdy2TULAynz+wJ+BG6qktwkxO3QHseGnnnIbsXlvk4xbTWGkXJ4FnlMn\nJ+Flj5z7cuBjmd9vSO0wMxduj1S2kgA9mFgmPamN42eDvqynXZto/7L5Fh2ThLC3GPhA+t2f2KTy\nACEMDuvt/dnOZeKHgRfSNvrhxBJJlt3ILAUJkcfdFyY9xdsI226HeFeD25XQ2BOiBTRxTzaExYkv\n3wG+6u5ZA+il3cKPl8n/L8CBZrapb2jiB4+Tm84izP1cSm6ZvwazgMvcvdrO0w2okGet59SbgHvd\nfd3GBQsTJ1sSM6Il5hFLmd/Kxd8i/d0euAfYjxBKF9VT9u6iSl9C8Xatu/1r5FsId3/Owm7kbIvj\nWV8Evga8HVjt7svNrFf3Zzvt3yxJN+kBRMPdV/Izs02IRryhSFrWwFmmYqOhZKIECo7n7hx7KU5L\nzugVoo9S9z3ZBF8HbnH3LvqVSRhYRlcTMiVeInSshgOY2c4WtlezlF7I77YwNlwTMxsJvM7Xb7ar\nFrZmntWeU4nJhPCY5WDC6PFtKZ+tidna6919bS7s3kQ//Sn9fiuhX9Yuo9dl+7Jou9bT/kXyrRd3\nX+HuZ7v7XHc/w93/TCwV35n8e3V/9gbTMlOAX+Yk+UOIbfbfszDY+GqvcPZpkuqvZf1ZoL8ndmNV\nO8v0a8DubGj7rGzwFG6uu/8il87agmmI4hihk96/ZsA4Mu+TxE00Dbg+KbCX29VVjik0MfZSGUpn\n9HYxZFslvMae6Gv05D1ZvFBxFOKj7v75jNt0dy/NmNxNHA+YZwAhEC6zOBrwIaC/me3s7qUXaUlZ\n3+hqXqgaU4Gdzey6jFvJXuXRFoamrwB+VmeeU8g9p8xsJ+K0m0W5MhxOCDYr06zSiJTeA2XKO4OY\nOb0/k8/tKf1xmXJ1obueYbk0q/Vl0XYdUiScu/+wYL5NYWbbEO+Gs3NeU+hF/bmOImvJrbqIr8bn\n2VBx9mpgYfr/IGIXX6U0pgIP59z+QVLA1LVxXsTX1X3A8IzbTOBm4pi9WvGbHnu5eGuB7dvdLrp0\ntetq9p7MpVVVZxB4L/CZMu5fzfx/NLHTMq8zuBz4bvp/AGHiZzGwVSbMnumevjsXd0dgYB31GJPS\n+XTGrXCeVZ5THyRMmQzKuA0jdM7elX5fTNhZXEvSVcuEPYgwYzMt/R6U4p6Yfl/ag+OmZl8Wadd6\nw9Wbb7UxSWzeWAKMzrh9DHgK2Kwv9Ge7ZwZ3B7ZiQ2l4PHFGbn/gKLoacT2EOGrtn8lpU+o/y1T0\nYZKpiHmEHal1y0Du/k0LI5vXmtm7PLcVP0cjY29X4uX2AGFiZ1uPY4c6AjN7E/C0uz+TlmTG+vqT\nHUQH0033ZJZBKd1B7r4ql9f+xIkPC8wsO4OzCfGiLHEV8BHgw8CXUtyjCEHstFS+l8zsPGIn6AuZ\nuHOId8wJuTouIjbFHFywHpvl/taVJ5WfU5OJnaPZthlLCBsLUxvd4+5PmNkCYqf3dakeryX02T7i\n7gtS3E2JGac/WBy9ll/CbAl19GWeDdq1nnAN5ltxTBKzki+STimxOO5uLnHs68uZcL23P3tK+q8g\nTR9GTJf3y7kfSZgjmA9MyLgPBR5K/28N/JjY+XlTLv5jwNE9VId9iOODvkx8ic4CfkAPzEwS56W+\nm7At1OfqkwbrFxuIcyeZL7AyYWaT2bLfTWNvPKHQPTj9ng98KuPf4zODxEzChcB0Qul8h2bj1fC7\nLNXzFeCXwI4Zvz8TX7zLM9f/FPCbVCW/avH2T+PzOODbwNv6aJtWzS+5n57qeXJ3pJkJdy6wb+b3\n7in8iSn+pB6+J0cQNtYeZr1JjiXEsup/ZMI9l/HPX5/JpblVGrdXEZsEvgOMK5P3TEK96ApC2Ptu\ndnxnngF/BS4q0CabE7uD/5LKtZK4Z95RZ56VnlMLyJjMSW79Uj0vAU7PuG9BmD75X8KMzbfL9S1h\n1/JG4KJ8fq266unLou1aJFzRfOsYkwOBL6R2vjr1z15lyt9r+7Plnd3NA2cg8MfUmPNSR50A3JwL\n9wwwtQfKszlhDBLiyJq70v/fAka2OO8DgY+n/+cDr+1L9UkD+mTg/naPq4LlvYautqt+QdcXaY8K\ng8SX7hPE7CSEUHVvM/FqpQmcke65bXNpjiRe9mOJZZnt0wNoqyp+W9YoS8V4yX8ZMCP9/27iq3xI\nX2rTAu19LGH8nNQGq4lNDw2nmUl7P+BZkv231B/LCAV8CNMsfyTOW237/adLl67WXu1eJq4Lj7P+\nJhKKybOJafWfUvks0FbzMiGVQ+zk+UEq5/RsoLS8tg/xVWmEVfLF7n5LUrjentAtGAWs9BpH7ST2\nIQxXQny17Ec8vLP5nkDYT/Jc3JJS7wO5vHqsPh5HRF1gZocVqGtvYBrJor3FUUe7ENv328X+hC3E\npQDufr+ZTTSzse7+RCPxCH2oammau+fPpYYYS1d4WvIysyOJY9ZeSMvJ5fxWmNnUKmVZVSleynMy\n63fN9aN7NsP1aJvW8HuaOBN8j+T3pJlNcPfna7RbrT4kbZrYlThjucTbiOfm4hRvqa0/1/Su+ptS\nCNGX6DPCoJmNIXS1XuXuN6RdxNuSOQvU4xDyKWTOMm0l3tV+1TSSroeZbZGEHcxsLqE8fW6mLhcQ\nemmnAP3dfV7G70dmtsjdl9TIfltiNoT0N3/4Ou4+vw/Vp7fzLDFzArGUfK/XaUusmxlLY7qy1eKN\nqpHmEIuj1l4hZqbPd/ffe9cjnUYTs0tXQ5hTqORXrSzu/uMq8XD3rCBzBHHE2Is0R8Xy0Jo2reY3\nhhDOxprZPsQM38JUjkbzK9XheEIZ/T2ZMKXzezdj/RmrgwmbmxIGhdjI6TPCILHGfx5wVJqZGezu\nF0Llc0JbjZkdSmwkuI6wCv5g8poBXGxhR+pwd98vF/VCYjbteHd/Xc5vELAdoZdQjX6sN0WQ/b9h\n2lyf3s5sYJaF4dCZhI5Py87oLcA2hB5MltXEUn+j8Wqlea2nDSNmtgz4IbBzLvzngbMq5J33K1qH\nsmmmGeqDiI+hL1bIsx56uk2r+ZUMyK5x9++b2Y3A02b2+ibSLN3jC9z9FTPLhrmVuN8nAXeY2ZuJ\n58qWlasthNhY6DPCYPrqP6+C362sN9Z4RY8VKh684wj9uk8Dc8zsRULpE2J27eoy8VYQAsXCrKOZ\nvYqwSzTEzKYQsyGVBIulpN1NxIuj3PJdvbSqPr9OsxsDqF6nXou730yYyMDMPkoab+5+JXAloXTf\nk6wgluizDCU+mhqNN6xGmvdn3B8HdjKzXd39NwBmNgJ4q7sfm8+0gl/NOlRL093vA+4zs1mEALO/\nu6/MxK1XTaKn27SaX2n34wMAHnbGVhEK6A3lZ2ajiKPOHsn54+5rzOwAYEaaiX2MELKfqVBnIcRG\nRJ8RBnsj7n45cQ5iJZ4gdMvWYWYHEi/VJcTutJJ7f0LY/RDwRne/yMyyyzh57iKWfn5G7B48p+4K\n5GhRfWalF82kCnXKv7h6HWb2MeCpNEMzgRC+221SZTFhmwqoS1e2Wrw1VNC/tThq6SdmNsLDVMLm\nhECVNZtwMBsuUVbzK1KHDeKlslxPnMH5JGGmYT5xcsw6g7P1qkkULE+98Sq2aQ2/0pJ31viwE8/s\nRxpMcxow0sxOJe678cAxZjbE3W9OqiAXp3hbE7OCXT7whBAbJxIGW4i7X2Nm483sJGKL+0vArzzO\nKfwesIuZzSBm9XYEzvSwEr7IzIYm99KD+QZ33zeT/EJgahKuHnX3xb24PiRBMFungcRLa4KZzQHm\newvPMG2SkcAAM3sfcX7kIe6en23qaW4HRlTSlU2zPH9z9/wZyxXjmdkfqaB/a2bbAfN8vc2sfYE7\nc+NuFzZcoqzmV7UOVeKtAX7L+lmrHQihtNnzpHu6TSv6pfwWEe28MM2QDiGE3aUNptlFj9rMPkRs\nyimdUvAUcJS7303cm/Pd/dkm21QI0Qew9r/TRDmS4HFjZjflZK//zMVeRb5OojnM7K2EYeySruw5\n7v548ruOENQ/V2e8an6HEjqC/Qnd0k+4e3ZJ91OEDbfjyuRZ1q9afjXiHUMI6U4ITJe6+89qtVkt\n2tCm1fy2A84kDqmfSJyacVszaWbSnU0YZF5InLhwU9oA9jIx8z0YOMM3PP9UCLERImGwF2Jms4mX\n7Sp3PzW57enu5c4j7BOUq5MQQggh2o+EQSGEEEKIDqZfuwsghBBCCCHah4RBIYQQQogORsKgEEII\nIUQHI2FQCCGEEKKDkTAohBBCCNHBSBgUQgghhOhgJAwKIYQQQnQwEgaFEEIIIToYCYNCCCGEEB2M\nhEEhhBBCiA5GwqAQQgghRAcjYVAIIYQQooORMCiEEEII0cFIGBRCCCGE6GAkDAohhBBCdDASBoUQ\nQgghOhgJg0IIIYQQHYyEQSGEEEKIDkbCoBBCCCFEByNhUAghhBCig5EwKIQQQgjRwUgYFEIIIYTo\nYCQMCiGEEEJ0MBIGhRBCCCE6GAmDQgghhBAdjIRBIYQQQogO5v8B/Q4jX6MTm90AAAAASUVORK5C\nYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x8452c88>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAa8AAABHCAYAAACwC8haAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEOZJREFUeJztnXm8HUWVx78nKyQkbAEGkUmAQFjGsMtHJBubCKKgqCgi\nywyyKJqRIWERRj8KmIAfENlEZEfG0UECLlG2EEAEooAhig5Lhm0EBBIyhEAgv/nj1E06nb739b3v\nvnfTyfl+Pv3pd6urq09XV9WpOnWqnkkiCIIgCKpEn04LEARBEATNEsorCIIgqByhvIIgCILKEcor\nCIIgqByhvIIgCILKEcorCIIgqByhvIIgCILKEcorCIIgqByhvIIgCILKEcorCIIgqByhvIIgCILK\nEcorCIIgqByhvIIgCILKEcorCIIgqByhvIIgCILKEcorCIIgqByhvIIgCILKEcorCIIgqByhvIIg\nCILKEcor6DZm1q/TMqzOmNnBnZYhCHqbUF5BtzCzQ4DPdVqOVQEz+7qZ7dDkPaOAw3tIpCBoGjMb\namZ7mdmhZvaxnnpO9JiDljGzPYE9JE2sc30QcL+k7XtXsspyDnCrmR0r6emS93wWuLHogpldA4wG\ntgeWAMMlPV8vITP7AHAbMACYBfxZ0j/3VHqrImZ2EtBP0pRc+G7AscBCYBCwJnCWpMcycfYDLgMe\nBd4E3sLzucYDki5LcUcBZwNz07VhwMmSXmpB5nOAacDj6ZmbAwcC10p6oVnZgBHAR4Av4mVzWrMy\nlUJSHHE0fQBDgQeBNepc3wV4CHi307JW6QBGAvcCVjL+74GBDa5vAdwDvAtMaBCvHzAVWAyc31vp\nrUoHMBz4P+DMXPgOqQEfkAm7GJgPjM6EfTXla9HxDrBPijcUeBb4TObeU4HZuOJsVu4luWMxcHou\nTinZMvEHpXSO6an8DrNh0CqnAddLWpQNNLOtzeznwAl4oQ6aQNITwDP4iKohZrYr8JiktxpEGwNc\nBRjeo67Hv+A9777Anb2Y3qrEafiIKs/n8ZHMgZmwXwJDgKMzYSOBTXEl17d24Hn+PUm3pXiTgf7A\njzP3XgaMAloZ2T4DXA7cDJwH7CjprFycsrLV+CA+LXVfC/KUIpRX0DTJHHgMcF3+mqTHJX1E0tF4\n4xU0z3fxhrArDgN+1EWcDwI/BRZRR9mY2QjcnLUV3vO+pxfTWyVITjN34ko9z8P4KGt+JmxIOi/M\nhL0j6QVJ72bSXQs4HTglE+8Q3Ey31Gwn6TW8vn2yBfGfknScpI9LmqSMKbMF2WqMBeZJ+lML8pQi\nlFfQCgcAT6cKE7Sfh4BNzGy7ehHMrA8wHp9TasRQSa/jcyP1RkqHS7oWb3DmSJrXi+lVHjMbDHxY\n0o+Lrku6TtK6km7PBO+MWyZuzMT7csHtU4AzaqPrpDC2xEdLeV5I6badMrLlGAfc3xOy1Oiow4aZ\nfRTYG58APgJYD+85CNgdOBeYjttb1wc2wCd/j8z2AFZ3GuQjwB7A2ZJ+1cZH7gP8to3ptRUz2wn3\ngBQ+D3EMPlm+DrAJPidR1iGi15G0xMzuB/YD5tSJtidwT7b3ncfMNmFZI/cUBcrGzA4CbjGzNfGG\n7/LeSm8V4lTc2aYUZrYFXk+/JGl2g3i743Off8gED0/n1wtueQMYamb9JS0uKw8w0Mwm4+3rEnxe\n8xRJ/92kbLVrawDvB76efg8A/h03Ia8n6Qu5+P1xS8NI4GXgL3gbc7Ok6+vJ0DHllQQeL+nLZvYg\nboK6SdKp6fok4MoUfpGkuam3OQ+fD1jBZFUlzOyHwE54A9tl9BRvoqSZuXS6ysfJuD18OO1jR1bS\nRsnMRgJHSPpK+n0V8Du8seiDm7D+AJzfMSHLMQef6K/HZ4EfdJHGOKBWXp4GdsteNLMhwOaSbjaz\nvfB5lJnUp93p9TrtqneZ9LYHFpTpDCW38b2AfYHvSOqqDl0IfDwXNjSd3y6I/0Y6r4MrgbJsiM9f\nP5/kPAy4x8xGq773YpFsNT6Af/t7U/t0Jl7fjgK+amaTa1abpOimA/8r6TMp7BTgY8BvGgndyZHX\nONyrCrwHd4ekbIOyGB9B/EjSXFjaI30X2Kg3Be0J1D6X4a7y0fB8bCcj8E7EyshE4OTM78HAq5J+\nZ2bvBb4DXN1MgmbWtwMj/ddw60ORPAOBHSR1ZZbZg2VzZ08B65nZEEkLUthxwCXp77F4Q91I2bQ7\nvV6njfUOMzPgX3HnlDLPngZMS4v6f2NmBwIHFpnfk/JfQ1LePFgrh0XKt3869y0jT4atlFwEEzfi\nndPT8PpUVrYa4/D2+1F8TuxcSfPNbChwXe59pwJb41MRNR7GO5p3NRK6k8prNjDPzEbjjesFueu7\nAg9mh6VmthmwNjlTipmtg2fyZGAG8AtJF5nZobjX2z/hrqlXS3qynkCpF3A0Ppn6Er52Yj1gSld2\nezPbGfcqmoVPap/b6FltpKt83B4vRKUo+R5r00bllWS/uolbHm7QCE2R9Gbm9+64dxySngMm1ZGh\nH3Ak3it/CViAr2W5D1+z8s0Ur6Uy0kL5eBXP5yIOAMqYgdfNyFQbGWwOPJrkeVxSrbc+BnhC0os9\nmV676mpKq+X62iaOBa6S1JRXraR3zOwbeON8GfDpgmjH4xaDPI1GVIPTeUGDOEXyKPd7iZm9jI9+\nitZw1pOtxlh8/u0MYKqk+SndM7KRUmfyONxb8Y3MpTH4SKyu2bImaKfXRkzEM7tfLvx54Fu5sBPw\nofGggnQ2xHslI3Ph16XM6UqOkbhJaUIufDw+t9Do3gH4BPaG6fcuuOLtaD7inZPXgEkl0yj1Hnij\n/qES6V1FB9d54T26JcCeXcTbElcqR+fCN0r5t293ykgr5QNvGB+vc+0nwLZd3L8hcEHm9+iUFwfj\nvdozM9f6p3r1g95Ir7t1tTvfoo1layPgwoLwJay4zmsU8L5c2JAU9x1y7VmqtwuAbxakPyjl3Qpr\n54A7gFeafI+ZwMyC8GeBhQXhdWXLlPWFuCnwOuBWYLc6cSemd8mvEZuJmzEbyr4y7LAxHrhPmd6L\nmW0JbIz3zLIcBEyXtNDMNtPyduZ9cG39RO6eCfhK77qY2frAr3Hb9nJDVUkzzGyUmY2TdHedJMbi\ndu+X0j2zzGwbMxuhZPIseObl+NxRM7b3kyTVczseTy4fgf3xSvIfab7wvao/1G/mPebRflNkT7A3\nrmiXOpfky01yQrgT+Jqka7I3S3oxOU7cbWbDaL2MNF0+cAel+fnAZHrZVF27II9leZNddqR0FGk0\nmtgVX59Ur3y3O72W6yp0r762sd7tDYwys5syYQPS+VDzbb6uxRXKI0BfMxuVKXs185+xopnv/fgo\n6u95gVLb9zC+5irPyPSsZtgBKBrhDGPZ7h2lZMtcXwN3EpuZdhy53czWl/S2ma2tNBLDlTrAA7Wb\nk0l8VzzvGtJpb8M+eKWYkrs0AZ+QvC8Td90U/qkUdBLwpcw9e5OzkZrZVngv76702/DKsSaApHNT\n1HOB5yTdWkfU/imdeowAXsmFvQZsR3EBQDmPm+7QIB8PB+6S9IyZ7Yu/9zPpnv2BzfAdAUgN9wjK\nvcfTrITKK5mRvoFvazMHLxN/VFpInb7/v7F8A3kBMDevuDKcL+ktM7uUEmWkThkbQZPlA1deRU4A\nnwBuKgjPM4Zk6kxyLDCzV1L4ryQ9m4lbm59qpLzamV536ip0o762q95JugG4IRtmZsPxb3ajpJqZ\neSCunJ7Cv3mNbdL5IS2bM6wxMp0XUcwvWH5xc82DcVNyXo/Jgek55TYTyDAdN91l79kRGEixU1xX\nso3HR161+di/4qPFIWb2apLvhHRtHt6pez13/wC6mO+Czq/z2hH3jJmRCx+Hf9Ts3MUIXN7bzGws\nGW2d2At3+ZyUjsnAt4FZmcw5APhZqgi7mdmOyUPqMOCHRQKa2Ta4h8+fG7zHMJZfbAj+cYcUxO0J\n6uXjVrjbcl9c6f8clq4VOVvSxSms1iEo+x73AtuWkGvN9LyiXQd6gv1x5bSd+d5vm+Mjrxqnk+nR\npR78QTTw2pN0W5NlZIUyRmvlYyt84jrPodTZyzAjz4a4K31eYT6Nd1jy77sn3sA9SwHtTo8W62qS\npR31tacYkDsjXwM1FbhEy8/DTcQ7jscXpFNTvEUehQCXAoOTV2CNE3FfgCtqAWY2Bnc7/1kDmacC\nF5i7s2dluw/vJDQr21jcAlRz1a8pudfxTsuvM3F/CgxKVg3M7B9xh5/nVcJfoNNmw/cAf8QXZWYZ\nxopa/1H8ZafiFePs2gUz2xpfvzNRaSPJFH4TkF0YuAU+D3Ie8CTeU+mD99SKVpWDexI9oOJV5zXm\ns+LK+rWoP7RuN/Xy8Vu4i/i2wHla5jH3Dr4e5BF8keuRKbzse0xnRccQAMxsA/zbbcIyBTfXzB4D\nrpDUsOHtJnfj5qud07EbcEkaNb0N3CIp2+nZAv/+s4oSM7PNgf/BFUk/SpSR5ImVL2NNlY806tiD\ntE4mE74Rvj1PPSWzPvBfuNPJYOAJMztP0qUpyix8VLokOajcgs/d7AAsMrO78GUW3+uJ9FKa3amr\nD9PEt6hzve0khTotySbgJPNNq6dIukXS18zsCDO7EffC+we8I7BTgekU3Iw3jzqOVpL+ZmbjgbPM\n1zQOBdYF9stNG7yIO7IUPaOW1iwz+z5wvZktTGnNxvckLFor1lC2dP9Fmd934p2tK4C/KrPtlKTf\nm9nxwJVm9id8w99XKdvx6GpSrAoHbj6cnQvrmzJ5j0xYf2Bw+vuXeCEagdufty9Idxu8AGzXxfMn\n4B5w2WcvArbsdN40kHkg8FG8wTirmffAe5YvAxt3+j26mQfvwRX5++pc/0o6ly4jdcrYBOCRsuUD\nt/n/pUge4LhO51s387zlutrst4ijWgduqXkLOKpM/E6bDdtFfjgKyzaGXOrSKWmxpDfMV4fPkPQ3\n+YT5reTcVZMN/krgYPn8SS18rJntknvWTGCD5PoJbredo65cPTuAmQ03s7/jXoC34K66tX9rUeo9\nJL2NuzMX/iuUqiDv+V9DznRjZn3N7Dh8pE8zZaSojOH5OqyJ8nEixSPbTwL/2ex7rmS0XFdT+Fya\nqK/ByomZDTNf55blALwcNFycvDSNpPEqifnakk/gjejtuF15upmdBnwYH8ZfCJyjtI1OGuKfqOXN\njoNwE9tbuJloLdxj5mLlFhCa2Q14j/CgXHjNmeR+vHE6W8UmgY5ivg/bF4HncFPQIEnfzVwv9R4p\nnfuBsarw3nVpPnASbqZ6Ap+HeBP4iTITyU2WkaIyVjZfN8PnKHbW8pugboG7qucrfCVoV11N4aW/\nRbBykkyoBwPrSFpkZhvjc+nflzS1VBpVVl6tYGZfwHtohje8d7SQxmFyb6PVGvN/sHeypEM6LcvK\nRKtlLM0b3Yqvy5udu3YG8KSkrnaRX2VoR10NVk7M7NO4N/Sj+DTEcHzBd+k9WFcr5WVmn8K3PVmM\nD0/HqMkt+81d9vcP5eWY2YeArbOjt9WZ7pQxS7suSJpRcG0a/s8H816LqyTtqKvBqs1qpbzaQXI/\n/a1iV/ugzZhZHzXYJT4IgmWE8gqCIAgqx6ribRgEQRCsRoTyCoIgCCpHKK8gCIKgcoTyCoIgCCpH\nKK8gCIKgcoTyCoIgCCpHKK8gCIKgcoTyCoIgCCpHKK8gCIKgcoTyCoIgCCpHKK8gCIKgcoTyCoIg\nCCpHKK8gCIKgcoTyCoIgCCpHKK8gCIKgcoTyCoIgCCpHKK8gCIKgcoTyCoIgCCpHKK8gCIKgcoTy\nCoIgCCpHKK8gCIKgcoTyCoIgCCpHKK8gCIKgcoTyCoIgCCpHKK8gCIKgcoTyCoIgCCpHKK8gCIKg\ncoTyCoIgCCrH/wMFW0FKOqyKZwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x819a4a8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def print_latex(str_x):\n",
" ax = plt.axes([0,0,0.1,0.2])\n",
" plt.cla()\n",
" plt.text(0.5, 0.5, '$%s$'%str_x, size=20)\n",
" ax.set_xticks([])\n",
" ax.set_yticks([])\n",
" ax.set_frame_on(0)\n",
" plt.show()\n",
"\n",
"z = 91.44 # m\n",
"p_at_top = 101.325*np.exp(-z/H) # kPa\n",
"rho_w = interp_1(293.15, [294, 292], [997.983, 998.392]) # kg/m^3\n",
"delta_p = rho_w * g * z # kg/m^3*m/s^2*m [=] (kg m/s^2)/m^2 [=] Pa\n",
"\n",
"print 'air pressure at the top:'\n",
"print_latex('p = 101.325kPa\\\\times e^{\\\\frac{-91.44}{%g' % H + \\\n",
" '}} = %g' % p_at_top + 'kPa')\n",
"print 'p to lift water:'\n",
"print_latex('\\\\rho g z = ' + '%g' % (delta_p/1000.0) + ' kPa')\n",
"print_latex('p_{CO2} = ' + '%g' % (delta_p/1000.0) + 'kPa + 68.8kPa = ' \\\n",
" + '%g' % (delta_p/1000.0 + 68.8) + 'kPa')\n",
"print \"Henry's law application:\"\n",
"print_latex('\\\\mu_{id.\\ soln.}=\\\\mu_{id.\\ g.}')\n",
"print_latex('\\\\mu_i^* + RTln(x_i) = \\mu_i^{\\\\circ} + RTln(p_i)')\n",
"print_latex('p_i/x_i = exp \\\\left(\\\\frac{\\\\mu_i^*-\\\\mu_i^{\\\\circ}}{RT} \\\\right) \\\\equiv K_i = \\\\mathcal{H}_i')\n",
"print_latex('CO_2, 298.15K: \\ \\\\mathcal{H}_{CO_2} = 1670bar = 167000kPa')\n",
"p_co2 = delta_p/1000.0 + 68.8 # kPa\n",
"h_co2 = 167000.0 # 1670.0bar = 167000.0 kPa\n",
"#h_co2 = 1666.6666666666667*100 # correct for exercise\n",
"x_co2_max = p_co2/h_co2\n",
"x_co2 = np.arange(0.0,x_co2_max*(1+1/20.0),x_co2_max/20.0)\n",
"n_co2 = 101325.0*1000.0*(1/3.280839895013123)**3/(8.314*273.15) # 28.31m^3 (STP)\n",
"mm_co2 = 12+2*16\n",
"mm_h2o = 2*1 + 16\n",
"n_h2o = n_co2*(1-x_co2[-1])/x_co2[-1]\n",
"#n_h2o = n_co2*(1-0.0057)/0.0057\n",
"m_co2 = n_co2 * mm_co2 / 1000.0 # kg\n",
"m_h2o = n_h2o * mm_h2o / 1000.0 # kg\n",
"x1_co2 = p_at_top/100.0/1670.0\n",
"y1_co2 = 1.0\n",
"n_s0 = (1.0 - x1_co2)/(x_co2_max - x1_co2) * n_co2\n",
"m_h2o_0 = n_s0 * (1 - x_co2_max) * mm_h2o / 1000.0 # kg\n",
"ax = plt.axes([0.0,0.0,1.0,1.0])\n",
"plt.cla()\n",
"plt.subplot(211)\n",
"plt.plot(x_co2, h_co2 * x_co2)\n",
"plt.plot([x_co2[-1], x1_co2],\n",
" [p_co2, p_at_top], \n",
" marker='<', color='r', linestyle='--' )\n",
"plt.xlabel('$x_{CO_2}$', size=20)\n",
"plt.ylabel('$p_{CO_2}, kPa$', size=20)\n",
"plt.subplot(212)\n",
"plt.plot(x_co2, h_co2 * x_co2 / 101.325)\n",
"plt.plot([x_co2[-1], x1_co2],\n",
" [p_co2/101.325, p_at_top/101.325], \n",
" marker='<', color='r', linestyle='--' )\n",
"plt.xlabel('$x_{CO_2}$', size=20)\n",
"plt.ylabel('$p_{CO_2}, atm$', size=20)\n",
"plt.show()\n",
"print_latex('x_{CO_2} = ' + '%g' % x_co2[-1])\n",
"print_latex('n \\\\times x_{CO_2} = n_{CO_2}')\n",
"print_latex('n \\\\times (1-x_{CO_2}) = n_{H_2O}')\n",
"print_latex('n_{CO_2} \\\\times \\\\frac{1-x_{CO_2}}{x_{CO_2}} = n_{H_2O}')\n",
"print 'total CO2 to absorb'\n",
"print_latex('n_{CO_2} = \\\\frac{101325 Pa\\\\times 28.31m^3}' + \\\n",
" '{8.314\\\\frac{Pa \\\\times m^3}{mol K}\\\\times 273.15K} = ' + \\\n",
" '%g' % n_co2 + 'gmol') # n = PV/RT\n",
"print_latex('m_{CO_2} = n_{CO_2}/M_{CO_2} = ' + '%g' % m_co2 + 'kg')\n",
"print 'water to absorb calc.kg of CO2 '\n",
"print_latex('n_{H_2O} = \\\\frac{1-' + '%g' % x_co2[-1] + '}' + \\\n",
" '{' + '%g' % x_co2[-1] + '} \\\\times ' + '%g' % n_co2 + 'mol = '+ \\\n",
" '%g' % n_h2o + ' mol')\n",
"print_latex('m_{H_2O} = n_{H_2O}/M_{H_2O} = ' + '%g' % m_h2o + 'kg')\n",
"print 'Actual balance: '\n",
"print_latex('(1)\\\\ x_{CO_2 1} n_{s 1} + y_{CO_2 1} n_{g 1} = x_{CO_2, 0} n_{s 0}')\n",
"print_latex('(2)\\\\ n_{s 1} + n_{g 1} = n_{s 0}')\n",
"print_latex('y_{CO_2 1} = p_{CO_2 1}/P = 1.01325/1.01325 = 1.0')\n",
"print_latex('x_{CO_2 1} = p_{CO_2 1}/ \\\\mathcal{H}_{CO_2} ' + \\\n",
" '= \\\\frac{1.01325}{1670} = ' + '%g' % x1_co2)\n",
"print ''\n",
"print_latex('x_{CO_2 1} (n_{s 0}-n_{g 1}) + n_{g 1} = x_{CO_2, 0} n_{s 0}')\n",
"print_latex('n_{s 0} = \\\\frac{1-x_{CO_2 1}}{x_{CO_2, 0}-x_{CO_2 1}}\\\\times n_{g 1}' + \\\n",
" '= \\\\frac{1-%g' % x1_co2 + '}{ %g' % x_co2_max + \\\n",
" '-%g' % x1_co2 + '}\\\\times %g' % n_co2 + 'mol' + '=%g' % n_s0 + 'mol')\n",
"print_latex('m_{H_2O, 0} = n_{s 0}(1-x_{CO_2 0})/MM_{H_2O} = %g' % m_h2o_0 + 'kg')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Solution with the remaining equilibria"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Eq.\n",
"\n",
"$\n",
"\\begin{array}{ccccccc}\n",
"(1) &\\ CO_2(ac) & + H_2O & \\rightleftharpoons & CO_2(g) & & \\mathcal{H_1} = 1670bar \\\\\n",
"(2) &\\ CO_2(ac) & + H_2O & \\rightleftharpoons & H_2CO_3 & & pK_2 = 2.821023053\\\\\n",
"(3) &\\ H_2CO_3 & + H_2O & \\rightleftharpoons & HCO_3^{-} & + H_3O^{+} & pK_3 = 3.539912399\\\\\n",
"(4) &\\ HCO_3^{-} & + H_2O & \\rightleftharpoons & CO_3^{2-} & + H_3O^{+} & pK_4 = 10.32991986\\\\\n",
"(5) &\\ 2 H_2O & & \\rightleftharpoons & H_3O^{+} & + HO^{-} & pK_w = 13.99602524\\\\\n",
"(6) &\\ NaHCO_3 & & \\rightarrow & HCO_3^{-} & + Na^{+} & \\\\\n",
"\\end{array}\n",
"$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"### Model\n",
"\n",
"Material Balances (n)\n",
"\n",
"$n_i = n_{0,i} + \\sum_j{(\\nu_{ij}\\times \\xi_i)}$\n",
"\n",
"Equilibrium constant expressions ($n_r$)\n",
"\n",
"$K_j(T) = \\left [ \\prod_i{(x_i)^{\\nu_{ij}}} \\right ]_{eq.}$\n",
"\n",
"Equation of state (gas ph)\n",
"\n",
"V = const. $p = \\sum_i{\\frac{n_{i,g} RT}{V}} = \\frac{RT}{V} \\sum_i{n_{i,g}}$\n",
"\n",
"p = const. $V = \\sum_i{\\frac{n_{i,g} RT}{p}} = \\frac{RT}{p} \\sum_i{n_{i,g}}$\n",
"\n",
"### Input \n",
"\n",
"$xw_{Na^{(+)},0} + xw_{HCO3^{(-)},0} = 0.1\\%$\n",
"\n",
"$\\frac{xw_{Na^{(+)},0}}{M_{Na^{(+)}}} = \\frac{xw_{HCO3^{(-)},0}}{M_{HCO3^{(-)}}}$\n",
"\n",
"$\\Rightarrow xw_{Na^{(+)}, 0} = \\frac{0.1\\%}{1+44/23}=0.034328\\%$\n",
"\n",
"$\\Rightarrow xw_{HCO3^{(-)}, 0} = \\frac{0.1\\%}{1+23/44}=0.065672\\%$\n",
"\n",
"$x_{Na^{(+)}, 0} = \\frac{0.00034324/23}{0.000343284/23+0.000656716/44+0.999/18} = 0.000268778$\n",
"\n",
"$x_{HCO3^{(-)}, 0} = \\frac{0.000656716/44}{0.000343284/23+0.000656716/44+0.999/18} = 0.000268778$\n",
"\n",
"$pH_0 = 13.99568/2 = 6.99784$\n",
"\n",
"$x_i/c_i = x_0 M_0 / \\rho_0$ ($x_0, M_0, \\rho_0$, solvent)\n",
"\n",
"Initial pH=-13.99568/2 = 6.99784, mole fraction:\n",
"\n",
"$x_{H_3O^{(+)},0} = \\frac{c_{H_3O^{(+)},0}}{M_0 \\rho_0}\\times\\left(1 - \\sum_{i\\neq 0}{x_i}\\right) = \\frac{c_{H_3O^{(+)},0}}{M_0 \\rho_0}\\times\\left(1 -x_{H_3O^{(+)},0} - x_{HO^{(-)},0} - x_{Na^{(+)}, 0} - x_{HCO3^{(-)}, 0} \\right)$\n",
"\n",
"$x_{HO^{(-)},0} = \\frac{10^{-13.99568}/c_{H_3O^{(+)},0}}{M_0 \\rho_0}\\times\\left(1 - \\sum_{i\\neq 0}{x_i}\\right) = \\frac{10^{-13.99568}}{c_{H_3O^{(+)},0}M_0 \\rho_0}\\times\\left(1 -x_{H_3O^{(+)},0} - x_{HO^{(-)},0} - x_{Na^{(+)}, 0} - x_{HCO3^{(-)}, 0} \\right)$\n",
"\n",
"System:\n",
"\n",
"$\n",
"\\begin{align}\n",
"\\left(1 + \\frac{M_0}{\\rho_0} 10^{-pH_0} \\right) & x_{H_3O^{(+)},0} + & \\left(\\frac{M_0}{\\rho_0} 10^{-pH_0} \\right) & x_{HO^{(-)},0} = & \\frac{M_0}{\\rho_0} \\left(1-x_{Na^{(+)},0}-x_{H_3O^{(+)},0} \\right) \\\\\n",
"\\left(\\frac{M_0}{\\rho_0} 10^{pH_0-13.99568} \\right) & x_{H_3O^{(+)},0} + & \\left(1 + \\frac{M_0}{\\rho_0} 10^{pH_0-13.99568} \\right) & x_{HO^{(-)},0} = & \\frac{M_0}{\\rho_0} \\frac{10^{-13.99568}}{c_{H_3O^{(+)},0}} \\left(1-x_{Na^{(+)},0}-x_{H_3O^{(+)},0} \\right) \\\\\n",
"\\end{align}\n",
"$\n",
"\n",
"$\\Rightarrow x_{H_3O^{(+)},0} = 1.8082E-09; x_{HO^{(-)},0} = 1.8082E-09$\n",
"\n",
"\n",
"| # | Var | alias | val |\n",
"| - | - | - | - |\n",
"| - | $p$ | | 1.01325bar = const. |\n",
"| - | $T$ | | 298.15K |\n",
"| 0 | $x_{H2O,0}$ | x00 | 9.99571E-01 |\n",
"| 1 | $x_{H_3O^{(+)},0}$ | x10 | 1.80820E-09 |\n",
"| 2 | $x_{HO^{(-)},0}$ | x20 | 1.80820E-09 |\n",
"| 3 | $x_{HCO3^{(-)},0}$ | x30 | 2.14408E-04 |\n",
"| 4 | $x_{Na^{(+)},0}$ | x40 | 2.14408E-04 |\n",
"| 5 | $x_{CO3^{(2-)},0}$ | x50 | 0 |\n",
"| 6 | $x_{CO_2(ac),0}$ | x60 | 0 |\n",
"| 7 | $x_{H_2CO_3,0}$ | x70 | 0 |\n",
"| 8 | $p_{CO_2(g),0}$ | x80 | 0 |\n",
"\n",
"### Solution\n",
"$\n",
"x_{CO_2} = {{C_{CO_2}}\\over{C_{H_2O}+C_{H_3O^{(+)}}+C_{HO^{(-)}}+C_{HCO_3^{(-)}}+C_{Na^{(+)}}+C_{CO_3^{(2-)}}+C_{CO_2}+C_{H_2CO_3} }} \n",
"$\n",
"\n",
"$V_l/V_g = \\phi = 1.0$\n",
"\n",
"---\n",
"\n",
"$\n",
"\\begin{array}{ccccccccccc}\n",
"0 = & 1670\\times 100kPa & - & {{p_{CO_2}}\\over{x_{CO_2}}} &&&&&&\\\\\n",
"0 = & 10^{-2.821023053} & - & {{C_{H_2CO_3}}\\over{C_{CO_2}}} &&&&&&\\\\\n",
"0 = & 10^{-3.539912399} & - & {{C_{H_3O^{(+)}} \\times C_{HO^{(-)}}}\\over{C_{H_2CO_3}}} &&&&&&\\\\\n",
"0 = & 10^{-10.32991986} & - & {{C_{H_3O^{(+)}} \\times C_{CO_3^{(2-)}}}\\over{C_{HCO_3^{(-)}}}} &&&&&&\\\\\n",
"0 = & 10^{-13.99602524} & - & C_{H_3O^{(+)}} C_{HO^{(-)}} &&&&&&\\\\\n",
"0 = & -C_{0,H_2O} & + & C_{H_2O} & - &(&- \\xi_0 & -\\xi_1& -\\xi_2& -\\xi_3 & -2\\xi_4 &)\\\\\n",
"0 = & -C_{0,H_3O^{(+)}} & + & C_{H_3O^{(+)}} & - & (&&&+\\xi_2&+\\xi_3&+\\xi_4&)\\\\\n",
"0 = & -C_{0,HO^{(-)}} & + & C_{HO^{(-)}} & - & (&&&&&+\\xi_4&)\\\\\n",
"0 = & -C_{0,HCO_3^{(-)}} & + & C_{HCO_3^{(-)}} & - & (&&&+\\xi_2&-\\xi_3&&)\\\\\n",
"0 = & -C_{0,Na^{(+)}} & + & C_{Na^{(+)}} & - & (&&&0&&&)\\\\\n",
"0 = & -C_{0,CO_3^{(2-)}} & + & C_{CO_3^{(2-)}} & - & (&&&&+\\xi_3&&)\\\\\n",
"0 = & -C_{0,CO_2(ac)} & + & C_{CO_2(ac)} & - &(&-\\xi_0&-\\xi_1&&&&)\\\\\n",
"0 = & -C_{0,H2_CO_3} & + & C_{H2_CO_3} & - &(&&+\\xi_1&-\\xi_2&&&)\\\\\n",
"0 = & -{p_{0,CO_2(g)}\\over{RT \\left({{V_l}\\over{V_g}}\\right)}} & + & {p_{CO_2(g)}\\over{RT \\left({{V_l}\\over{V_g}}\\right)}} & - &(&\\xi_0&&&&&)\\\\\n",
"\\end{array}\n",
"$"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mole frac.\n",
"[ 9.99571180e-01 1.80748046e-09 1.80748046e-09 2.14408233e-04\n",
" 2.14408233e-04 2.22044605e-16 2.22044605e-16 2.22044605e-16\n",
" 2.22044605e-16]\n",
"mass frac.\n",
"[ 9.98999996e-01 1.90680581e-09 1.70608941e-09 7.26190476e-04\n",
" 2.73809524e-04 7.39725741e-16 5.42465543e-16 7.64383266e-16\n",
" 5.42465543e-16]\n",
"status: 5\n",
"success: False\n",
"nfev: 986\n",
"fun: [ 0.00000000e+00 0.00000000e+00 -6.59159551e-25 -9.28962602e-27\n",
" -1.76704843e-28 6.87099574e-16 -1.20305148e-20 -4.23516474e-22\n",
" -3.25260652e-19 0.00000000e+00 0.00000000e+00 0.00000000e+00\n",
" 2.15993402e-20 -5.55111512e-17]\n",
"x: [ 5.55556289e+01 3.26903554e-09 3.08713142e-06 1.15820992e-02\n",
" 1.19166786e-02 1.65747801e-04 8.69245345e-05 1.31256047e-07\n",
" 2.61183128e-01 9.24397224e-05 -1.68700408e-04 -1.68831664e-04\n",
" 1.65747801e-04 2.98667276e-06]\n",
"message: The iteration is not making good progress, as measured by the \n",
" improvement from the last ten iterations.\n",
"fjac: [[ -7.63820294e-01 -2.51044075e-17 -3.66996541e-18 -5.62722554e-14\n",
" -7.33732542e-19 -6.45235972e-01 -1.52460529e-04 -4.30031766e-18\n",
" -3.12760669e-03 5.53700196e-18 2.92525295e-16 1.95663871e-04\n",
" -7.31096002e-05 1.54677352e-02]\n",
" [ 1.16016605e-04 3.81335906e-21 1.15813217e-02 1.65736675e-04\n",
" 3.08692420e-06 9.88733008e-05 -9.99932909e-01 6.53725271e-22\n",
" 4.75064401e-07 -8.41213770e-22 -4.44338450e-20 -2.97201626e-08\n",
" 1.11044284e-08 -2.35071166e-06]\n",
" [ 2.00868811e-03 -1.31070560e-18 -6.49025510e-09 -9.28802184e-11\n",
" 3.26728978e-09 -2.37642959e-03 -2.13922180e-09 -9.99995157e-01\n",
" -1.15393933e-05 2.04281044e-20 1.07927577e-18 7.21907371e-07\n",
" -2.69742140e-07 5.70630568e-05]\n",
" [ 4.72895794e-03 1.02039634e-22 3.33896442e-09 -4.57803573e-11\n",
" -5.59596283e-14 -7.50892170e-04 -6.25963349e-10 2.28228176e-05\n",
" -9.99988536e-01 -6.62145071e-23 -9.64055940e-21 -6.78670481e-09\n",
" 2.81871338e-09 3.67832431e-08]\n",
" [ 1.95744263e-03 -9.01866745e-20 -6.31391647e-09 -9.03546080e-11\n",
" -1.71378765e-12 -2.31591226e-03 -2.08462643e-09 9.43858158e-06\n",
" 1.09960078e-05 -9.99995401e-01 1.04995375e-18 7.02291458e-07\n",
" -2.62410474e-07 5.55179440e-05]\n",
" [ -2.05838653e-03 9.18110868e-20 6.12786720e-09 -3.18132682e-09\n",
" 1.66576922e-12 2.43544259e-03 2.18574173e-09 -9.92532200e-06\n",
" -1.15631392e-05 -9.67271945e-06 9.99994914e-01 -6.81893310e-07\n",
" 2.54677914e-07 -5.41930261e-05]\n",
" [ -6.45375279e-01 -1.01709823e-06 3.17641550e-06 4.54663478e-08\n",
" 8.56817349e-10 7.63345342e-01 6.99811870e-07 -3.11193229e-03\n",
" -3.62525617e-03 -3.03273167e-03 -3.18912013e-03 -1.02629740e-03\n",
" 1.31990392e-04 -2.74111800e-02]\n",
" [ -2.05134425e-05 7.07107053e-01 -2.03931120e-04 5.99970635e-10\n",
" 1.11750675e-11 1.01493558e-04 -2.36186178e-06 -9.85881012e-08\n",
" -1.75220385e-07 -9.63962655e-08 -1.15906596e-07 -1.04001473e-05\n",
" -7.07106462e-01 -1.21312705e-04]\n",
" [ -5.87984572e-03 6.21591320e-06 -3.74951679e-06 -5.36372573e-08\n",
" -9.98932662e-10 3.09214390e-02 -1.78983645e-08 -2.82572468e-05\n",
" -5.09886831e-05 -2.76304267e-05 -3.32446506e-05 1.27565083e-03\n",
" -1.60669896e-04 9.99503694e-01]\n",
" [ -5.05567214e-04 -4.79908053e-02 -2.31454264e-03 -3.33237006e-05\n",
" -6.20672019e-07 8.75063241e-04 -2.68120251e-05 -2.43662500e-06\n",
" -3.05493712e-06 -2.37574905e-06 -2.55039355e-06 9.97689507e-01\n",
" -4.80044867e-02 -1.31080851e-03]\n",
" [ -1.47074430e-05 7.05470244e-01 -4.01965428e-03 -5.46165251e-05\n",
" -1.01726245e-06 -4.13668925e-05 -4.65651237e-05 -7.11654774e-08\n",
" -3.69754635e-08 -6.91128551e-08 -6.16150727e-08 6.78694224e-02\n",
" 7.05470986e-01 2.35743861e-05]\n",
" [ 5.49227983e-07 -2.86932910e-03 -9.99819735e-01 -1.43077527e-02\n",
" -2.66488495e-04 1.57438304e-06 -1.15823830e-02 2.65678644e-09\n",
" -1.90511576e-09 2.58091866e-09 2.25045394e-09 -2.58247837e-03\n",
" -2.58090418e-03 -8.98211783e-07]\n",
" [ 8.50952356e-13 -4.12398388e-06 -1.43108981e-02 9.99839349e-01\n",
" 1.07923688e-02 -8.16975129e-13 4.24958535e-09 3.52847445e-11\n",
" -9.35529659e-11 4.00028262e-15 3.26851453e-09 4.15766570e-09\n",
" 4.15684882e-09 1.60288045e-12]\n",
" [ 6.01318330e-15 -3.22835747e-08 -1.12039772e-04 -1.07950775e-02\n",
" 9.99941725e-01 -8.13503478e-15 3.54201124e-11 3.26884507e-09\n",
" 1.38790903e-13 1.97002319e-16 -3.52894634e-11 3.55750485e-11\n",
" 3.55670328e-11 1.35969284e-14]]\n",
"||f||: 6.89338392446e-16\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMwAAABHCAYAAABLVajpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAB6lJREFUeJztmn/MVmUZxz+X/AYhMRE3p5SAb6uJEGYLsv6oVqzA0a/l\nKJhWw37MrawIHZkZOUrT1dqwmoA/RrQyyxb9sFZWy1YDQ9ZYtWCKINkyLRALufrjvp+4PZznec/1\nPO+7532372c7e55zXde5r/u+z/mec9/3OebuCCGacUq/KyDEaEKCESKABCNEAAlGiAASjBABJBgh\nAkgwQgSQYIQIIMEIEUCCESKABCNEAAlGiAASjBABJBghAkgwQgSQYIQIIMEIEUCCESKABCNEAAlG\niAASjBABxva7Ak0ws2XAeuBMYEY2PwY8CVwOfAh4BXA+MC77dwOPufuSLnOeDawFjgMTgUnABnff\n3WUzyrKvBsa6+4ZucprZjcB3gT3As8B5wFLgDnc/0EVc07wDwOeAfdl0BvBxd/9bJe6VwGrgCDA5\nl7e+m3aY2ZuAjcAfgGdy3PGimN+6+0ZqaNfPhX8y8Bt3v7DOX4u7j5oNuC531nPAe2r8e1v+HvOc\nDnwHmFnYXpRP7Owey54F/Bv4VLc5cxvL7b/AtTW5Bo1rmheYBjwKXFbY1gIP54uyZZtPEsH4wvYV\n4ClgXhf1+2g+33XbMeANkX4u/BcBv4teK6N5SGbDWPYVwP3ufqhlcPd9wBbgfT2WfQ3pjttLzkeA\nrwL3AjcBC9x9fU2ZTeKa5l1DenpvK2wbgQHgvYVtJekpsbSw/QCYmnNF6zcHOIckwDGtDbgE+LK7\n/6Sm3dCmn83sJWb2feCDJMGFGBVDsj5wHjCTdGcsOQq8sNtCzWw58DPg/T3m/Ku7X9kgZZO4pnnf\nThr+/H845O5Pmtke4B3Abdm8k/Q0eao4dmr+PdJF/Y55MXwEMLNTgWuBt9Yd0Kmf3X0P8JYctwm4\neJD8z2M0P2GGk4eA5WZ2t5mdBmBmE4B3A5u7KdDMpgBL3H1bm5Ahz9mQQfPmC3Qu6YlQ5QCwsLXj\n7ne6+3R3v7+IWUi6m2+NVs7dr6oxbwDWufuzVUeDfu6JvgnGzLaY2REzO25mB83sC2a2w8z2m9lu\nM1s9jLnnmtkBM7u5Tchm0vj2MuCPZrYC+Dqw1ruf9K8Fbuzgj+ScYGZrzOwmM/u8mX3bzObWlNkk\nrkneWfn36Zoch4FpZjauxoeZzQZWAR9294e7bEdZ3iLA3H1Hm5DB+rk3epnA9rqRxrStSfybs20S\n8Kdsv6YSX0769wE7im0nJ1ZQOk7kSOPfY8CPOsScCmzPuY4D3wPO7LKdFwJrKpPdkyajTXMCfwbO\nLvZXAI9XYwNxHfMCr8r262rqckc+bkbFfinwJdLiwZrqcZH6VY75PXBuL/1c+DcNdq2cdEyfBbOq\n7gIHbsj2w8Bphb0UzMqa8hqvkgEvBiZ28H+SNC5fAvwll3sAeFmwjUa6i5crSe0E0ygn6Q5b7p+S\n++rWLuM65iWN89vVeWs+H2e1af9Y0nziV8D0bupX+F8H7O61nwt/WDAjdQ7zUP6dCLx2OBK4+153\nP1rnM7OPAIvdfbW7bwcuAG4hvQe6K5hqNbDJ3TuuyERyej7bxf5x4AnSXT0U1zDvEx2qPiX//qvO\nmdt9PbCItKoWbkfBB4AH2/ga9XOvjFTBlCssM9pGDR/rgE+0dtz9GXe/mvSCdF5+gTcoZjYTeKm7\n/2KocprZA2b2QM3xY0irXUTiGuY9BDgwvaa8KcA/3f1wzjtgZhdUYlrzjbfll4WR+rXaMxZ4I3Cw\nxhfp554YqcvK5XLmSR00nJjZDOAFpKHJ83D328xsA+nJ14TXAwNmdk9hG59/32Vm80lzgF8Hcs4n\njf2rnMGJN/CN4pq21d2PmNlO0vuQKnPIIwIzm5r/jzGzAXffm2Oey79GEkSkHS0uJonz7zW+Rv3s\n7vfWHBsjMn4b6o32c5hbsv1pYHJhH8o5zDnAuDa+A8CiGvtU0tLquMI2hw5zoZoyZuU6rusmJ/BN\n4PRKzAIqiySBuKZ5rwcercTMzuVdmfcnAP8hTfTLuefCHPdgtH6Fb2X2re6lnysxo3fST1p2hDR2\nPphtV1TiPz0UggEWk1bJ7mvjfyfpk49zC9u0fJKXF7ZLcl22B9o8N9fxhi5zXkR6KpWfnmwBflkR\nctO4pnnPAv4BrChst3LypzGfBa6qtO1O0s1vQbR+he9jud8u76WfKzHfyOdv0mgUzBdJS4b7gZ+T\nXj614pblE/M4J74jegTYRbp73Z79Rwv/rnYXMulzjoOkTyva1e3VpG+stuZtG/CaSsz5g5VTxE4l\nrRbtz/U7QhqKLYvkzHGL8wW9GbiHdPcf30Nc07zzgPuAm4GvAd+iWBaunNetWRA/zv/ndFu/HHsp\nSbAv76WfSXPiH+brpXWtHAJ+SvGdXLvNciF9wcxWkR6L7un7ICFGNCN1lUyIEUm/BTOcXxwLMeT0\n81uy24HPkNb3MbNdZra081FC9Je+zmGEGG30e0gmxKhCghEigAQjRAAJRogAEowQASQYIQJIMEIE\nkGCECCDBCBFAghEigAQjRAAJRogAEowQASQYIQJIMEIEkGCECCDBCBFAghEigAQjRAAJRogAEowQ\nASQYIQJIMEIEkGCECCDBCBFAghEigAQjRAAJRogAEowQASQYIQL8Dyucs9giPM4bAAAAAElFTkSu\nQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x887a4a8>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAABHCAYAAACUEkeaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADXJJREFUeJztnXmwHUUVh79DyE6QJQQIYNgRRBZRKIgsJWAJChSyCIWI\nWmUFCyhjsUYKwlJAASKUshiEEIiACAIqFmi5sCmgAhGigFIBZDcom4QkkHf8o/vmTSZz7+25b27e\nfczvq5q673afXmbuOX16+vTMM3dHCCGEqCsrDXYHhBBCiMFEjlAIIUStkSMUQghRa+QIhRBC1Bo5\nQiGEELVGjlAIIUStkSMUQghRa+QIhRBC1Bo5QiGEELVGjlAIIUStkSMUQghRa+QIhRBC1Bo5QiGE\nELVGjlAIIUStkSMUQghRa+QIhRBC1Bo5QiGEELVGjlAIIUStkSMUQghRa+QIhRBC1Bo5QiGEELVm\n5cHuQCeY2V7AMcBHgD5gJDAXuNTdf5OT3R84B5gArBWTXwReB74a6/kksDkwPObPBV5093067N95\nwM+AJ4FFwMbAfsB17v5SN+syszHAA+6+bZP6tgDOBZ6NSeOBE9393236cTywsruf3005M1sPmEb4\nXUcBo4Hz3X1uh3I7AifH/PWBPwGn569d6nU2s42A6cC7se0xwCnu/mqr8+2UwdDfbtPr9tsJCXa3\nEzAFWEDQmdHAOXl9TWwrSQfL6KqZbR5lFwCLY5np7v5ORiZp7OiCzSXVV3BOSWMRAO4+ZA7CHewP\nCD/qLcBqMX0i8LuYfhlgBWWnx/wlwJEF+c808ivoZ1/ueA84tdt1AZ8A/tzsHIBVgeeBwzNp04DH\no8I068Mk4H9R+Vr1dUBywBrAbcDambQNCYaySQdy2wN3AePi9zHAPcCrwIfLXmdgI2A+cEAm7Qhg\nDrBSl3W/q/rb6vev8ByGhP12cF7t7G47woA/IpN2GfAmsE3JtpJ0sIyuAlsBzwE7xe9rA/Oy9kni\n2NEFm0uuL1cuaSxaKr+ilWaACnd2vGDzskoV8z4Uf/glwJkFZbOG9OWC/Cod4bPR4G8FLgC27mZd\nhJn1HcBM4IEWBnkO8ErOYFYnzACntOjDjHjd2jm4AckBJwDHFMhPA87rQO4OYOOczHbxd76hg+t8\nO/BaLm0UYfa8nE5VrPtd1V/gSmDdLp/DkLDfEueTanffjX07KJP2uZh2Sck2k3SwhNwwwgTyuEza\n+gRHc2wmLWns6ILNJdeXk0kaixrHkIkRmtkk4ETAgdnuvjib7+5vAjcCBpxkZh9e8b1cyjx3P9rd\nv+DuJ3kHyx9l6nL3J9398+7+NYJSN+Ng4CF378uUfT2WOaSogJkdSJitW6tOViS3MfDpgvSF9C97\nlZHbHfi9mY1vJLj7HOANYK9c2ZbX2cyGA/sCT2fT3X0hYTZ9cEF/hhLDWfbaVcoQs98kStjdo4S7\nvzczaePi54LU9lJ1sKSuHkVYTbk2I/eCu6/t7pdm5FLHjspsroP6iOefNBZlGTKOEPgiMCL+PaeJ\nzMPxcwRwaNd7NIQws1WAzYB/FWS/BOxQUGYssI+739Sm7qrk5gAHmtn1ZrZaLDMS+BIwqwO5Zwhx\npbG5dhYR4g1lWIMQU19YkPcmsGPJ+upGbe3X3We7++q+bPxzB+B9gvNPJVUHy+jqYcDT7v5Ws0ZL\njh1V2lzp+lLHojyD5gjN7FozW2BmfWb2spldaGaPmNkLZjbXzKbkiuyR+fs/TarNBoH3aCIzIMxs\nMzN7ycwuaiE20sxONrPvmNkFZvZTM9uswyarqmtS/CxS+HeAVeNMMss04LyEuquSm0WItRwO/N3M\njgCuAqblZoupcjsBG7r7c40EM1uXEAN5KNd2u+s8nzB7H1XQ74nAWmaWZE8d6H7PMVTttxcws00I\nd2LHuvvjJYqm6mAZXf0UMN/MdjWzs83sYjO71cy2y5QpM3ZUaXNl64P0sWgZBm3XqLsfZWb3EAaw\nCcDd7n6imY0G/gpcYWZruvu5sch6CdUuyvzdSv4sM5ua+W4EBUlhndjfrVvITAB+5O4vAsSB+j4z\n28bb7M7sYl2rxs/FBXmNnWGrEYwIM9sWeNvdn2lVaZVy7r7YzPYEbgY+A8wmxAjmdCj3LiEmkuU4\nQuzg1Fx6y+vs7n1mdhNhV1v2vNamX3fWAF5rfhWW9qus7ucZiP5WwlC1XzO7Gvg4YYm2rXiUm+ru\n96bU36btA4A9CTp7kbtfWaZ8qg66+2spcmbmBGc5AdjS3U+LcrsD95rZTu7+BCXGjiptLp5zcn2p\nY1EhKYHEbh2EWdFyAW76g+rv0L+z7An6g+W7Nalvr4zMY7m8yoLthB1Zo1rkW+77SvFcSgXGO6kL\nuKboHAjLIX0UBI8JyzNLgHUabRLuurK7wZYrW7VcTD+FEOjehxDj6CMsv3y0E7lcmY0Js9qizRht\nrzNhu/iTwNfj92FRVx+O12/1buh+1frbQm8mlSwzJO23G0czu2siuzIhhnV/GZ0po4MpcgRH1Ee4\nexyZa+d54Ofx7+SxoyB/QDaXWh8lxpiio1djhI2Z/ShCsBTg5Uz+sCblxmT+frmJzIBx92c8BJ6b\n5Xvuex9xK3MHbVVV1/wWeY3197fj5xTgGnd/v02dlcqZ2beAye4+xd3vBD4GXEycOZaVy9U9Arge\nmOHu0/P5KdfZ3V8jLNWsE5fGpxN2W/YBCz1sHhgoRbpfGWY2y8wejcuYjeNRYH/gl/n0+Ll9yWZ6\n2n4Hm2gHZwK7EHZNlimbpIOJcv+N1T7t7ouWbYkXgL3jkmeZsWMpVdhcifpSx6JCevWB+uzuqsZD\ntA/SHzdYt0m57HLK/RX3KQkzuxfA3XfLZQ0D1hysugjxFyfMBPOMBd5w93fi8slW7t7SQKuWi5wG\nTG588bAscryZ/QO43My2cPenSshluQq4y93PLOhj8nX2sLvx7IJz/GPC+aVQpPuV4e5fKUo3s5nA\nGe5etCGiLEPWfruBhQfRR/iy8cBH4udBZjbG3ZN3j6bqYDs5d3/fzObT7xCzLCJsWlqDxLGjIK8S\nm2tXX8kxppBedYTZC9GYGV5LeLsAwM7ADQXldo6ffcCPu9O1tmwH/LMgfTz9b2RY4XW5+4I489+g\nIHtT+mfxewFbmNmtmfzGbr/DYhD9OoIBVCn3B8KzZMts+Y59n2Fm5wOjzGytFLlsuplNB55y93My\naUe6++z4tePrbGFb9/rkBpwBUKT7K4LkreYJ9Kz9mtmVhIe0y8QIj3f3+zpsbxzBtobFCVojfrUk\n00azO+TUNpJ0sIncgwT7zzOS4Azne4hNpowd2bYqtbk29SWNWe5+e0F7gZT1024dNI8xXBzT3wLG\nZNIbD6a+SnzTQCZvIuH2fAlwYUFbVcYINwCGN8n7CSFgnU3bPtb97Vz6prSONSbXlclvGqsgLMc8\nn0vbJNZ3dIt+TIoyp7W5LgOSI8T4dimQH0fYuj28jFxMO4Jwp5OXnVH2OgNTo+5NzKSdENvMPyC+\nObm4ywB1f0XECJu+qaOic+gJ++3G0czuCA5lMSFel4357hD7+2BOvt2YkKSDJeQOI7yBJR8jfB24\nMfM9eeyo0uZS6yvISxqLGkfPxAjN7Nj4OYHw4zhht1Z2yeBEwt3DeOCWeHeAhYdvbyPEGK4jbKFd\nromK+jmZYHS3NhG5ALgkrmc3mEq447kwU8+uwFOEfjcjqa4co2P9Rc/sXAGMjbuzGhwH/I2w7NCM\nEbnPbslNBWZY5mFqM1sVuBr4pru/V0bOzHYjDMqbmNnszHEjsEqm3dTrPJYQzH8/1r89cDxwiGce\nEDezPQgDX2G8Mk+i7ld5x1Y5Q8V+u0ih3XmIvV0AXO7ub2SyphIc0DcaCYljQpIOlpC7ibDL95hM\nPw4lOO+TMnJJY0fVNleivjypY1FgMGZPGa+9dEZJmC3+hRCkvZvwUGSzcvsSXiH0LGE32jzCu/w+\nWyC7P+F9eK/EdpYQZkWPEWZlM2P+wkz+Y8CdTdregrDc8/0W/ZtMmPHMIjjMMym+Y2hZT4m61iK8\nj+/xzDm8CvyWzLsBo+w2wC+Ai4AfEt75uF6TtscRdre9EOtcQFDU/bslR3iu6TbCbrQbCYa63C7D\nFDnCowxLmhxndHCdRwHnExzuzcCvgB0L+rZlvP7zBqr7VKy/LfozoDvCVufQS/Zb5UE5uzsq6ul1\nwK/j35uWHRNK6GCSXJRdLf7+NxE2o1wPbFQg13bsoHqbS66vzFiUPywWHhTM7CjCD+DuPqB1ciF6\nDTM73d3PapLXU7rfyWaZXjsHITqlZ5ZGhfgAMnKwO1CC7xH+vZEQtWOwd432+rq/EB0R44QPtxJZ\nQV1JwsOLjMvSU+cgRKcM5rtGZwJnEbcxm9ljZrZf61JC9D5mNgzY290LN1R9EHT/g3AOQjQY1Bih\nEEIIMdgoRiiEEKLWyBEKIYSoNXKEQgghao0coRBCiFojRyiEEKLWyBEKIYSoNXKEQgghao0coRBC\niFojRyiEEKLWyBEKIYSoNXKEQgghao0coRBCiFojRyiEEKLWyBEKIYSoNXKEQgghao0coRBCiFoj\nRyiEEKLWyBEKIYSoNXKEQgghao0coRBCiFojRyiEEKLWyBEKIYSoNXKEQgghao0coRBCiFojRyiE\nEKLWyBEKIYSoNXKEQgghao0coRBCiFojRyiEEKLWyBEKIYSoNf8HooP1AkRKioIAAAAASUVORK5C\nYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7ea7978>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQcAAABHCAYAAAAKhIJ/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAC4dJREFUeJztnXuwV1UVxz9LBC4P8QWI+ERQtBQxC4uHNpOOOlrYkKVD\npsNMUomvrBAdI3yQaIijE4mhoKYMPTQ0VNImzcZ3hl41QEV8DIowKAoi6r2rP9Y+3s1h/36/8zv3\n6r3q+sycOffsvfbj7LPP96z9+M0VVcVxHCfPVu1dAcdxOiYuDo7jJHFxcBwniYuD4zhJXBwcx0ni\n4uA4ThIXB8dxkrg4OI6TxMXBcZwkLg6O4yRxcXAcJ4mLg+M4SVwcHMdJ4uLgOE4SFwfHcZK4ODiO\nk8TFwXGcJC4OjuMkcXFwHCeJi4PjOElcHBzHSbJ1e1fgs4iIDAamAitCUG/g56r6Rom8hgETgW7A\nrsCjwC9VdWXCdh9gMvAu8D6wEZisqhsStt2Bh1T1wBrlV7UTkV2ASUAz0BDqOU1Vn87ZHQKMD3Xr\nHuwuydvVUW7NdhGRo4BrgCexttgU6pnxiKpeE2wHYG23Mdh0B85V1VX1llvkPkTkFmAM0BlYoap7\nVUj/LeASoC/QJwSvANYDPYFtgcXAtao6P5VHaVTVjzY8gF7AK8CJUdgkoBHYus68DgLuBrYJ192B\n+4FVwO452y8ALwGHhOudgOVYx83n+2XgMaCpRvlV7YAdgNuAnaKwPYElwMAobCiwAOgShf0WWAcM\nKVFuoXYBfgo0VTg+BI4IdgOA1cDoKO1Y7KXbqszzKHgf4zEhWl6gL0wOtk3AqCh8f0womoEr2rQv\nt/fL9Fk7MJV/Pdeptse+5OPrzOtvwF65sKGhI9wShXUKL+TpUdiuodNOiML2DXleDzxUpdMWtfsZ\ncFoifBLw6+j6ilDnMVHYMSHsyhLlFm2XmUB/oFPOdjgwI7r+K7AmZ9OAeRE/KFFu0fs4uaQ4HJqL\nuzOKO6DN+vIn+eJ8Hg5gKbAgEf4UcG+deb2DeQO9c+FrgTei63HAe0CvOvKeU6nTFrULL99fEuFn\nA7+Jrk8C3gQOj8JOCB16aolyi7bLVYm0PYGFQNdw3RkT7ocTtkuA2+stt477aCtxuCmK20Ksyx4+\nIdmGiEhPYG/g5UT0SuDgOrN8ERtn9siFb8LGvBknAM+r6tt15t9aFgPfFpGbRWQ7ABHpCnwfmJsZ\nqepNqrq9qt4bpT0Yc+3nlSi3ULuo6hmJtNOAC1R1U7jeAZt7ey9huw4YVm+57UD8b+ukrTJtN3EQ\nkRtE5F0RaRaR10TkchF5QkReFZGnRWR8e9WtEiKyt4isFJHpFUz2COfUS7oB6CUineso8hBgT1V9\nKarDzth8wiOR3UhgtYiMEpGLRGSGiNwqIkPrKKsMc7Ex9YnAsyIyFpgNTNIKE40AIjIQ+2pOUNXG\nEuUWbZd8ucMBUdUnouDV2CRpQyJJf6CPiGTvSalyiyIiO4vI6+GdWCMicwom7RfOCtwX5TdURBaJ\nSKOIPCciL4jIlSKyY6Fc28oFKXNg7nDmDh0TwroBy0L4ee1Zv0R9R2Ffu0UV4r8W6j05EXdjuM8+\nrazDVOADWiYedwxlPgOcGtkdhonUfhXyafWwIsT3BO4K99YM3A70rWA7GrgKc9cntqbcWu1SweZx\n0hOH15EbFmAvfDZ52btsudXug9ywAuiKDXnuAjrnbJPDCuBQzOtpAqbk0iwP4ZNyeTxDNDlc6Wjv\nYUVT9oeqLgznjUC2JHN+5q52BFT1AWzYMLqCSXY/qf9OnHkMncqWLyJ7AROwcXr2pcryGwDcENX1\nfswtnla2vIJMwIZRx2Kd8VhgsYh8MW+oqgvUXP39gSNF5N8isn1rK1ChXfI23wAaVDU15JsIrBWR\nHwbbTiG/xSG+KZGmULl13EMDcAcmEMep6gdVzOcEL3sJtlR7GzafMzln1zWcsyHPrHDeFzi8Vp06\n6j6H7KE0YF/ABVmEiOwKnIu50iuAt7AvwtHYuvmDwe5A4AJMKd8EhgB/xmapm4PNsJBPL2wG+2JV\n/Ve1iqnqi1WiV1eJy8ap71TLvxIi0gW4GZiV6wRrw/l5bRlHZ7wKHCEinWt0tlKIyNnACFX9Zrg+\nALgYOBP4A7b0twWq+qGITAH+iXXu77WiDpXaJc+PgYcr1GdN2IdxRhgybgCuBY4C3lPVN1tRbhEy\nj+HrmAeSf455pqjqjQXyPTrkOTtcx3s2etdK3FHFYV30d7bxAxEZgnWoRuAwVV0Xwk/HHuS0cD0c\nuAeYq6qnhbDB2GaY4cAYEemGKfR5If47wF0iMkhVXytZ71WY15D6GvYA3tLEhqSCzAbuVtUpcWB4\n0VbTIhIxm4Au2KTbqkR8a7kAGBHVZSNwjogsA2aKyGBVXRravotuPr+QjfvHiEh3VX23ZB2S7RIj\nIlsDRwJXVrIJfemiXLqdgAfLllsH/bDNTAJMxz6IrUZVnxKR3YEZ4WNZlxfe3sOKSsQTJvGLOhu7\nwbMyYQBQ1auxpcKMmZjXcWlksxTbwHJc2HU2CJgYXEOARZj7NYKShA7+X2C3RPQgWjyiuhCRycDS\nuCOKyEmRycNEIhrRFROIah5NKUSkD9ahn8/HqeoszENqEJFtsPv+T9iFmJG56kLJoVaBdskYhonz\nmjry7o3tFfljK8otynPYhqmNwEgRGdeKvLL69BCRB7A5oL2BnwD71ZNHRxWHr4bzBsxTQET2wBoQ\nNheCjMuAV4LdEABVfSVn8yzWGUeHr9gIVV0e4nbDvvrPVauYiOxWY8VhITarHacZGPL/Uy58UBhr\nVitvLDbDfkkuamT09zxgj7CMGLMvtueimTZGVVdj3shX8nFBEN7G2vt97OVfjg3vMrKO+piq1j3U\nKtguGYPCObVciYicJSKrRKR/FHwKNiy7IWdbT7lFWauqS4ApWP+cVnhFoTJjsQ/d28CRais0dS1z\ndhhxEJEJ4dwXW7dXzEPI3M2PHlyqs6vqvDAf0D8fF5GNu3cOaeIx6LnAdFV9skodR2Br3bdWKeN3\nQI/QiTJOx2aIs7EfIjIK2zB1W5XyDgVmAANF5KbomIetEmTMx4ZMp0Vpv4u9mL+okH23YFdrfb6a\n3VnArOC6ZuX2wmb/z1TVD8L4+TJgpqq+lUu7HpsLqKvcOtolo284v1+hrB7Yh+jDkP9BwDnA8ar6\nUZoS5Va9D7Z8WadjnueO2K7Sara1yJbTu9Ky1HkOLb8tqT2lUGSZ6OM6aFnKaQqN8Tim1vcBR+ds\n94xst9gJiH2ZuwMDI7utcjaXh7i5ufBxwKUF6jsYG+ZcXcNuCDbzPB34PTYRukvOZp9aeWFucKXf\nBvwqZ7sdtmw2H5souxkYkLPpgw2tGqN8VgH/YPPfghSyC7YjMYGbF4755HbwRc96Hrak+/fw96CS\n9SvcLsF+NDYn86UK7dyAzVddh3l3i4BhZZ9HkfvAtla/HOLWY97waMy7ytKswOZ1GrEt+Vn4y8H+\n4Br98FRs/8VKzIubEZ7DG6HMC6ull5BJuyAiJ2MdWlW15rhTRB7FdtYdpar35OJmA5ep6jIRacR+\niLS/qv4vsrkP26twvKreGsKOwdbl5wS3vJ9Gm1wc5/NKhxlWFGQcpqxTw/AD+OjnwKKqy0LQj7Dx\n5YUiIpHNSGBhJAyHYZtd7hSRftjST+aCOc7nmvb2HE7B3KtCnkNI0x84H1u/fQlzzV/AfugTjw+H\nYBM822Bu1D6YyztdVZvDzPmTtOw/EGyeY1tVXd/qm3OcTzntJg4icj22S2uXEPQMcL6q3tEuFXIc\nZzPa1XNwHKfj8mmbc3Ac5xPCxcFxnCQuDo7jJHFxcBwniYuD4zhJXBwcx0ni4uA4ThIXB8dxkrg4\nOI6TxMXBcZwkLg6O4yRxcXAcJ4mLg+M4SVwcHMdJ4uLgOE4SFwfHcZK4ODiOk8TFwXGcJC4OjuMk\ncXFwHCeJi4PjOElcHBzHSeLi4DhOEhcHx3GSuDg4jpPExcFxnCQuDo7jJHFxcBwniYuD4zhJXBwc\nx0nyf5H3FPppTaFQAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x8904cc0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUAAAABHCAYAAAB24p6mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAClZJREFUeJztm33wZmMZxz+XfcXS2ixK3oW8xNaW2BelFGqJhkgiVKwG\ny2gtw9pkWTS2qdSmhvXSzjZD3pooGSqEKVKbZEu2wiLkfa39Xf1xnR/HcZ7nuc/ze377PLPn+5k5\n88y5z3Wuc933Oed77vu678fcHSGEqCOrdTsAIYToFhJAIURtkQAKIWqLBFAIUVskgEKI2iIBFELU\nFgmgEKK2SACFELVFAiiEqC0SQCFEbZEACiFqiwRQCFFbJIBCiNoiARRC1BYJoBCitkgAhRC1RQIo\nhKgtEkAhRG2RAAohaosEUAhRW4Z28+JmdjcwHlgC3A8Y4NnvUGA0sB0wCviDu4/vUqi1w8w+CEwH\nVgfeBdwNnOHuj3bA90nAUHefU3JsK2Am8BLwKvAyMNPdX8zZbAjMAPqAkVmMc9z9zw2utwZwp7vv\n2OB4cl1T4qtilxJfiX1p+5nZOcC1wF+BZcDmwBTgsmb3rdn96AU61T6luHvXNmAi8BrwFLBBA5uR\nwFzgiW7GWqcNGAfcCKyV7a8B3AYsBTYeoO9NgBcIgSke2xZ4BNg5218f+EfeFhgD/BRYP1e2KfHS\nb1HiczxwD7BioHVNia+KXUp8Fduvr7AtB05r118vbJ1sn7Ktq0Ngd/8tIW5jgB81sHkFmAY8ZmYj\nV2J4deYsYKq7Pw/g7i8BxwNjgXMH6PtUoqf1JsxsCHA1cIG735UVDwPWBJ7OmR4B3OzuS/sL3P2f\nwHzgqJy/bczsBmAq8ZFtRFJdU+OrYJcaX5HS9stYAvwAuAa4ABjn7mcPwF/XGKT2eSs9oPAjgL8A\nK4CjmtidAWzV7XjrsAHPEz2YdQvlTzOAnjiwH/BZondS7DUdAbwCrN3Cx0XAVSXl0wjRKTvnEhr3\nAJPqWiG+JLvU+FLbLzt+S6fuRy9tnWqfsq3rkyDuvgw4jAj6m2a2cQPTm4kvaUex4A4z26iJzYlm\ndlynr93DPEz0gNYslC+jzd6Cma0J7OXuCxuYHAQsdvfnWri6D9jPzK40s9GZ7xHA54FL2wgtta6p\n8aXaVSKh/brqr9u0W5+uToL04+73mNm5wGmE2n+0xOaOYpmZ7QCcCPyP+OouA85291crXNvN7ETg\nGjP7lLs/VrjGVGACcECKPzM7CpgNPAZ8zt0Xmdls4HJ3fyDRx7uJPNQCdz8ptS4dZGciJ/ZELqZ3\nELmsW9r0OQM4p8nxicBdZjYJ+Dgx8bUJ8HV3vy9ndylwJHAw8BEzOxnYE5jhDSZBWpBa19T4Uu2q\n0qr9AEaY2XRC0PuALYBT3P2hNv1hZjsBxxA94uHA24FjvWQyp8sk1ectdLt7m+u+DgXuJYbCX02w\nPxD4D7B9tj8ZeA6Y0ub1JxPJ1rG5si8CNxAzSik+JgK3AqcTIngl8BviIawSyyQi73FTt+9LLqbZ\nRFJ95zbO3RGYntt/0xCFeKn6gEXAl3Plu2X39D0Ff6OAn2fPSh9wHbBek+snDaEa1TU1vqr1SI2v\nVfvlyh8CNsztHwI8XmybCv4Oz97JDXJlJ7f7jg3g2etI+5SeuzIrklDRHYhe3MEt7MYRPb5DcmVT\nMgF75wCuvwdwJ7AOMZT5BTCiwvlbAqvl9g8Armgzls2Akd2+J1ksm2cv8Kw2zjWi1zY0V1YUwPWy\nspeK7Q38C7iuUHYKMA/YC1icnfsosF2DGJIFsKyuqfFVrUdKfCntl7ct7K8GvAjMreoP2IVYvrNL\nruwDwPUU8qUr4fnrSPuUbT0xBM4xAZjt7gta2J1HfNl+3F/g7tcTN+d1su77Fe6+fcrF3f2XWT7p\nNuC/wN4eOcok3H1x7tpHAh8GvlC0S4nL3R9OvW7m871Uy4Hd6+5HJvgdTvRk57n7zCoxZXwFuMTd\nm83k9c+OLi5p738De5jZMHdfbmbTgAnuPiWLbwfgG8TM7RXEx7EtmtQ1Kb4q9agQVkr7AZHOKez3\nmdmTwL7ACRX9nUnU59Nmtj8hpg8QnZMXyk4YrGewBcntU0bPCKCZ7QV8yN0Pb3D8M8RD9Hdgd+C7\nxRtewiJg76qhEIuxoc1/ymR5qc3c/dAOxtUUd78feF8nfWb8ELjR3WdVPdHM1ge2dffvN7Nz99ey\nF/XpksPLiNzTGGJt3unEh7L/3JeBk8zsb8BFZra1uz9YNdaM0rqmxufuSyvUoyWp7ZfZ/jqLdXLh\n0BBiaJ7sz8yGEu/Yxe4+PSXW7NqD9QyWUqV9GtETAph9xY8lprEbsSvwHWKIYsDvW/nNvrRLKsSx\nJzERsxvwCeDabGLklQo+ZhHD4Km5stHu/my7cXULM5sJPOi5tWRmdqi7X57o4mPA1mZ2da5sePZ7\nUNYTvszdrwF+R6QQiowgxONJMxsLvI0Y9r4Jd59nZnOIhfOVSahry/gq2qVQpf12InKARdYlZrqT\n/RFpoCHE4u1epkr7lLMyx/INxvAbAL8C1mlisxYx4TGMWPXfB+xfYrcpkRcyQlAvBt6fGMfuRA5x\nTK7sMCLZPizRx0wKeTJgG+A8fyNfkRQXsFHqdQfpvhwCnFlSPq+wvyUVcpXEjGgfcHqh/CBiBX8x\nd/YMMRvev/8osGuDZ2RJWZvROonesq4V4kuyqxJfYvv9JP/sZmXjMttTq/gjxO9ZSibvsvf1Le/e\nID+LA26fRltX1wFm//GbDxzt7s+UHB+S/U/zZ8AQd1/user/JmLWNm87kRge3UrkPBbyhmC2imMS\ncD7wSXd/ffji7vOJVfVXZSv8m/nYl1hS8biZfc/MZpjZRURecm5mtk9KXGY2gfhqX93IZjAxs8nA\nhcAWZnZ5bltAzMD2200CHiT+mpbK8MJvPwuBPxIfiH7/BxKJ+Pww7ARgXn69qJmtTfyT6Hgvz6+t\nntmV/QMlqa4t4vtaG3ZJ8ZXQqP3OA+Zmecx+TgBuJ57tZH/uvoKYZNozb2hm44E5RIdlZdKJ9iln\nZSp5iVrPJ2bMnihsTxJfoOXEUocVwD258/of+IuJG3IhcHju+CiiR/AILWZxiV7ZHTSZPQaOA6Y1\nOT4K+FZuf3oW/+3AllXjArYm1hF+u0v35alcuxe3M3N2W6XGmdX7FiKPuyK777cD++RsRhNf+4XE\nZMSVRC616GsiIboLsm0hMLlgM5b4j++fcrEvJV7eg6vWtWJ8Le1S46vYfhOInuClxMdzFjC8nftB\n9ALPJyYa5xAf8WPIrXIY5Gew4+1Ttll28iqHmR1NCMmpwHJvc5ao0/RqXELUka7/FW4Q6f9r1Jd4\nY1a3F+jVuISoHauyAN5H5OQWeeQ0eoVejUuI2rHKDoGFEKIVq3IPUAghmiIBFELUFgmgEKK2SACF\nELVFAiiEqC0SQCFEbZEACiFqiwRQCFFbJIBCiNoiARRC1BYJoBCitkgAhRC1RQIohKgtEkAhRG2R\nAAohaosEUAhRWySAQojaIgEUQtQWCaAQorZIAIUQtUUCKISoLRJAIURtkQAKIWqLBFAIUVskgEKI\n2iIBFELUFgmgEKK2SACFELVFAiiEqC0SQCFEbZEACiFqiwRQCFFb/g8wHg1//BNyfAAAAABJRU5E\nrkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x892de10>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"from scipy import linalg\n",
"from scipy.optimize import root, fsolve\n",
"eps = np.finfo(float).eps\n",
"\n",
"comps = np.array([\n",
" 'H2O', 'H3O(+)', 'HO(-)', 'HCO3(-)', 'Na(+)', \n",
" 'CO3(2-)', 'CO2', 'H2CO3', 'CO2'\n",
" ])\n",
"\n",
"mm = np.array([\n",
" 18, 19, 17, 61, 23, 60, 44, 62, 44\n",
" ], dtype=float)\n",
"\n",
"pkw = 13.99602524\n",
"mm0 = mm[0]\n",
"rho0 = 1.0\n",
"ph0 = pkw/2\n",
"xw0nahco3 = 0.001\n",
"\n",
"x = np.ones_like(mm)*eps\n",
"x[3] = xw0nahco3/(mm[3]+mm[4])/(xw0nahco3/(mm[3]+mm[4])+xw0nahco3/(mm[3]+mm[4])+(1-xw0nahco3)/mm[0])\n",
"x[4] = xw0nahco3/(mm[3]+mm[4])/(xw0nahco3/(mm[3]+mm[4])+xw0nahco3/(mm[3]+mm[4])+(1-xw0nahco3)/mm[0])\n",
"\n",
"\n",
"a = np.array([\n",
" [1 + mm0/rho0*10**(-ph0)/1000.0, mm0/rho0*10**(-ph0)/1000.0],\n",
" [mm0/rho0*10**(ph0-pkw)/1000.0,1 + mm0/rho0*10**(ph0-pkw)/1000.0]\n",
" ])\n",
"b = np.array([\n",
" [mm0/rho0*10**(-ph0)/1000.0*(1 - x[3] - x[4])],\n",
" [mm0/rho0*10**(ph0-pkw)/1000.0*(1 - x[3] - x[4])]\n",
" ])\n",
"\n",
"x[1:2+1] = linalg.inv(a).dot(b).flatten()\n",
"x[0] = 1 - sum(x[1:])\n",
"\n",
"print 'mole frac.'\n",
"print x\n",
"print 'mass frac.'\n",
"print np.multiply(x, mm)/sum(np.multiply(x, mm))\n",
"\n",
"c0 = np.ones([len(mm)-1,])*eps\n",
"c0 = x[:8]/x[0]*rho0/mm0*1000.0\n",
"# v_g = const. = 50mL, nco2 = pco2 v_g / (RT)\n",
"# pco2 = x[7]*8.314/1000.0*298.15/(50.0/1000/1000) # pco2 [=] kPa\n",
"p0co2 = 10**-3.5*101.325 # 10^-3.5atm = 10^-3.5*101.325 kPa\n",
"c0[6] = p0co2 / (1670.0 *100) * (sum(c0)-c0[6]) / (1 - p0co2 / (1670.0 *100))\n",
"xi = np.ones(5)*eps\n",
"\n",
"x0 = np.append(np.append(c0, p0co2), xi)\n",
"\n",
"def eq_set(x):\n",
" # x, [nh2o, nh30, nho, nhco3, nna, nco3, nco2, nh2co3, pco2,\n",
" # xi1, xi2, xi3, xi4, xi5]\n",
" c = x[:8]\n",
" xco2 = c[6] / sum(c)\n",
" pco2 = x[8]\n",
" xi = x[9:]\n",
" return np.array([\n",
" 1670.0*100*xco2 - pco2, # Hco2 = pco2/xco2\n",
" 10**-2.821023053*c[6] - c[7], # 10^-pK2 = ch2co3/cco2\n",
" 10**-3.539912399*c[7] - c[1]*c[3], # 10^-pK3 = chco3*ch3o/ch2co3\n",
" 10**-10.32991986*c[3] - c[1]*c[5], # 10^-pK4 = cco3*ch3o/chco3\n",
" 10**-13.99602524 - c[1]*c[2], # 10^-pKw = ch3o*cho \n",
" c[0] - c0[0] - (- xi[0] - xi[1] - xi[2] - xi[3] - 2*xi[4]),\n",
" c[1] - c0[1] - (+ xi[2] + xi[3] + xi[4]),\n",
" c[2] - c0[2] - (+ xi[4]),\n",
" c[3] - c0[3] - (+ xi[2] - xi[3]),\n",
" c[4] - c0[4] - (+ 0),\n",
" c[5] - c0[5] - (+ xi[3]),\n",
" c[6] - c0[6] - (- xi[0] - xi[1]),\n",
" c[7] - c0[7] - (+ xi[1] - xi[2]),\n",
" pco2 - p0co2 - (+ xi[0])*8.314*298.15\n",
" ]).T\n",
"\n",
"def jac_eq_set(x):\n",
" j = np.zeros([len(x), len(x)])\n",
" \n",
" c = x[:8]\n",
" xco2 = c[6] / sum(c)\n",
" pco2 = x[8]\n",
" xi = x[9:]\n",
" \n",
" d_f1_dc = np.zeros([9, ])\n",
" \n",
" d_f1_dc[0:6] = 1670.0*100*(-1.0/sum(c)**2)*c[6]\n",
" d_f1_dc[6] = sum([c_ for i, c_ in enumerate(c) if i!=6])/sum(c)**2\n",
" d_f1_dc[7] = 1670.0*100*(-1.0/sum(c)**2)*c[6]\n",
" d_f1_dc[8] = -1.0\n",
" \n",
" j[0, :8+1] = d_f1_dc\n",
"\n",
" j[1, 6], j[1, 7] = 10**-2.821023053, -1\n",
" j[2, 1], j[2, 3], j[2, 7] = -c[3], -c[1], 10**-3.539912399\n",
" j[3, 1], j[3, 3], j[3, 5] = -c[5], 10**-10.32991986, -c[1]\n",
" j[4, 1], j[4, 2] = -c[2], -c[1]\n",
" for ind in range(8+1):\n",
" j[ind + 5, ind] = +1\n",
" j[5, 9:14] = np.array([+1, +1, +1, +1, +2])\n",
" j[6, 11:14] = np.array([-1, -1, -1])\n",
" j[7, 13] = -1\n",
" j[8, 11:13] = np.array([-1, +1])\n",
" j[10, 12] = -1\n",
" j[11, 9:11] = +1\n",
" j[12, 10:12] = np.array([-1, +1])\n",
" j[13, 9] = -1*8.314*298.15\n",
" \n",
" return j\n",
"\n",
"#res = root(eq_set, x0, jac=jac_eq_set, tol=1e-10)\n",
"res = root(eq_set, x0, jac=False, tol=1e-10)\n",
"#res = root(eq_set, x0, method='broyden1', jac=jac_eq_set, tol=1e-10, options={'line_search': 'wolfe'})\n",
"#res = root(eq_set, res.x, jac=False, tol=1e-12, method='broyden1')\n",
"for item in res.keys():\n",
" if item not in ['qtf', 'r']:\n",
" print str(item) + ': ' + str(getattr(res, str(item)))\n",
"print '||f||: ' + str(np.sqrt(res.fun.T.dot(res.fun)))\n",
"print ''\n",
"print_latex('\\\\bf{pH}: ' + str(-np.log10(res.x[1])))\n",
"print_latex('\\\\bf{pOH}: ' + str(-np.log10(res.x[2])) + \\\n",
" ', pH+pOH=' + str(-np.log10(res.x[1])+-np.log10(res.x[2])))\n",
"print_latex('\\\\bf{p_{CO2}}:' + str(res.x[8]) + ' kPa')\n",
"print_latex('\\\\Sigma{c_i\\\\times z_i}:' + \\\n",
" str(res.x[1]-res.x[2]-res.x[3]+res.x[4]-2*res.x[5]))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 1.00000000e+00,\n",
" -2.47881910e+03, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jac_eq_set(res.x)[-1]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x0\n",
"C0=5.55555555555555500291e+01,\n",
"C1=1.00458659795015562355e-07,\n",
"C2=1.00458659795015575590e-07,\n",
"C3=1.19166786264420683505e-02,\n",
"C4=1.19166786264420683505e-02,\n",
"C5=1.23411034977318318904e-14,\n",
"C6=1.06638491665527950045e-05,\n",
"C7=1.23411034977318318904e-14,\n",
"pco2=3.20417783916561033086e-02,\n",
"x0=2.22044604925031308085e-16,\n",
"x1=2.22044604925031308085e-16,\n",
"x2=2.22044604925031308085e-16,\n",
"x3=2.22044604925031308085e-16,\n",
"x4=2.22044604925031308085e-16,\n"
]
}
],
"source": [
"print 'x0'\n",
"for index, num in enumerate(x0):\n",
" if index < 8:\n",
" print 'C' + str(index) + '=' + '%.20e' % num + ','\n",
" elif index == 8:\n",
" print 'pco2' + '=' + '%.20e' % num + ','\n",
" else:\n",
" print 'x' + str(index-9) + '=' + '%.20e' % num + ','"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x:\n",
"C0=5.55556289267577199098e+01,\n",
"C1=3.26903554347567655169e-09,\n",
"C2=3.08713141646693843776e-06,\n",
"C3=1.15820991613138461751e-02,\n",
"C4=1.19166786264420683505e-02,\n",
"C5=1.65747801385990306934e-04,\n",
"C6=8.69245344681667691557e-05,\n",
"C7=1.31256046958327811330e-07,\n",
"pco2=2.61183127920939117672e-01,\n",
"x0=9.24397224183414839517e-05,\n",
"x1=-1.68700407719955461491e-04,\n",
"x2=-1.68831663754572664209e-04,\n",
"x3=1.65747801373649213076e-04,\n",
"x4=2.98667275667192327245e-06,\n"
]
}
],
"source": [
"print 'x:'\n",
"for index, num in enumerate(res.x):\n",
" if index < 8:\n",
" print 'C' + str(index) + '=' + '%.20e' % num + ','\n",
" elif index == 8:\n",
" print 'pco2' + '=' + '%.20e' % num + ','\n",
" else:\n",
" print 'x' + str(index-9) + '=' + '%.20e' % num + ','"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
";k=0;backtrack=0;lambda_ls=0.0;accum_step=0.0;stop=False;X=[55.5555555556,1.00458659795e-07,1.00458659795e-07,0.0119166786264,0.0119166786264,1.23411034977e-14,1.06638491666e-05,1.23411034977e-14,0.0320417783917,2.22044604925e-16,2.22044604925e-16,2.22044604925e-16,2.22044604925e-16,2.22044604925e-16];||X(k)-X(k-1)||=nan;f(X)=[0.0,1.61023998895e-08,-1.19713356046e-09,5.57487798131e-13,-2.05103835357e-29,1.33226762955e-15,-6.66133814775e-16,-2.22044604925e-16,0.0,0.0,-2.22044604925e-16,4.4408920985e-16,0.0,-5.5040840774e-13];||f(X)||=1.61468390584e-08;j(X)=[[-0.00057650457759323, -0.00057650457759323, -0.00057650457759323, -0.00057650457759323, -0.00057650457759323, -0.00057650457759323, 0.017992274334285657, -0.00057650457759323, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011916678626442068, 0.0, -1.0045865979501556e-07, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -1.2341103497731832e-14, 0.0, 4.678214600282143e-11, 0.0, -1.0045865979501556e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -1.0045865979501558e-07, -1.0045865979501556e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0];||Y||=0.0;g=nan;|g-g1|=nan\n",
"\n",
";k=1;backtrack=0;lambda_ls=1.0;accum_step=1.0;stop=False;X=[55.5555612745,6.93978116203e-10,2.00223341474e-07,0.0119053907602,0.0119166786264,5.54416842843e-06,1.63827674692e-05,2.47379788619e-08,0.032041881288,4.15102380517e-11,-5.71895981292e-06,-5.74369777944e-06,5.54416841609e-06,9.97646816788e-08];||X(k)-X(k-1)||=3.20041207336e-10;f(X)=[0.0171835852841,0.0,-1.12613037783e-12,5.53112197205e-13,9.95299171047e-15,-2.08082113822e-16,-7.41153828848e-22,0.0,4.67562186884e-19,0.0,8.47032947254e-22,-8.47032947254e-22,-4.30133918528e-23,2.56538486455e-18];||f(X)||=0.0171835852841;j(X)=[[-0.0008856781775984133, -0.0008856781775984133, -0.0008856781775984133, -0.0008856781775984133, -0.0008856781775984133, -0.0008856781775984133, 0.017992270631620347, -0.0008856781775984133, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011905390760246538, 0.0, -6.939781162029205e-10, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -5.5441684284278664e-06, 0.0, 4.678214600282143e-11, 0.0, -6.939781162029205e-10, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -2.0022334147382803e-07, -6.939781162029205e-10, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[5.71891830269e-06,-9.97646816788e-08,9.97646816788e-08,-1.12878661955e-05,0.0,5.54416841609e-06,5.71891830269e-06,2.47379665207e-08,1.02896370928e-07,4.15100160071e-11,-5.71895981315e-06,-5.74369777967e-06,5.54416841586e-06,9.97646814568e-08];||Y||=1.78896955631e-05;g=nan;|g-g1|=nan\n",
"\n",
";k=2;backtrack=0;lambda_ls=1.0;accum_step=2.0;stop=False;X=[55.5561115669,2.11082023402e-08,8.65234508105e-06,0.0107807325694,0.0119166786264,0.0005636574101,0.000575147757383,8.68473113061e-07,0.0492355261663,6.93626564949e-06,-0.000571420173866,-0.000572288646966,0.000563657410088,8.55188642126e-06];||X(k)-X(k-1)||=0.000298765483869;f(X)=[1.67889958054,1.05879118407e-22,2.29590244835e-11,-1.13934488579e-11,-1.7254350836e-13,1.54390389362e-15,-6.2534854309e-20,0.0,4.33680868994e-19,0.0,0.0,0.0,-2.32934060495e-21,-6.93889390391e-18];||f(X)||=1.67889958054;j(X)=[[-0.031092774983498033, -0.031092774983498033, -0.031092774983498033, -0.031092774983498033, -0.031092774983498033, -0.031092774983498033, 0.017991911113466753, -0.031092774983498033, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.010780732569388236, 0.0, -2.1108202340202426e-08, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0005636574100999022, 0.0, 4.678214600282143e-11, 0.0, -2.1108202340202426e-08, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -8.652345081051185e-06, -2.1108202340202426e-08, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[0.00055029245395,2.0414224224e-08,8.45212173958e-06,-0.00112465819086,0.0,0.000558113241671,0.000558764989913,8.437351342e-07,0.0171936448783,6.93622413925e-06,-0.000565701214053,-0.000566544949187,0.000558113241671,8.45212173958e-06];||Y||=0.0172848339266;g=nan;|g-g1|=nan\n",
"\n",
";k=3;backtrack=0;lambda_ls=1.0;accum_step=3.0;stop=False;X=[55.5554955247,-1.37296300027e-09,9.69323390879e-06,0.0106590965274,0.0119166786264,0.000623943746112,-3.98760282897e-05,-6.02128026767e-08,1.72814510046,0.000684238443243,-0.000633698565787,-0.000633638352972,0.0006239437461,9.592775249e-06];||X(k)-X(k-1)||=2.81873860485;f(X)=[-1.84796260101,-2.11758236814e-22,-2.73451997196e-12,1.35530708766e-12,2.34003938375e-14,3.39368832515e-16,-1.32613595805e-20,0.0,0.0,0.0,0.0,-1.35525271561e-20,8.57620859095e-21,2.22044604925e-16];||f(X)||=1.84796260101;j(X)=[[0.0021558182542930067, 0.0021558182542930067, 0.0021558182542930067, 0.0021558182542930067, 0.0021558182542930067, 0.0021558182542930067, 0.01799252856259648, 0.0021558182542930067, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.010659096527370604, 0.0, 1.3729630002694887e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0006239437461121762, 0.0, 4.678214600282143e-11, 0.0, 1.3729630002694887e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -9.693233908794293e-06, 1.3729630002694887e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-0.000616042193336,-2.24811653405e-08,1.04088882774e-06,-0.000121636042018,0.0,6.02863360123e-05,-0.000615023785672,-9.28685915738e-07,1.67890957429,0.000677302177593,-6.22783919211e-05,-6.13497060054e-05,6.02863360123e-05,1.04088882774e-06];||Y||=1.67890994543;g=nan;|g-g1|=nan\n",
"\n",
";k=3;backtrack=1;lambda_ls=0.5;accum_step=2.5;stop=False;X=[55.5558035458,9.86761966997e-09,9.17278949492e-06,0.0107199145484,0.0119166786264,0.000593800578106,0.000267635864546,4.04130155192e-07,0.888690313311,0.000345587354446,-0.000602559369826,-0.000602963499969,0.000593800578094,9.07233083513e-06];||X(k)-X(k-1)||=0.704684651213;f(X)=[-0.0845207681222,-5.29395592034e-23,1.07958822488e-11,-5.35789765702e-12,-8.04216557208e-14,-2.61097567178e-15,-3.70576914424e-20,0.0,8.67361737988e-19,0.0,0.0,5.42101086243e-20,5.73335426173e-20,-1.11022302463e-16];||f(X)||=0.0845207681222;j(X)=[[-0.014468864913452851, -0.014468864913452851, -0.014468864913452851, -0.014468864913452851, -0.014468864913452851, -0.014468864913452851, 0.017992219833285056, -0.014468864913452851, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.01071991454837942, 0.0, -9.867619669966469e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0005938005781060392, 0.0, 4.678214600282143e-11, 0.0, -9.867619669966469e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -9.172789494922738e-06, -9.867619669966469e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-0.000308021096668,-1.12405826702e-08,5.20444413872e-07,-6.08180210088e-05,0.0,3.01431680061e-05,-0.000307511892836,-4.64342957869e-07,0.839454787145,0.000338651088797,-3.11391959605e-05,-3.06748530027e-05,3.01431680061e-05,5.20444413872e-07];||Y||=0.839454972713;g=nan;|g-g1|=nan\n",
"\n",
";k=4;backtrack=0;lambda_ls=1.0;accum_step=3.5;stop=False;X=[55.5556469793,4.04747064703e-09,6.43305541431e-06,0.0111044829734,0.0119166786264,0.000402883322543,0.000108323802572,1.63568941774e-07,0.804166185444,0.00031148880814,-0.000409148761545,-0.000409312330475,0.000402883322531,6.33259675452e-06];||X(k)-X(k-1)||=0.00714467496298;f(X)=[-0.478683278115,-2.64697796017e-23,2.23824554335e-12,-1.11116687842e-12,-1.59456606324e-14,1.10865093148e-15,3.55489140051e-20,0.0,-6.50521303491e-19,0.0,5.42101086243e-20,-1.35525271561e-20,-2.32404664903e-20,0.0];||f(X)||=0.478683278115;j(X)=[[-0.005856201413773767, -0.005856201413773767, -0.005856201413773767, -0.005856201413773767, -0.005856201413773767, -0.005856201413773767, 0.017992311940718184, -0.005856201413773767, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011104482973436114, 0.0, -4.04747064703097e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00040288332254348426, 0.0, 4.678214600282143e-11, 0.0, -4.04747064703097e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -6.433055414314924e-06, -4.04747064703097e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-0.000156566507742,-5.82014902294e-09,-2.73973408061e-06,0.000384568425057,0.0,-0.000190917255563,-0.000159312061974,-2.40561213419e-07,-0.0845241278671,-3.40985463066e-05,0.000193410608281,0.000193651169494,-0.000190917255563,-2.73973408061e-06];||Y||=0.0845261791576;g=nan;|g-g1|=nan\n",
"\n",
";k=5;backtrack=0;lambda_ls=1.0;accum_step=4.5;stop=False;X=[55.5556327119,3.42158412683e-09,3.48817971186e-06,0.0115222365219,0.0119166786264,0.000195478673234,9.11108797541e-05,1.37577428336e-07,0.325481466738,0.000118378823346,-0.000198825853934,-0.00019896343135,0.000195478673222,3.38772105206e-06];||X(k)-X(k-1)||=0.229139446765;f(X)=[-0.0517194728318,2.64697796017e-23,2.61466314729e-13,-1.29811774229e-13,-1.84315800582e-15,1.93016447009e-15,1.60274515488e-20,-4.23516473627e-22,-8.67361737988e-19,0.0,0.0,0.0,5.88952596138e-20,5.55111512313e-17];||f(X)||=0.0517194728318;j(X)=[[-0.004925605203345656, -0.004925605203345656, -0.004925605203345656, -0.004925605203345656, -0.004925605203345656, -0.004925605203345656, 0.01799226057113341, -0.004925605203345656, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011522236521870047, 0.0, -3.4215841268343927e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00019547867323448646, 0.0, 4.678214600282143e-11, 0.0, -3.4215841268343927e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.488179711856462e-06, -3.4215841268343927e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-1.42674212304e-05,-6.25886520197e-10,-2.94487570246e-06,0.000417753548434,0.0,-0.000207404649309,-1.72129228183e-05,-2.5991513438e-08,-0.478684718706,-0.000193109984793,0.000210322907611,0.000210348899125,-0.000207404649309,-2.94487570246e-06];||Y||=0.478685122774;g=nan;|g-g1|=nan\n",
"\n",
";k=6;backtrack=0;lambda_ls=1.0;accum_step=5.5;stop=False;X=[55.5556276378,3.22418492354e-09,3.15073539748e-06,0.0115744683985,0.0119166786264,0.000169531358394,8.56991316844e-05,1.29405688756e-07,0.273761793766,9.75141813995e-05,-0.000172549463917,-0.000172678869594,0.000169531358381,3.05027673769e-06];||X(k)-X(k-1)||=0.00267493051899;f(X)=[-0.0162606182056,-2.64697796017e-23,1.0310530827e-14,-5.12197927729e-15,-6.66112388142e-17,3.37986474745e-15,-2.30287082535e-20,0.0,-5.42101086243e-20,0.0,0.0,-1.35525271561e-20,1.33142991397e-20,2.77555756156e-17];||f(X)||=0.0162606182056;j(X)=[[-0.004633034554817508, -0.004633034554817508, -0.004633034554817508, -0.004633034554817508, -0.004633034554817508, -0.004633034554817508, 0.01799225732060538, -0.004633034554817508, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.01157446839846698, 0.0, -3.224184923537078e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016953135839360424, 0.0, 4.678214600282143e-11, 0.0, -3.224184923537078e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.1507353974847232e-06, -3.224184923537078e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-5.07410635802e-06,-1.97399203297e-10,-3.37444314372e-07,5.22318765969e-05,0.0,-2.59473148409e-05,-5.41174806967e-06,-8.17173957968e-09,-0.0517196729724,-2.08646419468e-05,2.62763900165e-05,2.62845617561e-05,-2.59473148409e-05,-3.37444314372e-07];||Y||=0.0517197304613;g=nan;|g-g1|=nan\n",
"\n",
";k=7;backtrack=0;lambda_ls=1.0;accum_step=6.5;stop=False;X=[55.5556294385,3.28707888198e-09,3.0686143448e-06,0.0115840634369,0.0119166786264,0.000164774931153,8.74177496475e-05,1.32000801879e-07,0.25750117609,9.09543571365e-05,-0.000167708257617,-0.000167840258407,0.000164774931141,2.96815568501e-06];||X(k)-X(k-1)||=0.000264407920598;f(X)=[0.00516391168574,0.0,-6.0346994804e-16,2.99150537162e-16,5.16491807426e-18,-1.73190455033e-15,2.40610296579e-20,0.0,-1.62630325873e-19,0.0,0.0,-1.35525271561e-20,-3.22931311141e-21,2.77555756156e-17];||f(X)||=0.00516391168574;j(X)=[[-0.004725944431523252, -0.004725944431523252, -0.004725944431523252, -0.004725944431523252, -0.004725944431523252, -0.004725944431523252, 0.01799225408434268, -0.004725944431523252, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011584063436893957, 0.0, -3.2870788819763e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016477493115343535, 0.0, 4.678214600282143e-11, 0.0, -3.2870788819763e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0686143448044967e-06, -3.2870788819763e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[1.80067611839e-06,6.28939584392e-11,-8.21210526802e-08,9.59503842698e-06,0.0,-4.75642724017e-06,1.71861796305e-06,2.59511312245e-09,-0.0162606176757,-6.55982426298e-06,4.84120629993e-06,4.83861118681e-06,-4.75642724017e-06,-8.21210526802e-08];||Y||=0.0162606248526;g=nan;|g-g1|=nan\n",
"\n",
";k=8;backtrack=0;lambda_ls=1.0;accum_step=7.5;stop=False;X=[55.5556287055,3.26120673249e-09,3.09433826874e-06,0.0115813393677,0.0119166786264,0.000166124090861,8.67105138224e-05,1.30932875783e-07,0.262665084896,9.30375703916e-05,-0.000169084235048,-0.000169215167911,0.000166124090849,2.99387960894e-06];||X(k)-X(k-1)||=2.66659743811e-05;f(X)=[-0.00212502341451,0.0,-7.04775258633e-17,3.49056616437e-17,6.65533205386e-19,-2.02587241687e-15,5.90276085118e-21,0.0,7.5894152074e-19,0.0,0.0,0.0,-5.21454658153e-21,-2.77555756156e-17];||f(X)||=0.00212502341451;j(X)=[[-0.004687710593720973, -0.004687710593720973, -0.004687710593720973, -0.004687710593720973, -0.004687710593720973, -0.004687710593720973, 0.01799225521661825, -0.004687710593720973, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011581339367682164, 0.0, -3.261206732489176e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016612409086129133, 0.0, 4.678214600282143e-11, 0.0, -3.261206732489176e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0943382687373876e-06, -3.261206732489176e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-7.3293387512e-07,-2.58721494871e-11,2.57239239329e-08,-2.72406921179e-06,0.0,1.34915970786e-06,-7.07235825068e-07,-1.06792609513e-09,0.00516390880612,2.0832132551e-06,-1.37597743003e-06,-1.37490950394e-06,1.34915970786e-06,2.57239239329e-08];||Y||=0.00516391076425;g=nan;|g-g1|=nan\n",
"\n",
";k=9;backtrack=0;lambda_ls=1.0;accum_step=8.5;stop=False;X=[55.5556290207,3.27235710692e-09,3.08396250913e-06,0.0115824329607,0.0119166786264,0.000165582487808,8.70153354738e-05,1.31393156477e-07,0.260540062947,9.2180298496e-05,-0.000168531784803,-0.000168663177947,0.000165582487795,2.98350384933e-06];||X(k)-X(k-1)||=4.51572160244e-06;f(X)=[0.000915894130457,0.0,-1.21939716052e-17,6.03907683884e-18,1.15693604632e-19,2.72338033201e-16,-3.26901778081e-21,0.0,1.08420217249e-19,0.0,0.0,0.0,2.49345323848e-20,0.0];||f(X)||=0.000915894130457;j(X)=[[-0.004704189548391102, -0.004704189548391102, -0.004704189548391102, -0.004704189548391102, -0.004704189548391102, -0.004704189548391102, 0.017992254741746327, -0.004704189548391102, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582432960699338, 0.0, -3.272357106916855e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016558248780769645, 0.0, 4.678214600282143e-11, 0.0, -3.272357106916855e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0839625091267406e-06, -3.272357106916855e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[3.15186262595e-07,1.11503744277e-11,-1.03757596106e-08,1.09359301717e-06,0.0,-5.41603053595e-07,3.04821651333e-07,4.60280693201e-10,-0.00212502194872,-8.57271895606e-07,5.52450244273e-07,5.5198996358e-07,-5.41603053595e-07,-1.03757596106e-08];||Y||=0.00212502272986;g=nan;|g-g1|=nan\n",
"\n",
";k=10;backtrack=0;lambda_ls=1.0;accum_step=9.5;stop=False;X=[55.5556288865,3.26761326441e-09,3.0884685962e-06,0.0115819582515,0.0119166786264,0.000165817586968,8.68856534367e-05,1.31197336601e-07,0.261455956483,9.25497863442e-05,-0.000168771590614,-0.000168902787939,0.000165817586956,2.9880099364e-06];||X(k)-X(k-1)||=8.38861590248e-07;f(X)=[-0.000389654135203,0.0,-2.25194545094e-18,1.11527339082e-18,2.13761673928e-20,-3.37403716077e-16,2.40742645477e-20,0.0,-1.62630325873e-19,0.0,0.0,0.0,-9.92616735064e-21,-2.77555756156e-17];||f(X)||=0.000389654135203;j(X)=[[-0.004697178812431813, -0.004697178812431813, -0.004697178812431813, -0.004697178812431813, -0.004697178812431813, -0.004697178812431813, 0.01799225494531918, -0.004697178812431813, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011581958251547637, 0.0, -3.2676132644082073e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016581758696809025, 0.0, 4.678214600282143e-11, 0.0, -3.2676132644082073e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.088468596197536e-06, -3.2676132644082073e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-1.34183380514e-07,-4.74384250865e-12,4.5060870708e-09,-4.74709151701e-07,0.0,2.35099160394e-07,-1.29682037013e-07,-1.95819875757e-10,0.000915893535326,3.69487848196e-07,-2.39805811183e-07,-2.39609991307e-07,2.35099160394e-07,4.5060870708e-09];||Y||=0.000915893874992;g=nan;|g-g1|=nan\n",
"\n",
";k=11;backtrack=0;lambda_ls=1.0;accum_step=10.5;stop=False;X=[55.5556289439,3.26964214585e-09,3.08655748863e-06,0.0115821596302,0.0119166786264,0.000165717854227,8.6941117158e-05,1.3128108682e-07,0.261066302607,9.23925929953e-05,-0.000168669860987,-0.000168801142061,0.000165717854215,2.98609882883e-06];||X(k)-X(k-1)||=1.51830255022e-07;f(X)=[0.000166651209359,0.0,-4.08573346001e-19,2.02345907153e-19,3.87741068171e-21,1.36018583549e-15,2.06464280893e-21,0.0,-4.87890977618e-19,0.0,0.0,-1.35525271561e-20,-2.40874994375e-21,0.0];||f(X)||=0.000166651209359;j(X)=[[-0.0047001772348511, -0.0047001772348511, -0.0047001772348511, -0.0047001772348511, -0.0047001772348511, -0.0047001772348511, 0.01799225485852273, -0.0047001772348511, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582159630166082, 0.0, -3.26964214584865e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0001657178542270932, 0.0, 4.678214600282143e-11, 0.0, -3.26964214584865e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0865574886271137e-06, -3.26964214584865e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[5.73728002605e-08,2.02888144044e-12,-1.91110757042e-09,2.01378618446e-07,0.0,-9.9732740997e-08,5.54637212341e-08,8.3750219007e-11,-0.000389653875651,-1.57193348902e-07,1.01729627668e-07,1.01645877449e-07,-9.9732740997e-08,-1.91110757042e-09];||Y||=0.000389654019641;g=nan;|g-g1|=nan\n",
"\n",
";k=12;backtrack=0;lambda_ls=1.0;accum_step=11.5;stop=False;X=[55.5556289194,3.26877639043e-09,3.08737595167e-06,0.0115820733952,0.0119166786264,0.000165760562026,8.69174499866e-05,1.31245349391e-07,0.261232953707,9.24598230322e-05,-0.000168713423852,-0.000168844669189,0.000165760562014,2.98691729188e-06];||X(k)-X(k-1)||=2.7772609531e-08;f(X)=[-7.11124792921e-05,-2.64697796017e-23,-7.46583558711e-20,3.69745085969e-20,7.0858881291e-22,2.19334099494e-16,-3.123433993e-21,0.0,8.13151629364e-19,0.0,0.0,0.0,3.97046694025e-22,0.0];||f(X)||=7.11124792921e-05;j(X)=[[-0.004698897764707276, -0.004698897764707276, -0.004698897764707276, -0.004698897764707276, -0.004698897764707276, -0.004698897764707276, 0.01799225489560968, -0.004698897764707276, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582073395238642, 0.0, -3.268776390433573e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0001657605620264132, 0.0, 4.678214600282143e-11, 0.0, -3.268776390433573e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0873759516732315e-06, -3.268776390433573e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-2.44847699866e-08,-8.65755415077e-13,8.18463046118e-10,-8.6234927441e-08,0.0,4.270779932e-08,-2.36671713357e-08,-3.57374286928e-11,0.000166651099527,6.72300368859e-08,-4.35628655502e-08,-4.35271281215e-08,4.270779932e-08,8.18463046118e-10];||Y||=0.000166651161205;g=nan;|g-g1|=nan\n",
"\n",
";k=13;backtrack=0;lambda_ls=1.0;accum_step=12.5;stop=False;X=[55.5556289299,3.26914617911e-09,3.08702690116e-06,0.0115821101735,0.0119166786264,0.000165742347615,8.69275589182e-05,1.31260613878e-07,0.261161841274,9.2431135004e-05,-0.000168694844756,-0.000168826105357,0.000165742347602,2.98656824136e-06];||X(k)-X(k-1)||=5.05698175584e-09;f(X)=[3.03741911792e-05,2.64697796017e-23,-1.36001740518e-20,6.73548323052e-21,1.29074928037e-22,-4.12308533669e-16,-2.52786395196e-21,0.0,-7.5894152074e-19,0.0,0.0,1.35525271561e-20,-6.53803556162e-21,-2.77555756156e-17];||f(X)||=3.03741911792e-05;j(X)=[[-0.004699444263318518, -0.004699444263318518, -0.004699444263318518, -0.004699444263318518, -0.004699444263318518, -0.004699444263318518, 0.01799225487977779, -0.004699444263318518, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582110173482596, 0.0, -3.2691461791111696e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0001657423476145872, 0.0, 4.678214600282143e-11, 0.0, -3.2691461791111696e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0870269011585073e-06, -3.2691461791111696e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[1.04576120779e-08,3.69788677597e-13,-3.49050514724e-10,3.67782439546e-08,0.0,-1.8214411826e-08,1.01089315711e-08,1.52644866621e-11,-7.11124322117e-05,-2.86880281872e-08,1.8579096616e-08,1.85638321294e-08,-1.8214411826e-08,-3.49050514724e-10];||Y||=7.11124585135e-05;g=nan;|g-g1|=nan\n",
"\n",
";k=14;backtrack=0;lambda_ls=1.0;accum_step=13.5;stop=False;X=[55.5556289254,3.26898829721e-09,3.08717602718e-06,0.0115820944609,0.0119166786264,0.000165750129274,8.69232428948e-05,1.31254096683e-07,0.261192215445,9.24433884884e-05,-0.000168702782217,-0.000168834036301,0.000165750129262,2.98671736738e-06];||X(k)-X(k-1)||=9.225909532e-10;f(X)=[-1.29683061013e-05,0.0,-2.48074050644e-21,1.22858333339e-21,2.35443015565e-23,-2.61149066781e-15,-1.66362564797e-20,0.0,6.50521303491e-19,0.0,0.0,1.35525271561e-20,-5.00278834472e-21,-2.77555756156e-17];||f(X)||=1.29683061013e-05;j(X)=[[-0.0046992109349246825, -0.0046992109349246825, -0.0046992109349246825, -0.0046992109349246825, -0.0046992109349246825, -0.0046992109349246825, 0.017992254886538887, -0.0046992109349246825, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582094460878881, 0.0, -3.268988297206125e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0001657501292744936, 0.0, 4.678214600282143e-11, 0.0, -3.268988297206125e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871760271798893e-06, -3.268988297206125e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-4.46499109658e-09,-1.57881905045e-13,1.49126021382e-10,-1.57126037153e-08,0.0,7.78165990639e-09,-4.31602336943e-09,-6.51719528341e-12,3.03741711088e-05,1.22534843744e-08,-7.93746100497e-09,-7.93094380968e-09,7.78165990639e-09,1.49126021382e-10];||Y||=3.03741823462e-05;g=nan;|g-g1|=nan\n",
"\n",
";k=15;backtrack=0;lambda_ls=1.0;accum_step=14.5;stop=False;X=[55.5556289273,3.26905571705e-09,3.08711236425e-06,0.0115821011688,0.0119166786264,0.000165746807204,8.6925085954e-05,1.31256879702e-07,0.261179247148,9.2438156845e-05,-0.000168699393632,-0.0001688306505,0.000165746807191,2.98665370445e-06];||X(k)-X(k-1)||=1.68176865124e-10;f(X)=[5.53781874191e-06,0.0,-4.52248075216e-22,2.23973489185e-22,4.29214485365e-24,-1.10016704948e-15,5.75717706337e-21,0.0,1.08420217249e-19,0.0,0.0,0.0,1.15672936859e-20,0.0];||f(X)||=5.53781874191e-06;j(X)=[[-0.004699310572482959, -0.004699310572482959, -0.004699310572482959, -0.004699310572482959, -0.004699310572482959, -0.004699310572482959, 0.01799225488365202, -0.004699310572482959, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582101168750959, 0.0, -3.2690557170510095e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574680720363136, 0.0, 4.678214600282143e-11, 0.0, -3.2690557170510095e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871123642463875e-06, -3.2690557170510095e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[1.90665726645e-09,6.74198448848e-14,-6.36629335018e-11,6.70787207714e-09,0.0,-3.32207086223e-09,1.84305914127e-09,2.78301930144e-12,-1.29682975251e-05,-5.23164337614e-09,3.38858423485e-09,3.38580121556e-09,-3.32207086223e-09,-6.36629335018e-11];||Y||=1.29683023224e-05;g=nan;|g-g1|=nan\n",
"\n",
";k=16;backtrack=0;lambda_ls=1.0;accum_step=15.5;stop=False;X=[55.5556289265,3.26902692912e-09,3.08713955126e-06,0.0115820983042,0.0119166786264,0.000165748225877,8.69242989773e-05,1.31255691367e-07,0.261184784963,9.24403908988e-05,-0.000168700840709,-0.000168832096389,0.000165748225864,2.98668089146e-06];||X(k)-X(k-1)||=3.0667418561e-11;f(X)=[-2.36461994912e-06,2.64697796017e-23,-8.24660296624e-23,4.08406291061e-23,7.82657303062e-25,1.0803668073e-15,6.35274710441e-22,0.0,-5.42101086243e-20,0.0,0.0,1.35525271561e-20,-2.64433098221e-20,2.77555756156e-17];||f(X)||=2.36461994912e-06;j(X)=[[-0.004699268027761154, -0.004699268027761154, -0.004699268027761154, -0.004699268027761154, -0.004699268027761154, -0.004699268027761154, 0.01799225488488475, -0.004699268027761154, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582098304189383, 0.0, -3.2690269291234566e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0001657482258765189, 0.0, 4.678214600282143e-11, 0.0, -3.2690269291234566e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087139551259069e-06, -3.2690269291234566e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-8.14133841561e-10,-2.87879275531e-14,2.71870126812e-11,-2.86456157574e-09,0.0,1.41867288751e-09,-7.86976716969e-10,-1.18833484182e-12,5.53781508093e-06,2.23405373992e-09,-1.44707702295e-09,-1.44588868812e-09,1.41867288751e-09,2.71870126812e-11];||Y||=5.53781712959e-06;g=nan;|g-g1|=nan\n",
"\n",
";k=17;backtrack=0;lambda_ls=1.0;accum_step=16.5;stop=False;X=[55.5556289269,3.26903922182e-09,3.08712794277e-06,0.0115820995273,0.0119166786264,0.000165747620121,8.69246350231e-05,1.31256198796e-07,0.261182420345,9.24394369694e-05,-0.000168700222826,-0.000168831479012,0.000165747620109,2.98666928297e-06];||X(k)-X(k-1)||=5.59142424666e-12;f(X)=[1.00971311112e-06,-2.64697796017e-23,-1.50314226937e-23,7.4464430485e-24,1.42700204589e-25,-8.2604008269e-16,-4.28810429547e-21,0.0,-7.5894152074e-19,0.0,0.0,0.0,4.20869495667e-21,0.0];||f(X)||=1.00971311112e-06;j(X)=[[-0.004699286194724284, -0.004699286194724284, -0.004699286194724284, -0.004699286194724284, -0.004699286194724284, -0.004699286194724284, 0.017992254884358374, -0.004699286194724284, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099527320823, 0.0, -3.2690392218163145e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574762012119135, 0.0, 4.678214600282143e-11, 0.0, -3.2690392218163145e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871279427662425e-06, -3.2690392218163145e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[3.47640964947e-10,1.2292692858e-14,-1.16084928264e-11,1.22313144065e-09,0.0,-6.0575532754e-10,3.36045845167e-10,5.07429225887e-13,-2.36461838567e-06,-9.53929387441e-10,6.1788354226e-10,6.1737611306e-10,-6.0575532754e-10,-1.16084928264e-11];||Y||=2.36461926042e-06;g=nan;|g-g1|=nan\n",
"\n",
";k=18;backtrack=0;lambda_ls=1.0;accum_step=17.5;stop=False;X=[55.5556289267,3.2690339728e-09,3.08713289973e-06,0.011582099005,0.0119166786264,0.000165747878786,8.69244915306e-05,1.31255982123e-07,0.261183430057,9.24398443055e-05,-0.00016870048667,-0.000168831742639,0.000165747878774,2.98667423994e-06];||X(k)-X(k-1)||=1.01951997296e-12;f(X)=[-4.31150256774e-07,2.64697796017e-23,-2.74003577908e-24,1.35769903765e-24,2.60197880978e-26,-3.20269255994e-15,7.25271961086e-21,0.0,0.0,0.0,0.0,1.35525271561e-20,-4.31457407508e-21,-2.77555756156e-17];||f(X)||=4.31150256774e-07;j(X)=[[-0.0046992784373814005, -0.0046992784373814005, -0.0046992784373814005, -0.0046992784373814005, -0.0046992784373814005, -0.0046992784373814005, 0.017992254884583135, -0.0046992784373814005, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099005029224, 0.0, -3.2690339728027964e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574787878588325, 0.0, 4.678214600282143e-11, 0.0, -3.2690339728027964e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087132899733077e-06, -3.2690339728027964e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-1.48443385636e-10,-5.2490135179e-15,4.95696683451e-12,-5.22291598931e-10,0.0,2.58664691919e-10,-1.4349249386e-10,-2.16673665608e-13,1.00971244355e-06,4.07336075292e-10,-2.63843581432e-10,-2.63626907771e-10,2.58664691919e-10,4.95696683451e-12];||Y||=1.00971281708e-06;g=nan;|g-g1|=nan\n",
"\n",
";k=19;backtrack=0;lambda_ls=1.0;accum_step=18.5;stop=False;X=[55.5556289268,3.26903621416e-09,3.0871307831e-06,0.011582099228,0.0119166786264,0.000165747768336,8.69245528027e-05,1.31256074643e-07,0.261182998907,9.24396703718e-05,-0.000168700374008,-0.00016883163007,0.000165747768323,2.98667212331e-06];||X(k)-X(k-1)||=1.85890435653e-13;f(X)=[1.84103422285e-07,0.0,-5.04063185775e-25,2.47588728269e-25,4.744209484e-27,-2.1228543012e-15,-7.59682674569e-21,0.0,5.42101086243e-19,0.0,0.0,-1.35525271561e-20,1.60936259978e-20,0.0];||f(X)||=1.84103422285e-07;j(X)=[[-0.004699281749807521, -0.004699281749807521, -0.004699281749807521, -0.004699281749807521, -0.004699281749807521, -0.004699281749807521, 0.017992254884487163, -0.004699281749807521, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099228048448, 0.0, -3.2690362141590984e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574776833570742, 0.0, 4.678214600282143e-11, 0.0, -3.2690362141590984e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087130783102042e-06, -3.2690362141590984e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[6.33896402672e-11,2.24135630222e-15,-2.11663103486e-12,2.23019224062e-10,0.0,-1.10450175832e-10,6.12720478898e-11,9.25207922776e-14,-4.3114997173e-07,-1.73933616922e-10,1.12661569018e-10,1.1256904823e-10,-1.10450175832e-10,-2.11663103486e-12];||Y||=4.31150131227e-07;g=nan;|g-g1|=nan\n",
"\n",
";k=20;backtrack=0;lambda_ls=1.0;accum_step=19.5;stop=False;X=[55.5556289267,3.26903525709e-09,3.08713168692e-06,0.0115820991328,0.0119166786264,0.000165747815499,8.69245266392e-05,1.31256035137e-07,0.26118318301,9.24397446424e-05,-0.000168700422115,-0.000168831678138,0.000165747815486,2.98667302712e-06];||X(k)-X(k-1)||=3.38940503501e-14;f(X)=[-7.86129296659e-08,0.0,-9.69352280336e-26,4.5236439749e-26,8.64591552122e-28,-4.18651116378e-16,2.03155558443e-20,0.0,8.67361737988e-19,0.0,0.0,1.35525271561e-20,-2.03817302933e-20,2.77555756156e-17];||f(X)||=7.86129296659e-08;j(X)=[[-0.004699280335387743, -0.004699280335387743, -0.004699280335387743, -0.004699280335387743, -0.004699280335387743, -0.004699280335387743, 0.017992254884528144, -0.004699280335387743, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.01158209913281794, 0.0, -3.2690352570906003e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0001657478154985767, 0.0, 4.678214600282143e-11, 0.0, -3.2690352570906003e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131686915941e-06, -3.2690352570906003e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-2.70641541536e-11,-9.57068498265e-16,9.03813899015e-13,-9.52305101094e-11,0.0,4.71628692961e-11,-2.61634201714e-11,-3.95067644321e-14,1.84103300554e-07,7.42705672045e-11,-4.81071470196e-11,-4.80676402712e-11,4.71628692961e-11,9.03813899015e-13];||Y||=1.8410336866e-07;g=nan;|g-g1|=nan\n",
"\n",
";k=21;backtrack=0;lambda_ls=1.0;accum_step=20.5;stop=False;X=[55.5556289268,3.26903566576e-09,3.08713130098e-06,0.0115820991735,0.0119166786264,0.00016574779536,8.69245378111e-05,1.31256052006e-07,0.261183104397,9.24397129286e-05,-0.000168700401573,-0.000168831657613,0.000165747795348,2.98667264119e-06];||X(k)-X(k-1)||=6.17998911391e-15;f(X)=[3.35680851449e-08,0.0,-1.93870456067e-26,8.17890986533e-27,1.57772181044e-28,2.686693641e-15,2.56756862136e-21,0.0,1.08420217249e-19,0.0,0.0,-1.35525271561e-20,1.5749518863e-20,-5.55111512313e-17];||f(X)||=3.35680851449e-08;j(X)=[[-0.004699280939351539, -0.004699280939351539, -0.004699280939351539, -0.004699280939351539, -0.004699280939351539, -0.004699280939351539, 0.017992254884510644, -0.004699280939351539, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.01158209917348174, 0.0, -3.269035665763282e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574779535984648, 0.0, 4.678214600282143e-11, 0.0, -3.269035665763282e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871313009838784e-06, -3.269035665763282e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[1.15578436475e-11,4.08672681443e-16,-3.85932062718e-13,4.06638003286e-11,0.0,-2.01387302201e-11,1.11719016131e-11,1.68695714245e-14,-7.86128776924e-08,-3.17138421536e-11,2.05419405269e-11,2.05250709758e-11,-2.01387302201e-11,-3.85932062718e-13];||Y||=7.86129067741e-08;g=nan;|g-g1|=nan\n",
"\n",
";k=22;backtrack=0;lambda_ls=1.0;accum_step=21.5;stop=False;X=[55.5556289268,3.26903549126e-09,3.08713146578e-06,0.0115820991561,0.0119166786264,0.000165747803959,8.69245330407e-05,1.31256044803e-07,0.261183137966,9.24397264705e-05,-0.000168700410345,-0.000168831666377,0.000165747803947,2.98667280598e-06];||X(k)-X(k-1)||=1.1268156833e-15;f(X)=[-1.4333721321e-08,0.0,-1.29246970711e-26,1.51461293802e-27,2.8398992588e-29,-5.13478148889e-16,3.66606447484e-21,0.0,-6.50521303491e-19,0.0,0.0,0.0,-8.17916189692e-21,0.0];||f(X)||=1.4333721321e-08;j(X)=[[-0.004699280681456319, -0.004699280681456319, -0.004699280681456319, -0.004699280681456319, -0.004699280681456319, -0.004699280681456319, 0.017992254884518118, -0.004699280681456319, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099156118103, 0.0, -3.2690354912582336e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780395917972, 0.0, 4.678214600282143e-11, 0.0, -3.2690354912582336e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871314657787017e-06, -3.2690354912582336e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-4.93775857948e-12,-1.74505048411e-16,1.64794823301e-13,-1.73636359252e-11,0.0,8.59933324549e-12,-4.77045155147e-12,-7.20338183785e-15,3.35680629638e-08,1.35419575024e-11,-8.77150593736e-12,-8.76430257127e-12,8.59933324549e-12,1.64794823301e-13];||Y||=3.35680753822e-08;g=nan;|g-g1|=nan\n",
"\n",
";k=23;backtrack=0;lambda_ls=1.0;accum_step=22.5;stop=False;X=[55.5556289268,3.26903556577e-09,3.08713139541e-06,0.0115820991635,0.0119166786264,0.000165747800287,8.69245350777e-05,1.31256047879e-07,0.261183123632,9.2439720688e-05,-0.000168700406599,-0.000168831662635,0.000165747800275,2.98667273562e-06];||X(k)-X(k-1)||=2.05455446807e-16;f(X)=[6.12056383353e-09,2.64697796017e-23,0.0,2.01948391737e-28,4.73316543133e-30,2.5004954704e-15,-1.74038800881e-20,0.0,-7.04731412116e-19,0.0,0.0,0.0,1.40025134093e-20,0.0];||f(X)||=6.12056383353e-09;j(X)=[[-0.0046992807915787445, -0.0046992807915787445, -0.0046992807915787445, -0.0046992807915787445, -0.0046992807915787445, -0.0046992807915787445, 0.017992254884514926, -0.0046992807915787445, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099163532452, 0.0, -3.269035565772678e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780028722668, 0.0, 4.678214600282143e-11, 0.0, -3.269035565772678e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131395410589e-06, -3.269035565772678e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[2.10781147922e-12,7.4514444478e-17,-7.03681126801e-14,7.41434938304e-12,0.0,-3.67195305086e-12,2.0370044065e-12,3.07587665174e-15,-1.43337118466e-08,-5.78247595662e-12,3.74547155013e-12,3.74239568165e-12,-3.67195305086e-12,-7.03681126801e-14];||Y||=1.43337171492e-08;g=nan;|g-g1|=nan\n",
"\n",
";k=24;backtrack=0;lambda_ls=1.0;accum_step=23.5;stop=False;X=[55.5556289268,3.26903553395e-09,3.08713142546e-06,0.0115820991604,0.0119166786264,0.000165747801855,8.69245342079e-05,1.31256046565e-07,0.261183129752,9.24397231572e-05,-0.000168700408199,-0.000168831664233,0.000165747801843,2.98667276566e-06];||X(k)-X(k-1)||=3.74612797566e-17;f(X)=[-2.61350818764e-09,-2.64697796017e-23,6.46234853557e-27,1.00974195868e-28,1.57772181044e-30,-6.31141189658e-17,7.10713582306e-21,0.0,-6.50521303491e-19,0.0,0.0,-1.35525271561e-20,3.41460156862e-21,-2.77555756156e-17];||f(X)||=2.61350818764e-09;j(X)=[[-0.004699280744555974, -0.004699280744555974, -0.004699280744555974, -0.004699280744555974, -0.004699280744555974, -0.004699280744555974, 0.01799225488451629, -0.004699280744555974, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099160366491, 0.0, -3.269035533954676e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0001657478018551673, 0.0, 4.678214600282143e-11, 0.0, -3.269035533954676e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131425458093e-06, -3.269035533954676e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-9.0232618868e-13,-3.18180021984e-17,3.00475037003e-14,-3.16595989043e-12,0.0,1.56794062803e-12,-8.69810024916e-13,-1.31341311027e-15,6.12055979864e-09,2.46914339116e-12,-1.59933336624e-12,-1.59801996713e-12,1.56794062803e-12,3.00475037003e-14];||Y||=6.12056206321e-09;g=nan;|g-g1|=nan\n",
"\n",
";k=25;backtrack=0;lambda_ls=1.0;accum_step=24.5;stop=False;X=[55.5556289268,3.26903554754e-09,3.08713141263e-06,0.0115820991617,0.0119166786264,0.000165747801186,8.69245345793e-05,1.31256047126e-07,0.261183127139,9.24397221029e-05,-0.000168700407516,-0.00016883166355,0.000165747801173,2.98667275283e-06];||X(k)-X(k-1)||=6.8304211052e-18;f(X)=[1.11597986407e-09,2.64697796017e-23,-6.46234853557e-27,0.0,0.0,-5.9963156402e-16,1.13687703389e-20,0.0,4.33680868994e-19,0.0,0.0,1.35525271561e-20,-2.1069944563e-20,0.0];||f(X)||=1.11597986407e-09;j(X)=[[-0.004699280764634911, -0.004699280764634911, -0.004699280764634911, -0.004699280764634911, -0.004699280764634911, -0.004699280764634911, 0.01799225488451571, -0.004699280764634911, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161718372, 0.0, -3.2690355475411063e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780118564964, 0.0, 4.678214600282143e-11, 0.0, -3.2690355475411063e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131412627674e-06, -3.2690355475411063e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[3.84292730468e-13,1.35864304349e-17,-1.28304187404e-14,1.35187998922e-12,0.0,-6.69517663208e-13,3.71412804699e-13,5.60833308247e-16,-2.61350646001e-09,-1.05433530336e-12,6.82922512209e-13,6.82361675486e-13,-6.69517663208e-13,-1.28304187404e-14];||Y||=2.61350742684e-09;g=nan;|g-g1|=nan\n",
"\n",
";k=26;backtrack=0;lambda_ls=1.0;accum_step=25.5;stop=False;X=[55.5556289268,3.26903554174e-09,3.08713141811e-06,0.0115820991611,0.0119166786264,0.000165747801472,8.69245344207e-05,1.31256046887e-07,0.261183128255,9.24397225531e-05,-0.000168700407807,-0.000168831663842,0.000165747801459,2.98667275831e-06];||X(k)-X(k-1)||=1.24541036757e-18;f(X)=[-4.7652848334e-10,-2.64697796017e-23,0.0,-1.00974195868e-28,-1.57772181044e-30,4.3327429318e-17,-6.35274710441e-22,0.0,3.25260651746e-19,0.0,0.0,-1.35525271561e-20,8.47032947254e-22,2.77555756156e-17];||f(X)||=4.7652848334e-10;j(X)=[[-0.004699280756061114, -0.004699280756061114, -0.004699280756061114, -0.004699280756061114, -0.004699280756061114, -0.004699280756061114, 0.017992254884515956, -0.004699280756061114, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161141113, 0.0, -3.269035541739639e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780147153673, 0.0, 4.678214600282143e-11, 0.0, -3.269035541739639e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131418106321e-06, -3.269035541739639e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-1.63468163554e-13,-5.80146730009e-18,5.47864704466e-15,-5.77259033962e-13,0.0,2.85887081569e-13,-1.58594951725e-13,-2.39478350473e-16,1.11597912342e-09,4.50205956305e-13,-2.91611018133e-13,-2.91371518712e-13,2.85887081569e-13,5.47864704466e-15];||Y||=1.11597953617e-09;g=nan;|g-g1|=nan\n",
"\n",
";k=27;backtrack=0;lambda_ls=1.0;accum_step=26.5;stop=False;X=[55.5556289268,3.26903554422e-09,3.08713141577e-06,0.0115820991614,0.0119166786264,0.000165747801349,8.69245344884e-05,1.31256046989e-07,0.261183127778,9.24397223608e-05,-0.000168700407683,-0.000168831663717,0.000165747801337,2.98667275597e-06];||X(k)-X(k-1)||=2.27079246152e-19;f(X)=[2.03479788574e-10,2.64697796017e-23,-6.46234853557e-27,1.00974195868e-28,0.0,1.03992606627e-15,7.09390093325e-21,0.0,3.25260651746e-19,0.0,0.0,0.0,-8.20563167653e-21,0.0];||f(X)||=2.03479788577e-10;j(X)=[[-0.004699280759722165, -0.004699280759722165, -0.004699280759722165, -0.004699280759722165, -0.004699280759722165, -0.004699280759722165, 0.017992254884515852, -0.004699280759722165, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161387605, 0.0, -3.2690355442168916e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780134946164, 0.0, 4.678214600282143e-11, 0.0, -3.2690355442168916e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131415766914e-06, -3.2690355442168916e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[7.00143514791e-14,2.47725230575e-18,-2.33940711373e-15,2.46491740774e-13,0.0,-1.22075091152e-13,6.77207619642e-14,1.02258324027e-16,-4.76528168075e-10,-1.92239982466e-13,1.24519234054e-13,1.24416974883e-13,-1.22075091152e-13,-2.33940711373e-15];||Y||=4.76528344353e-10;g=nan;|g-g1|=nan\n",
"\n",
";k=28;backtrack=0;lambda_ls=1.0;accum_step=27.5;stop=False;X=[55.5556289268,3.26903554316e-09,3.08713141677e-06,0.0115820991613,0.0119166786264,0.000165747801402,8.69245344595e-05,1.31256046945e-07,0.261183127982,9.24397224429e-05,-0.000168700407736,-0.00016883166377,0.000165747801389,2.98667275697e-06];||X(k)-X(k-1)||=4.14040097233e-20;f(X)=[-8.68868310633e-11,-2.64697796017e-23,6.46234853557e-27,-1.00974195868e-28,1.57772181044e-30,2.5331299558e-15,-8.07328277852e-22,0.0,-7.5894152074e-19,0.0,0.0,-1.35525271561e-20,-6.69685423923e-21,5.55111512313e-17];||f(X)||=8.68868311002e-11;j(X)=[[-0.004699280758158879, -0.004699280758158879, -0.004699280758158879, -0.004699280758158879, -0.004699280758158879, -0.004699280758158879, 0.017992254884515894, -0.004699280758158879, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.01158209916128235, 0.0, -3.269035543159094e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780140158826, 0.0, 4.678214600282143e-11, 0.0, -3.269035543159094e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131416765851e-06, -3.269035543159094e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-3.09548753357e-14,-1.05779766693e-18,9.98936954014e-16,-1.05253539762e-13,0.0,5.21266134219e-14,-2.89170630192e-14,-4.36647386598e-17,2.03479658931e-10,8.20873370432e-14,-5.3170274024e-14,-5.31266010797e-14,5.21266134219e-14,9.98936954014e-16];||Y||=2.03479734361e-10;g=nan;|g-g1|=nan\n",
"\n",
";k=29;backtrack=0;lambda_ls=1.0;accum_step=28.5;stop=False;X=[55.5556289268,3.26903554361e-09,3.08713141634e-06,0.0115820991613,0.0119166786264,0.000165747801379,8.69245344719e-05,1.31256046964e-07,0.261183127895,9.24397224079e-05,-0.000168700407713,-0.000168831663748,0.000165747801367,2.98667275654e-06];||X(k)-X(k-1)||=7.54931723879e-21;f(X)=[3.71010444589e-11,0.0,0.0,0.0,-1.57772181044e-30,-3.13526873734e-15,1.50745394832e-20,0.0,5.42101086243e-19,0.0,0.0,1.35525271561e-20,-9.95263713024e-21,-5.55111512313e-17];||f(X)||=3.71010445914e-11;j(X)=[[-0.004699280758826408, -0.004699280758826408, -0.004699280758826408, -0.004699280758826408, -0.004699280758826408, -0.004699280758826408, 0.017992254884515876, -0.004699280758826408, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161327295, 0.0, -3.2690355436107783e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780137932994, 0.0, 4.678214600282143e-11, 0.0, -3.2690355436107783e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871314163393007e-06, -3.2690355436107783e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[1.02406771715e-14,4.51684331701e-19,-4.26550061853e-16,4.4944370851e-14,0.0,-2.22583054853e-14,1.23477214949e-14,1.8645032975e-17,-8.68867617172e-11,-3.50516527027e-14,2.27039447603e-14,2.26853064242e-14,-2.22583054853e-14,-4.26550061853e-16];||Y||=8.68867935245e-11;g=nan;|g-g1|=nan\n",
"\n",
";k=30;backtrack=0;lambda_ls=1.0;accum_step=29.5;stop=False;X=[55.5556289268,3.26903554342e-09,3.08713141652e-06,0.0115820991613,0.0119166786264,0.000165747801389,8.69245344666e-05,1.31256046956e-07,0.261183127932,9.24397224228e-05,-0.000168700407723,-0.000168831663757,0.000165747801376,2.98667275673e-06];||X(k)-X(k-1)||=1.37648436957e-21;f(X)=[-1.58422719387e-11,2.64697796017e-23,-6.46234853557e-27,0.0,1.57772181044e-30,2.31923041969e-15,-7.54388718648e-21,0.0,3.7947076037e-19,0.0,0.0,0.0,-2.59403840097e-21,0.0];||f(X)||=1.58422721085e-11;j(X)=[[-0.0046992807585413705, -0.0046992807585413705, -0.0046992807585413705, -0.0046992807585413705, -0.0046992807585413705, -0.0046992807585413705, 0.017992254884515883, -0.0046992807585413705, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161308104, 0.0, -3.269035543417907e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780138883433, 0.0, 4.678214600282143e-11, 0.0, -3.269035543417907e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131416521439e-06, -3.269035543417907e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-2.31921095801e-15,-1.92871233144e-19,1.82138510726e-16,-1.91916194247e-14,0.0,9.50438050809e-15,-5.27253253385e-15,-7.96152412074e-18,3.71010051982e-11,1.49671872736e-14,-9.69466829227e-15,-9.68669681551e-15,9.50438050809e-15,1.82138510726e-16];||Y||=3.71010185949e-11;g=nan;|g-g1|=nan\n",
"\n",
";k=31;backtrack=0;lambda_ls=1.0;accum_step=30.5;stop=False;X=[55.5556289268,3.2690355435e-09,3.08713141644e-06,0.0115820991613,0.0119166786264,0.000165747801385,8.69245344688e-05,1.31256046959e-07,0.261183127916,9.24397224164e-05,-0.000168700407719,-0.000168831663753,0.000165747801372,2.98667275665e-06];||X(k)-X(k-1)||=2.50977760449e-22;f(X)=[6.76469991134e-12,0.0,0.0,0.0,0.0,-9.83913471531e-18,2.81903152758e-21,0.0,5.42101086243e-19,0.0,0.0,1.35525271561e-20,-1.8211208366e-20,0.0];||f(X)||=6.76469991135e-12;j(X)=[[-0.004699280758663083, -0.004699280758663083, -0.004699280758663083, -0.004699280758663083, -0.004699280758663083, -0.004699280758663083, 0.01799225488451588, -0.004699280758663083, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161316299, 0.0, -3.2690355435002637e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780138477592, 0.0, 4.678214600282143e-11, 0.0, -3.2690355435002637e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871314164436654e-06, -3.2690355435002637e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[9.85357969282e-18,8.23567843311e-20,-7.77735926005e-17,8.19430259752e-15,0.0,-4.05841683139e-15,2.25138521968e-15,3.3996181492e-18,-1.58422505641e-11,-6.39104748068e-15,4.139662261e-15,4.13626523689e-15,-4.05841683139e-15,-7.77735926005e-17];||Y||=1.58422562533e-11;g=nan;|g-g1|=nan\n",
"\n",
";k=32;backtrack=0;lambda_ls=1.0;accum_step=31.5;stop=False;X=[55.5556289268,3.26903554347e-09,3.08713141648e-06,0.0115820991613,0.0119166786264,0.000165747801387,8.69245344679e-05,1.31256046958e-07,0.261183127923,9.24397224192e-05,-0.00016870040772,-0.000168831663755,0.000165747801374,2.98667275668e-06];||X(k)-X(k-1)||=4.57611977571e-23;f(X)=[-2.88857826547e-12,2.64697796017e-23,0.0,2.01948391737e-28,1.57772181044e-30,9.84658860524e-16,1.59348073202e-20,0.0,7.5894152074e-19,0.0,0.0,1.35525271561e-20,-6.1939284268e-21,-2.77555756156e-17];||f(X)||=2.88857843343e-12;j(X)=[[-0.004699280758611111, -0.004699280758611111, -0.004699280758611111, -0.004699280758611111, -0.004699280758611111, -0.004699280758611111, 0.017992254884515883, -0.004699280758611111, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.0115820991613128, 0.0, -3.269035543465097e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780138650885, 0.0, 4.678214600282143e-11, 0.0, -3.269035543465097e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131416476875e-06, -3.269035543465097e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-9.8467923245e-16,-3.51665928763e-20,3.32097624003e-17,-3.49967681713e-15,0.0,1.73294630304e-15,-9.61354504853e-16,-1.45164530135e-18,6.76469539498e-12,2.72899922184e-15,-1.76765826951e-15,-1.766188413e-15,1.73294630304e-15,3.32097624003e-17];||Y||=6.76469789631e-12;g=nan;|g-g1|=nan\n",
"\n",
";k=33;backtrack=0;lambda_ls=1.0;accum_step=32.5;stop=False;X=[55.5556289268,3.26903554348e-09,3.08713141646e-06,0.0115820991613,0.0119166786264,0.000165747801386,8.69245344683e-05,1.31256046959e-07,0.26118312792,9.2439722418e-05,-0.00016870040772,-0.000168831663754,0.000165747801373,2.98667275667e-06];||X(k)-X(k-1)||=8.34389038704e-24;f(X)=[1.23345778036e-12,-2.64697796017e-23,0.0,0.0,0.0,5.59963317034e-16,8.93355061557e-21,0.0,2.16840434497e-19,0.0,0.0,0.0,-9.71440911382e-21,0.0];||f(X)||=1.23345790746e-12;j(X)=[[-0.004699280758633304, -0.004699280758633304, -0.004699280758633304, -0.004699280758633304, -0.004699280758633304, -0.004699280758633304, 0.01799225488451588, -0.004699280758633304, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161314294, 0.0, -3.269035543480114e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780138576889, 0.0, 4.678214600282143e-11, 0.0, -3.269035543480114e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131416462694e-06, -3.269035543480114e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-5.59994142471e-16,1.5017167425e-20,-1.41810607459e-17,1.49339793146e-15,0.0,-7.39972430132e-16,4.10501056755e-16,6.19883065061e-19,-2.88857172496e-12,-1.16531274127e-15,7.54798131989e-16,7.54184442853e-16,-7.39972430132e-16,-1.41810607459e-17];||Y||=2.88857281621e-12;g=nan;|g-g1|=nan\n",
"\n",
";k=34;backtrack=0;lambda_ls=1.0;accum_step=33.5;stop=False;X=[55.5556289268,3.26903554347e-09,3.08713141647e-06,0.0115820991613,0.0119166786264,0.000165747801386,8.69245344681e-05,1.31256046958e-07,0.261183127921,9.24397224185e-05,-0.00016870040772,-0.000168831663755,0.000165747801374,2.98667275667e-06];||X(k)-X(k-1)||=1.52141918914e-24;f(X)=[-5.2657878058e-13,2.64697796017e-23,0.0,-1.00974195868e-28,0.0,7.41377445546e-16,-8.49679925214e-21,0.0,-1.62630325873e-19,0.0,0.0,1.35525271561e-20,-3.36166200942e-21,2.77555756156e-17];||f(X)||=5.26579303209e-13;j(X)=[[-0.004699280758623829, -0.004699280758623829, -0.004699280758623829, -0.004699280758623829, -0.004699280758623829, -0.004699280758623829, 0.017992254884515883, -0.004699280758623829, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161313655, 0.0, -3.2690355434737017e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780138608488, 0.0, 4.678214600282143e-11, 0.0, -3.2690355434737017e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871314164687494e-06, -3.2690355434737017e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-7.41302246864e-16,-6.41242824871e-21,6.0556113383e-18,-6.3825269098e-16,0.0,3.15991380165e-16,-1.75280797369e-16,-2.64700473628e-19,1.23345959746e-12,4.97599682632e-16,-3.22318885263e-16,-3.22044470381e-16,3.15991380165e-16,6.0556113383e-18];||Y||=1.23346026331e-12;g=nan;|g-g1|=nan\n",
"\n",
";k=35;backtrack=0;lambda_ls=1.0;accum_step=34.5;stop=False;X=[55.5556289268,3.26903554348e-09,3.08713141647e-06,0.0115820991613,0.0119166786264,0.000165747801386,8.69245344682e-05,1.31256046958e-07,0.261183127921,9.24397224183e-05,-0.00016870040772,-0.000168831663755,0.000165747801374,2.98667275667e-06];||X(k)-X(k-1)||=2.77285411292e-25;f(X)=[2.24709140184e-13,-2.64697796017e-23,6.46234853557e-27,1.00974195868e-28,0.0,6.63911200321e-16,3.98370183006e-21,0.0,-2.16840434497e-19,0.0,0.0,-1.35525271561e-20,1.21760986168e-21,0.0];||f(X)||=2.24710120957e-13;j(X)=[[-0.0046992807586278725, -0.0046992807586278725, -0.0046992807586278725, -0.0046992807586278725, -0.0046992807586278725, -0.0046992807586278725, 0.01799225488451588, -0.0046992807586278725, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161313928, 0.0, -3.269035543476439e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780138594997, 0.0, 4.678214600282143e-11, 0.0, -3.269035543476439e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871314164661647e-06, -3.269035543476439e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-6.63964980825e-16,2.73710347734e-21,-2.58479848954e-18,2.72557656011e-16,0.0,-1.34907993446e-16,7.48083540083e-17,1.12987084256e-19,-5.26574949702e-13,-2.12418564197e-16,1.37596657662e-16,1.3748703224e-16,-1.34907993446e-16,-2.58479848954e-18];||Y||=5.26575557502e-13;g=nan;|g-g1|=nan\n",
"\n",
";k=36;backtrack=0;lambda_ls=1.0;accum_step=35.5;stop=False;X=[55.5556289268,3.26903554348e-09,3.08713141647e-06,0.0115820991613,0.0119166786264,0.000165747801386,8.69245344682e-05,1.31256046958e-07,0.261183127921,9.24397224184e-05,-0.00016870040772,-0.000168831663755,0.000165747801374,2.98667275667e-06];||X(k)-X(k-1)||=5.04942339492e-26;f(X)=[-9.58677581764e-14,2.64697796017e-23,-6.46234853557e-27,-1.00974195868e-28,0.0,6.96965814055e-16,1.12893610001e-20,0.0,-1.62630325873e-19,0.0,0.0,1.35525271561e-20,-1.99052742605e-20,0.0];||f(X)||=9.587029164e-14;j(X)=[[-0.004699280758626147, -0.004699280758626147, -0.004699280758626147, -0.004699280758626147, -0.004699280758626147, -0.004699280758626147, 0.01799225488451588, -0.004699280758626147, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161313811, 0.0, -3.2690355434752712e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780138600755, 0.0, 4.678214600282143e-11, 0.0, -3.2690355434752712e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871314164672675e-06, -3.2690355434752712e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-6.96947651017e-16,-1.16769116267e-21,1.10271547222e-18,-1.16033189987e-16,0.0,5.75750654799e-17,-3.19173666851e-17,-4.82216934415e-20,2.24712110833e-13,9.06528882373e-17,-5.8721969025e-17,-5.86749649415e-17,5.75750654799e-17,1.10271547222e-18];||Y||=2.24713272226e-13;g=nan;|g-g1|=nan\n",
"\n",
";k=37;backtrack=0;lambda_ls=1.0;accum_step=36.5;stop=False;X=[55.5556289268,3.26903554348e-09,3.08713141647e-06,0.0115820991613,0.0119166786264,0.000165747801386,8.69245344682e-05,1.31256046958e-07,0.261183127921,9.24397224183e-05,-0.00016870040772,-0.000168831663755,0.000165747801374,2.98667275667e-06];||X(k)-X(k-1)||=9.19063373082e-27;f(X)=[4.09117184574e-14,0.0,-6.46234853557e-27,0.0,-1.57772181044e-30,6.82857633286e-16,-6.00863996959e-21,0.0,5.42101086243e-19,0.0,0.0,-1.35525271561e-20,6.61744490042e-22,0.0];||f(X)||=4.09174168537e-14;j(X)=[[-0.004699280758626883, -0.004699280758626883, -0.004699280758626883, -0.004699280758626883, -0.004699280758626883, -0.004699280758626883, 0.01799225488451588, -0.004699280758626883, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.011582099161313862, 0.0, -3.269035543475769e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.000165747801385983, 0.0, 4.678214600282143e-11, 0.0, -3.269035543475769e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871314164667974e-06, -3.269035543475769e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-6.82882349533e-16,4.9794829965e-22,-4.70240173036e-19,4.97760773244e-17,0.0,-2.45657097581e-17,1.36114591309e-17,2.05797730534e-20,-9.58644205795e-14,-3.86734233973e-17,2.50484117392e-17,2.50477372404e-17,-2.45657097581e-17,-4.70240173036e-19];||Y||=9.58668873079e-14;g=nan;|g-g1|=nan\n",
"\n",
";k=38;backtrack=0;lambda_ls=1.0;accum_step=37.5;stop=False;X=[55.5556289268,3.26903554348e-09,3.08713141647e-06,0.0115820991613,0.0119166786264,0.000165747801386,8.69245344682e-05,1.31256046958e-07,0.261183127921,9.24397224183e-05,-0.00016870040772,-0.000168831663755,0.000165747801374,2.98667275667e-06];||X(k)-X(k-1)||=1.67376996894e-27;f(X)=[-1.74305014866e-14,0.0,6.46234853557e-27,0.0,0.0,6.8888850787e-16,1.02967442651e-20,0.0,-8.67361737988e-19,0.0,0.0,1.35525271561e-20,-8.09975255812e-21,0.0];||f(X)||=1.74441093268e-14;j(X)=[[-0.004699280758626569, -0.004699280758626569, -0.004699280758626569, -0.004699280758626569, -0.004699280758626569, -0.004699280758626569, 0.01799225488451588, -0.004699280758626569, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.01158209916131384, 0.0, -3.2690355434755566e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.00016574780138599345, 0.0, 4.678214600282143e-11, 0.0, -3.2690355434755566e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.0871314164669977e-06, -3.2690355434755566e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-6.88869057568e-16,-2.12698709942e-22,2.00380552362e-19,-2.16963740185e-17,0.0,1.04738355206e-17,-5.80371254145e-18,-8.76360593167e-21,4.09149030631e-14,1.65058043417e-17,-1.06885392731e-17,-1.06804374117e-17,1.04738355206e-17,2.00380552362e-19];||Y||=4.09207167324e-14;g=nan;|g-g1|=nan\n",
"\n",
";k=39;backtrack=0;lambda_ls=1.0;accum_step=38.5;stop=True;X=[55.5556289268,3.26903554348e-09,3.08713141647e-06,0.0115820991613,0.0119166786264,0.000165747801386,8.69245344682e-05,1.31256046958e-07,0.261183127921,9.24397224183e-05,-0.00016870040772,-0.000168831663755,0.000165747801374,2.98667275667e-06];||X(k)-X(k-1)||=3.03822626972e-28;f(X)=[7.38298311376e-15,0.0,0.0,-1.00974195868e-28,0.0,6.86340632765e-16,-1.24805010822e-20,0.0,5.42101086243e-19,0.0,0.0,0.0,-4.36751363428e-21,0.0];||f(X)||=7.41481647893e-15;j(X)=[[-0.004699280758626702, -0.004699280758626702, -0.004699280758626702, -0.004699280758626702, -0.004699280758626702, -0.004699280758626702, 0.01799225488451588, -0.004699280758626702, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.001509999998980679, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.01158209916131385, 0.0, -3.269035543475647e-09, 0.0, 0.0, 0.0, 0.0002884613296209884, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -0.000165747801385989, 0.0, 4.678214600282143e-11, 0.0, -3.269035543475647e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, -3.087131416466912e-06, -3.269035543475647e-09, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -1.0, -1.0], [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -2478.8190999999997, 0.0, 0.0, 0.0, 0.0]];Y=[-6.86329795518e-16,9.0659596155e-23,-8.56148805273e-20,9.87406480979e-18,0.0,-4.45535039371e-18,2.46993234833e-18,3.72959784347e-21,-1.74272568702e-14,-7.03046739887e-18,4.54698252338e-18,4.55135267809e-18,-4.45535039371e-18,-8.56148805273e-20];||Y||=1.74407730545e-14;g=nan;|g-g1|=nan\n",
"\n"
]
}
],
"source": [
"from numerik import nr_ls\n",
"\n",
"def notify_status_func(progress_k, stop_value, k,\n",
" j_it_backtrack, lambda_ls, accum_step,\n",
" x, diff, f_val, j_val, lambda_ls_y,\n",
" method_loops):\n",
" g_min = np.nan\n",
" g1 = np.nan\n",
" y = lambda_ls_y\n",
" pr_str =';k=' + str(k) + \\\n",
" ';backtrack=' + str(j_it_backtrack) + \\\n",
" ';lambda_ls=' + str(lambda_ls) + \\\n",
" ';accum_step=' + str(accum_step) + \\\n",
" ';stop=' + str(stop_value) + \\\n",
" ';X=' + '[' + ','.join(map(str, x.T.A1)) + ']' + \\\n",
" ';||X(k)-X(k-1)||=' + str((diff.T * diff).item()) + \\\n",
" ';f(X)=' + '[' + ','.join(map(str, f_val.T.A1)) + ']' + \\\n",
" ';||f(X)||=' + str(np.sqrt((f_val.T * f_val).item())) + \\\n",
" ';j(X)=' + str(j_val.tolist()) + \\\n",
" ';Y=' + '[' + ','.join(map(str, y.T.A1)) + ']' + \\\n",
" ';||Y||=' + str(np.sqrt((y.T * y).item())) + \\\n",
" ';g=' + str(g_min) + \\\n",
" ';|g-g1|=' + str(abs(g_min - g1))\n",
" print pr_str + '\\n'\n",
"\n",
"progress_k, stop, outer_it_k, outer_it_j, \\\n",
" lambda_ls, accum_step, x, \\\n",
" diff, f_val, lambda_ls_y, \\\n",
" method_loops = \\\n",
" nr_ls(x0=np.matrix(x0).T,\n",
" f=lambda x: np.matrix(eq_set(x)).T,\n",
" j=lambda x: np.matrix(jac_eq_set(x)),\n",
" tol=1e-14,\n",
" max_it=1000,\n",
" inner_loop_condition=lambda x_vec:\n",
" all([item >= 0 for item in\n",
" x_vec[0:9]]),\n",
" notify_status_func=notify_status_func,\n",
" method_loops=[0, 0],\n",
" process_func_handle=None)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[ 8.48558036]\n",
" [ 5.51044488]]\n",
"[[ 13.99602524]]\n"
]
}
],
"source": [
"pHOH = -np.log10(x[1:3])\n",
"print pHOH\n",
"print sum(pHOH)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"matrix([[ 5.55556289e+01],\n",
" [ 3.26903554e-09],\n",
" [ 3.08713142e-06],\n",
" [ 1.15820992e-02],\n",
" [ 1.19166786e-02],\n",
" [ 1.65747801e-04],\n",
" [ 8.69245345e-05],\n",
" [ 1.31256047e-07],\n",
" [ 2.61183128e-01],\n",
" [ 9.24397224e-05],\n",
" [ -1.68700408e-04],\n",
" [ -1.68831664e-04],\n",
" [ 1.65747801e-04],\n",
" [ 2.98667276e-06]])"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"matrix([[ 7.41481648e-15]])"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.sqrt(np.matrix(eq_set(x)) * np.matrix(eq_set(x)).T)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x:\n",
"C0=5.55556289267577199098e+01,\n",
"C1=3.26903554347567655169e-09,\n",
"C2=3.08713141646693843776e-06,\n",
"C3=1.15820991613138461751e-02,\n",
"C4=1.19166786264420683505e-02,\n",
"C5=1.65747801385990306934e-04,\n",
"C6=8.69245344681667691557e-05,\n",
"C7=1.31256046958327811330e-07,\n",
"pco2=2.61183127920939117672e-01,\n",
"x0=9.24397224183414839517e-05,\n",
"x1=-1.68700407719955461491e-04,\n",
"x2=-1.68831663754572664209e-04,\n",
"x3=1.65747801373649213076e-04,\n",
"x4=2.98667275667192327245e-06,\n"
]
}
],
"source": [
"print 'x:'\n",
"for index, num in enumerate(res.x):\n",
" if index < 8:\n",
" print 'C' + str(index) + '=' + '%.20e' % num + ','\n",
" elif index == 8:\n",
" print 'pco2' + '=' + '%.20e' % num + ','\n",
" else:\n",
" print 'x' + str(index-9) + '=' + '%.20e' % num + ','"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
0 H2O
1 H3O(+)
2 HO(-)
3 HCO3(-)
4 Na(+)
5 CO3(2-)
6 CO2(ac)
7 H2CO3
8 CO2(g)
eqs := {
0 = 1670.0*100*C6/(C0+C1+C2+C3+C4+C5+C6+C7+C8) - C8*8.314*298.15,
0 = 10^-0.005080863*C6 - C7,
0 = 10^-6.361590742*C7 - C1*C3,
0 = 10^-10.32991986*C3 - C1*C5,
0 = 10^-13.99602524 - C1*C2,
0 = C0 - 5.55555555555555500291e+01 - (- x0 - x1 - x2 - x3 - 2*x4),
0 = C1 - 1.00458659795015482946e-07 - (+ x2 + x3 + x4),
0 = C2 - 1.00458659795015496181e-07 - (+ x4),
0 = C3 - 1.19166786264420579422e-02 - (+ x2 - x3),
0 = C4 - 1.19166786264420579422e-02 - (0),
0 = C5 - 0.0 - (+ x3),
0 = C6 - 0.0 - (- x0 - x1),
0 = C7 - 0.0 - (+ x1 - x2),
0 = C8 - 0.0 - (+ x0)
};
numeric::solve(eqs, {C0,C1,C2,C3,C4,C5,C6,C7,C8,x0,x1,x2,x3,x4});
solve(eqs, {C0,C1,C2,C3,C5,C4,C6,C7,C8,x0,x1,x2,x3,x4})
{0 = C1 - x2 - x3 - x4 - 0.0000001004586598, 0 = (167000.0*C6)/(C0 + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8) - 2478.8191*C8, 0 = C0 + x0 + x1 + x2 + x3 + 2*x4 - 55.55555556, 0 = C7 - x1 + x2, 0 = C2 - x4 - 0.0000001004586598, 0 = 0.9883690492*C6 - C7, 0 = C4 - 0.01191667863, 0 = 1.009194233*10^(-14) - C1*C2, 0 = 0.0000004349198785*C7 - C1*C3, 0 = C5 - x3, 0 = C8 - x0, 0 = C3 - x2 + x3 - 0.01191667863, 0 = 4.6782146*10^(-11)*C3 - C1*C5, 0 = C6 + x0 + x1}
Warning: the solution [C0 = 55.55395508, C1 = 0.0000001266598701, C2 = 0.000003988812187, C3 = 0.01148800552, C4 = 0.01191667863, C5 = 0.0002124164193, C6 = -0.003662109375, C7 = -0.004150390625, C8 = 0.001953125, x0 = 0.001953125, x1 = -0.002197265625, x2 = -0.0002165958285, x3 = 0.0002124164193, x4 = 0.... [numeric::polysysroots::checkstability]
Warning: the solution [C0 = 55.57119751, C1 = -0.01191681297, C2 = -8.468658843e-13, C3 = -0.000000134576112, C4 = 0.01191667863, C5 = 5.272765538e-16, C6 = 0.003726959229, C7 = 0.003681182861, C8 = 0.004524230957, x0 = 0.004524230957, x1 = -0.008232116699, x2 = -0.01191681286, x3 = 5.272765538e-16, x4 = ... [numeric::polysysroots::checkstability]
Warning: the solution [C0 = 55.56347656, C1 = -0.0000002533197403, C2 = -0.000003991460732, C3 = 0.01237848401, C4 = 0.01191667863, C5 = -0.0002290414307, C6 = 0.006103515625, C7 = 0.0009765625, C8 = -0.00390625, x0 = -0.00390625, x1 = 0.005126953125, x2 = 0.0002328753471, x3 = -0.0002290414307, x4 = -0.0... [numeric::polysysroots::checkstability]
Warning: the solution [C0 = 0.0, C1 = 0.0, C2 = -0.0001078610401, C3 = 255213.0, C4 = 0.01191667863, C5 = -127606.4317, C6 = 4096.0, C7 = 2048.0, C8 = -131072.0, x0 = -131072.0, x1 = 129024.0, x2 = 127606.25, x3 = -127606.4317, x4 = -0.0001079614988] seems to be marred by some numerical instability. Inser... [numeric::polysysroots::checkstability]
Warning: the solution [C0 = 2.858730232e13, C1 = -654311424.0, C2 = -0.01213239807, C3 = -620756992.0, C4 = 0.01191667863, C5 = 0.006881952286, C6 = 2.913705814e13, C7 = 3.848290697e13, C8 = 2.199023256e12, x0 = 2.199023256e12, x1 = 3.95824186e13, x2 = -2785017856.0, x3 = 0.006881952286, x4 = -0.012132498... [numeric::polysysroots::checkstability]
{[C0 = 55.55395508, C1 = 0.0000001266598701, C2 = 0.000003988812187, C3 = 0.01148800552, C4 = 0.01191667863, C5 = 0.0002124164193, C6 = -0.003662109375, C7 = -0.004150390625, C8 = 0.001953125, x0 = 0.001953125, x1 = -0.002197265625, x2 = -0.0002165958285, x3 = 0.0002124164193, x4 = 0.000003888353527], [C0 = 55.56347656, C1 = -0.0000002533197403, C2 = -0.000003991460732, C3 = 0.01237848401, C4 = 0.01191667863, C5 = -0.0002290414307, C6 = 0.006103515625, C7 = 0.0009765625, C8 = -0.00390625, x0 = -0.00390625, x1 = 0.005126953125, x2 = 0.0002328753471, x3 = -0.0002290414307, x4 = -0.000004091919391], [C0 = 55.57119751, C1 = -0.01191681297, C2 = -8.468658843*10^(-13), C3 = -0.000000134576112, C4 = 0.01191667863, C5 = 5.272765538*10^(-16), C6 = 0.003726959229, C7 = 0.003681182861, C8 = 0.004524230957, x0 = 0.004524230957, x1 = -0.008232116699, x2 = -0.01191681286, x3 = 5.272765538*10^(-16), x4 = -0.0000001004595067], [C0 = - 33.89917755 + 0.002046041827*I, C1 = - 0.005958380178 + (- 0.001718687111*I), C2 = - 1.563640209*10^(-12) + 4.510300085*10^(-13)*I, C3 = 0.00595829857 + (- 0.001718687162*I), C4 = 0.01191667863, C5 = - 3.959471937*10^(-11) + 2.491529619*10^(-11)*I, C6 = - 89.46068954 + 0.0003273547199*I, C7 = - 88.42017746 + 0.0003235473005*I, C8 = 177.8868332 + 0.001067785085*I, x0 = 177.8868332 + 0.001067785085*I, x1 = - 88.4261322 + (- 0.001395139863*I), x2 = - 0.005958380178 + (- 0.001718687137*I), x3 = - 3.959471937*10^(-11) + 2.491529619*10^(-11)*I, x4 = - 0.0000001004602234 + 4.510300085*10^(-13)*I], [C0 = 0.0, C1 = 0.0, C2 = -0.0001078610401, C3 = 255213.0, C4 = 0.01191667863, C5 = -127606.4317, C6 = 4096.0, C7 = 2048.0, C8 = -131072.0, x0 = -131072.0, x1 = 129024.0, x2 = 127606.25, x3 = -127606.4317, x4 = -0.0001079614988], [C0 = 2.858730232*10^13, C1 = -654311424.0, C2 = -0.01213239807, C3 = -620756992.0, C4 = 0.01191667863, C5 = 0.006881952286, C6 = 2.913705814*10^13, C7 = 3.848290697*10^13, C8 = 2.199023256*10^12, x0 = 2.199023256*10^12, x1 = 3.95824186*10^13, x2 = -2785017856.0, x3 = 0.006881952286, x4 = -0.01213249853], [C0 = - 33.89917755 + (- 0.002046041827*I), C1 = - 0.005958380178 + 0.001718687111*I, C2 = - 1.563640209*10^(-12) + (- 4.510300085*10^(-13)*I), C3 = 0.00595829857 + 0.001718687162*I, C4 = 0.01191667863, C5 = - 3.959471937*10^(-11) + (- 2.491529619*10^(-11)*I), C6 = - 89.46068954 + (- 0.0003273547199*I), C7 = - 88.42017746 + (- 0.0003235473005*I), C8 = 177.8868332 + (- 0.001067785085*I), x0 = 177.8868332 + (- 0.001067785085*I), x1 = - 88.4261322 + 0.001395139863*I, x2 = - 0.005958380178 + 0.001718687137*I, x3 = - 3.959471937*10^(-11) + (- 2.491529619*10^(-11)*I), x4 = - 0.0000001004602234 + (- 4.510300085*10^(-13)*I)]}
matrix([[C0], [C1], [C2], [C3], [C4], [C5], [C6], [C7], [C8], [x0], [x1], [x2], [x3], [x4]]) in Dom::ImageSet(matrix([[- 5.987429602*10^42*z1^6 - 7.329131454*10^40*z1^5 - 7.872140498*10^36*z1^4 - 2.009851769*10^30*z1^3 + 1.24616353*10^26*z1^2 + 2.506693716*10^19*z1 + 1.259333237*10^12], [2.159683152*10^38*z1^6 + 2.643638886*10^36*z1^5 + 2.839503839*10^32*z1^4 + 7.249617408*10^25*z1^3 - 4.49494781*10^21*z1^2 - 9.041754741*10^14*z1 - 45424896.55], [z1 + 0.0000001004586598], [2.159683152*10^38*z1^6 + 2.643638886*10^36*z1^5 + 2.839503839*10^32*z1^4 + 7.249617408*10^25*z1^3 - 4.49494781*10^21*z1^2 - 9.041754741*10^14*z1 - 45424896.53], [0.01191667863], [7.279248332*10^26*z1^6 + 8.831914525*10^24*z1^5 + 4.447893031*10^18*z1^4 - 1.397067299*10^14*z1^3 - 42801383.95*z1^2 + 50.88461943*z1 + 0.000005401796013], [- 5.987213634*10^42*z1^6 - 7.32886709*10^40*z1^5 - 7.871856548*10^36*z1^4 - 2.009779273*10^30*z1^3 + 1.24611858*10^26*z1^2 + 2.506603298*10^19*z1 + 1.259287812*10^12], [- 5.917576646*10^42*z1^6 - 7.243625397*10^40*z1^5 - 7.780299372*10^36*z1^4 - 1.986403629*10^30*z1^3 + 1.231625036*10^26*z1^2 + 2.477449118*10^19*z1 + 1.244641098*10^12], [1.190457431*10^43*z1^6 + 1.457222812*10^41*z1^5 + 1.565187197*10^37*z1^4 + 3.996110405*10^30*z1^3 - 2.477698667*10^26*z1^2 - 4.983961999*10^19*z1 - 2.503883485*10^12], [1.190457431*10^43*z1^6 + 1.457222812*10^41*z1^5 + 1.565187197*10^37*z1^4 + 3.996110405*10^30*z1^3 - 2.477698667*10^26*z1^2 - 4.983961999*10^19*z1 - 2.503883485*10^12], [- 5.917360678*10^42*z1^6 - 7.243361033*10^40*z1^5 - 7.780015421*10^36*z1^4 - 1.986331133*10^30*z1^3 + 1.231580087*10^26*z1^2 + 2.477358701*10^19*z1 + 1.244595673*10^12], [2.159683152*10^38*z1^6 + 2.643638886*10^36*z1^5 + 2.839503839*10^32*z1^4 + 7.249617408*10^25*z1^3 - 4.49494781*10^21*z1^2 - 9.041754741*10^14*z1 - 45424896.55], [7.279248332*10^26*z1^6 + 8.831914525*10^24*z1^5 + 4.447893031*10^18*z1^4 - 1.397067299*10^14*z1^3 - 42801383.95*z1^2 + 50.88461943*z1 + 0.000005401796013], [z1]]), z1, RootOf(z^7 + (3288854257908087952623227863194376641217053483675868772953977*z^6)/268676061519215510599283100254114319489836879945000000000000000 + (2050134592226248730134824256713854736228400666906115319201897296308956154738386104552131437*z^5)/1557843948512929939169698043870198415364424558737555735391792292425000000000000000000000000000000 + (6023827913122314278109268292139954914316831247067391446756236788761598164895936283191047475179790509107195265489595577*z^4)/12878017264464141415647653185706324823133814701346600775997442666727707967291802614725000000000000000000000000000000000000000000000 - (1337979289618648321625397786703665133379116515552518649126090379866479124961511411714573635366139681808386840387385300578983431477*z^3)/64390086322320707078238265928531624115669073506733003879987213333638539836459013073625000000000000000000000000000000000000000000000000000000000000 - (10105150659376346296921576118615232529285931060237289209074775758508362339723127187001429846811738303273458103633738862619824685022919607869*z^2)/1609752158058017676955956648213290602891726837668325096999680333340963495911475326840625000000000000000000000000000000000000000000000000000000000000000000000000000 - (725437914676416108172794804095353677574908830094399178427691869302779102452150472371102437895997799952034908439047265878428016000550985113681527611*z)/1149822970041441197825683320152350430636947741191660783571200238100688211365339519171875000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 - 17353785743537659610508901962077068706625995923427835674781174126323437441132917007276490488608203757911635354942744855996997797103239378808854711658699361/821302121458172284161202371537393164740676957994043416836571598643348722403813942265625000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, z) minus RootOf(z^6 + (1470930349923710945719980829141033235794033720994127290292853072865039583091607582948054745344027621521521042109959146040663895447282467433*z^5)/120165560888786716335676939886413629510322660569448141597223816369210085273463450836153904529429370349017781022381043618207222500000000000000 + (366426946763980973975369759844966511288043893144467031043608210352605348478727464787218043674194701505737448773522925224117938166682262075615854625679119481256060775591*z^4)/278698728560705889328577424933245864636130541947036502962048723997915799126001112574017033376018494242038069447845996989798195532231935916726985000000000000000000000000000000 + (966704321358337826679775393362083521875211638768065080864011679391930193294593701928623467992089549912339949537152535498839586470224592225152814351279153255444467193414555842230094362619286754611*z^3)/2879851221150077613444171302794542896486514506584218974806059389945280782564477547426710989615374327555375442404904194199947929718921508490874059813423420150446806250000000000000000000000000000000000000000000 - (1198766683356958588513758074308229090602888042249179788211820513910926757397662249790037278137376160912405439134503824119166122899325958347814739231183829712157447310734118830779060952737455600771940605829933*z^2)/57597024423001552268883426055890857929730290131684379496121187798905615651289550948534219792307486551107508848098083883998958594378430169817481196268468403008936125000000000000000000000000000000000000000000000000000000000000 - (274017454331546479027153473298348796037217508156117565744240081861403276457629426111079961869594805475138474496207812442122737067876120373495498061093809764099647728430013083276815386507349064055017359696840233293997*z)/65451164117047218487367529608966884011057147876914067609228622498756381421919944259697977036713052898985805509202368049998816584520943374792592268486895912510154687500000000000000000000000000000000000000000000000000000000000000000000000000 - 216327766279637425531785296940907490552624393498128115988956836195471884446342622820699789663981899215083167914168548727471566675647528811469265775096384894844224092740660492750276065595153971331698872550706819073484851098673/1028518293267884861944346893855193891602326609494363919573592639266171708058741981223825353434062259841205515144608640785695689185329110175312164219079792910873859375000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, z))
subs(eqs,
{
C0=5.55556010750400801612e+01,
C1=3.46561148691701824919e-09,
C2=2.86202585956707773146e-06,
C3=1.16111088945490704277e-02,
C4=1.19166786267409195721e-02,
C5=1.51355586271531528889e-04,
C6=4.81840577796665813230e-05,
C7=4.76236316774989850635e-05,
C8=5.84064570612180726061e-05,
x0=5.84064568807210029500e-05,
x1=-1.06590514733496258336e-04,
x2=-1.54214146182733708021e-04,
x3=1.51355585977442909330e-04,
x4=2.76156690306190568131e-06
})
{0 = 2.282615354*10^(-13), 0 = 2.539207943*10^(-13), 0 = 2.671891029*10^(-13), 0 = 2.781108677*10^(-13), 0 = 2.940886196*10^(-13), 0 = 2.967101566*10^(-13), 0 = 2.988616299*10^(-13), 0 = 1.73272633*10^(-16), 0 = 1.804970697*10^(-13), 0 = 1.865293317*10^(-14), 0 = -1.952712826*10^(-11), 0 = -7.310867406*10^(-14), 0 = -3.033297159*10^(-13), 0 = -4.412648632*10^(-12)}
eqs[8];
subs(eqs[8], {
C0=5.55556010750400801612e+01,
C1=3.46561148691701824919e-09,
C2=2.86202585956707773146e-06,
C3=1.16111088945490704277e-02,
C4=1.19166786267409195721e-02,
C5=1.51355586271531528889e-04,
C6=4.81840577796665813230e-05,
C7=4.76236316774989850635e-05,
C8=5.84064570612180726061e-05,
x0=5.84064568807210029500e-05,
x1=-1.06590514733496258336e-04,
x2=-1.54214146182733708021e-04,
x3=1.51355585977442909330e-04,
x4=2.76156690306190568131e-06
})
0 = 4.6782146*10^(-11)*C3 - C1*C5
0 = 1.865293317*10^(-14)
{0 = C1 - x2 - x3 - x4 - 0.0000001004586598, 0 = (167000.0*C6)/(C0 + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8) - 2478.8191*C8, 0 = C0 + x0 + x1 + x2 + x3 + 2*x4 - 55.55555556, 0 = C7 - x1 + x2, 0 = C2 - x4 - 0.0000001004586598, 0 = 0.9883690492*C6 - C7, 0 = C4 - 0.01191667863, 0 = 1.009194233*10^(-14) - C1*C2, 0 = 0.0000004349198785*C7 - C1*C3, 0 = C5 - x3, 0 = C8 - x0, 0 = C3 - x2 + x3 - 0.01191667863, 0 = 4.6782146*10^(-11)*C3 - C1*C5, 0 = C6 + x0 + x1}
eqs2 := {
0 = 1670.0*100*C6/(C0+C1+C2+C3+C4+C5+C6+C7+C8) - C8*8.314*298.15,
0 = -0.005080863 + log10(C6) - log10(C7),
0 = -6.361590742 + log10(C7) - log10(C1) - log10(C3),
0 = -10.32991986 + log10(C3) - log10(C1) - log10(C5),
0 = -13.99602524 - log10(C1) - log10(C2),
0 = C0 - 5.55555555555555500291e+01 - (- x0 - x1 - x2 - x3 - 2*x4),
0 = C1 - 1.00458659795015482946e-07 - (+ x2 + x3 + x4),
0 = C2 - 1.00458659795015496181e-07 - (+ x4),
0 = C3 - 1.19166786264420579422e-02 - (+ x2 - x3),
0 = C4 - 1.19166786264420579422e-02 - (0),
0 = C5 - 0.0 - (+ x3),
0 = C6 - 0.0 - (- x0 - x1),
0 = C7 - 0.0 - (+ x1 - x2),
0 = C8 - 0.0 - (+ x0)
};
numeric::solve(eqs2, {C0,C1,C2,C3,C4,C5,C6,C7,C8,x0,x1,x2,x3,x4});
solve(eqs2, {C0,C1,C2,C3,C5,C4,C6,C7,C8,x0,x1,x2,x3,x4})
{0 = - ln(C1)/ln(10) - ln(C2)/ln(10) - 13.99602524, 0 = C1 - x2 - x3 - x4 - 0.0000001004586598, 0 = (167000.0*C6)/(C0 + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8) - 2478.8191*C8, 0 = C0 + x0 + x1 + x2 + x3 + 2*x4 - 55.55555556, 0 = C7 - x1 + x2, 0 = C2 - x4 - 0.0000001004586598, 0 = ln(C7)/ln(10) - ln(C3)/ln(10) - ln(C1)/ln(10) - 6.361590742, 0 = ln(C3)/ln(10) - ln(C1)/ln(10) - ln(C5)/ln(10) - 10.32991986, 0 = C4 - 0.01191667863, 0 = ln(C6)/ln(10) - ln(C7)/ln(10) - 0.005080863, 0 = C5 - x3, 0 = C8 - x0, 0 = C3 - x2 + x3 - 0.01191667863, 0 = C6 + x0 + x1}
{}
{}
simplify(subs(eqs2,
{
C0=5.55556010750400801612e+01,
C1=3.46561148691701824919e-09,
C2=2.86202585956707773146e-06,
C3=1.16111088945490704277e-02,
C4=1.19166786267409195721e-02,
C5=1.51355586271531528889e-04,
C6=4.81840577796665813230e-05,
C7=4.76236316774989850635e-05,
C8=5.84064570612180726061e-05,
x0=5.84064568807210029500e-05,
x1=-1.06590514733496258336e-04,
x2=-1.54214146182733708021e-04,
x3=1.51355585977442909330e-04,
x4=2.76156690306190568131e-06
}))
{0 = -0.000000002758601001, 0 = -0.2884218038, 0 = 2.282615354*10^(-13), 0 = 2.539207943*10^(-13), 0 = 2.671891029*10^(-13), 0 = 2.781108677*10^(-13), 0 = 2.940886196*10^(-13), 0 = 2.967101566*10^(-13), 0 = 2.988616299*10^(-13), 0 = 1.804970697*10^(-13), 0 = -7.310867406*10^(-14), 0 = -4.412648632*10^(-12), 0 = 0.007521332093, 0 = 0.01517550905}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment