Skip to content

Instantly share code, notes, and snippets.

@schocco
Created January 15, 2018 19:20
Show Gist options
  • Save schocco/c086aaab0b9a4c839880c00eb95ce78c to your computer and use it in GitHub Desktop.
Save schocco/c086aaab0b9a4c839880c00eb95ce78c to your computer and use it in GitHub Desktop.
Concat Stock Market Data CSVs
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Preparing CSVs for import to Kafka\n",
"The [kafka-connect-spooldir](https://github.com/jcustenborder/kafka-connect-spooldir) plugin can be used for importing entries of a CSV file to a target topic.\n",
"The Stock Market Dataset with historical daily prices can be obtained from [Kaggle](https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs) \n",
"and contains one CSV file for each symbol.\n",
"For an easier import we concatenate the CSVs and add the symbol as a column."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import glob\n",
"import re"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"etf_files = glob.glob(\"ETFs/*.txt\")\n",
"stock_files = glob.glob(\"Stocks/*.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"p = re.compile('.*/(.*) is valid')\n",
"\n",
"def read_csv(path):\n",
" try:\n",
" df = pd.read_csv(path)\n",
" df['Symbol'] = re.match(r\"(?P<folder>\\w+)/(?P<symbol>[\\w_-]+).\\w+.txt\", path).group(\"symbol\")\n",
" df['Date'] = pd.to_datetime(df['Date'])\n",
" return df\n",
" except pd.errors.EmptyDataError:\n",
" return pd.DataFrame()\n",
" \n",
"def export_csv(files, name):\n",
" dfs = (read_csv(f) for f in files)\n",
" dfs_concat = pd.concat(dfs, ignore_index=True).sort_values(by=['Date'])\n",
" dfs_concat.to_csv(name, date_format=\"%Y-%m-%d %H:%M:%S\", index=False, float_format=\"%.2f\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exporting dataframes "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"export_csv(etf_files, \"us-etfs.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"export_csv(stock_files, \"us-stocks.csv\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment