Created
February 4, 2013 15:30
-
-
Save schwehr/4707429 to your computer and use it in GitHub Desktop.
Beginning of Chapter 4 of the MB Cookbook... using MB System for multibeam sonar data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "mbcookbook2" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"4.4.1 Ancillary Files" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"cd loihi" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"/Users/schwehr/Desktop/mbcookbook/loihi\n" | |
] | |
} | |
], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"cd MBARI1998EM300" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"/Users/schwehr/Desktop/mbcookbook/loihi/MBARI1998EM300\n" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"ls -lh" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"total 285024\r\n", | |
"-rw-r--r-- 1 schwehr 5000 139B Nov 25 2002 README\r\n", | |
"-rw-r--r-- 1 schwehr 5000 234B Nov 25 2002 datalist.mb-1\r\n", | |
"-rw-r--r-- 1 schwehr 5000 30M Nov 25 2002 mbari_1998_53_msn.mb57\r\n", | |
"-rw-r--r-- 1 schwehr 5000 8.9M Nov 25 2002 mbari_1998_54_msn.mb57\r\n", | |
"-rw-r--r-- 1 schwehr 5000 5.9M Nov 25 2002 mbari_1998_55_msn.mb57\r\n", | |
"-rw-r--r-- 1 schwehr 5000 3.6M Nov 25 2002 mbari_1998_56_msn.mb57\r\n", | |
"-rw-r--r-- 1 schwehr 5000 44M Nov 25 2002 mbari_1998_57_msn.mb57\r\n", | |
"-rw-r--r-- 1 schwehr 5000 7.5M Nov 25 2002 mbari_1998_58_msn.mb57\r\n", | |
"-rw-r--r-- 1 schwehr 5000 7.0M Nov 25 2002 mbari_1998_59_msn.mb57\r\n", | |
"-rw-r--r-- 1 schwehr 5000 5.7M Nov 25 2002 mbari_1998_60_msn.mb57\r\n", | |
"-rw-r--r-- 1 schwehr 5000 26M Nov 25 2002 mbari_1998_61_msn.mb57\r\n" | |
] | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"!mbdatalist -I datalist.mb-1 -N" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"ls" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"README mbari_1998_55_msn.mb57 mbari_1998_57_msn.mb57.fnv mbari_1998_60_msn.mb57\r\n", | |
"datalist.mb-1 mbari_1998_55_msn.mb57.fbt mbari_1998_57_msn.mb57.inf mbari_1998_60_msn.mb57.fbt\r\n", | |
"mbari_1998_53_msn.mb57 mbari_1998_55_msn.mb57.fnv mbari_1998_58_msn.mb57 mbari_1998_60_msn.mb57.fnv\r\n", | |
"mbari_1998_53_msn.mb57.fbt mbari_1998_55_msn.mb57.inf mbari_1998_58_msn.mb57.fbt mbari_1998_60_msn.mb57.inf\r\n", | |
"mbari_1998_53_msn.mb57.fnv mbari_1998_56_msn.mb57 mbari_1998_58_msn.mb57.fnv mbari_1998_61_msn.mb57\r\n", | |
"mbari_1998_53_msn.mb57.inf mbari_1998_56_msn.mb57.fbt mbari_1998_58_msn.mb57.inf mbari_1998_61_msn.mb57.fbt\r\n", | |
"mbari_1998_54_msn.mb57 mbari_1998_56_msn.mb57.fnv mbari_1998_59_msn.mb57 mbari_1998_61_msn.mb57.fnv\r\n", | |
"mbari_1998_54_msn.mb57.fbt mbari_1998_56_msn.mb57.inf mbari_1998_59_msn.mb57.fbt mbari_1998_61_msn.mb57.inf\r\n", | |
"mbari_1998_54_msn.mb57.fnv mbari_1998_57_msn.mb57 mbari_1998_59_msn.mb57.fnv\r\n", | |
"mbari_1998_54_msn.mb57.inf mbari_1998_57_msn.mb57.fbt mbari_1998_59_msn.mb57.inf\r\n" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"4.4.4 Surveying your Survey - Revisited" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"!mbm_plot -I datalist.mb-1 -N\n", | |
"!./datalist.mb-1.cmd 2>&1 | tail -5\n", | |
"!convert datalist.mb-1.{ps,png}\n", | |
"imshow(imread('datalist.mb-1.png'), cmap=get_cmap('gray'))\n", | |
"!open datalist.mb-1.ps" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r\n", | |
"Plot generation shellscript <datalist.mb-1.cmd> created.\r\n", | |
"\r\n", | |
"Instructions:\r\n", | |
" Execute <datalist.mb-1.cmd> to generate Postscript plot <datalist.mb-1.ps>.\r\n", | |
" Executing <datalist.mb-1.cmd> also invokes ghostview to view the plot on the screen.\r\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"Resetting GMT fonts...\r\n", | |
"Running ghostview in background...\r\n", | |
"[1] 92707\r\n", | |
"All done!\r\n", | |
"ghostview: Command not found.\r\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAL0AAAD9CAYAAADpj3ZcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVPX+B/A3m1rqjxuCaKKiiCiIgFmYV66pLK6okYqY\nV3Etl7IUtyzDpwREM/fctSQls3BJEbhqkZqmIiqgLI6GigSIKAOzf39/cDnXYQaG5cwMw/m8nqcn\nzznjfD/A28OZs3y+ZowxBkIExNzYBRBiaBR6IjgUeiI4FHoiOBR6IjgUeiI4egl9fHw8evToAWdn\nZ0RFReljCELqzYzv8/RKpRIuLi5ISkpChw4d8Prrr+PgwYPo2bMnn8MQUm+87+kvX76Mbt26wdHR\nEVZWVggODsbRo0f5HoaQerPk+w0fPnyIjh07cssODg64dOkSt2xmZsb3kIRoqOkAhvc9fW1CzRgz\nyn8rV66ksQUwti68h75Dhw7Izc3llnNzc+Hg4MD3MITUG++h79u3L7KysnDv3j3IZDLExsYiMDCQ\n72EIqTfej+ktLS2xefNmBAQEQKlUYvr06Y3mzM1bb71FYwto7OrwfspS54BmZrU67iKkvnRljK7I\nEsGh0BPBodATwaHQE8Gh0BPBodATwaHQE8Gh0BPBodATwaHQE8Gh0BPBodATwaHQE8Gh0BPBodAT\nwaHQ69Ho0aOxY8cOlJaWoqCgAGPGjMH9+/chk8mQnp4OALh37x7S0tKQnZ0NqVQKoKKjxJ07d5CQ\nkICLFy8CAFQqFeLi4pCamgqlUom//voLCQkJOHDgAK5fv46EhATExcUBALKyspCRkQGVSoXk5GSu\nnqNHj6KgoMDA34XGh0KvR7a2thg6dCj27NmD9957D2VlZQgPD8e2bdu412RmZmL79u0oKChA8+bN\nub93/fp1nDt3Dvv27YNcLsfEiRPRqlUrbNq0CampqbCxscGxY8cAABcuXMB3332HVq1aAQBu3rwJ\nkUiEu3fvwsfHB59++ilmz56N0aNHG/6b0AjRk1MGUFRUhMLCQpSVlaF169aQSqVwc3PjtmdkZKBn\nz54Qi8Vo2bKl2t9NS0vjXisWi3H//n1YWVnBwsICEokEdnZ2sLOzw4ULF9C/f3+NsVNSUuDl5aXf\nL7CR0ZUxCj1pcuhxQUKqoNATwaHQE8GpMfTTpk2Dvb093N3duXVPnjyBn58funfvDn9/fzx9+pTb\nFhERAWdnZ/To0QMJCQn6q7oWGGNITk7GuHHjMGHCBMhkMigUCuzevRtffvkl5HK5Xsb95Zdf8MEH\nH0Amk2HKlCk4cuQIjh49in379mHZsmV6GbOsrAwZGRn48ssvMWbMGMTFxeHEiRN48uQJUlNT9TKm\nSqXCo0ePEBgYCMYYrl69CpFIhM8++wwRERHYsWOHXsblBavBb7/9xq5du8Z69erFrQsLC2NRUVGM\nMcYiIyPZkiVLGGOMpaWlMQ8PDyaTyZhIJGJOTk5MqVRqvKeOIXkRExPDiouL2YEDB1hRURG7c+cO\nY4yxsrIydvjwYSaXy3kf8/Tp0ywpKYnt3LmTpaamsrKyMpaWlsYYY2zz5s3s2rVrTKVS8TqmWCxm\nMTExjLGKn5WPjw+7d+8eY4yxo0ePsrFjx7KAgABex2SMsePHj7OrV6+yO3fusOzsbPb555+z+Ph4\ndvXqVTZhwgRWXl7O+5h1oStjOhMoEonUQu/i4sIeP37MGGMsLy+Pubi4MMYYW716NYuMjOReFxAQ\nwC5evFjngvhWWFjIJBKJ2rqCggK9jimVSjXGqVynTyqVipWWljLGGJPJZHofjzGmEXC5XM7lw1h0\nZazObf3y8/Nhb28PALC3t0d+fj4A4NGjR+jXrx/3OgcHBzx8+FDre3z++efcn9966y29tn5r06aN\nxjpbW1u9jQcAzZo10xincp0+mZmZcef5rays9D4eALRo0UJt2dLSksuHoZw7dw7nzp2r9esb1MvS\nzMysxtbc1W17MfR8yM7ORrdu3ZCUlARfX9861aJPzAjXI4YNG4b4+HiDj1vfr7XyZ5aTkwMnJ6d6\nvUfVHWd4eHiNr69z6O3t7fH48WO0a9cOeXl5aNu2LQDNFt0PHjxAhw4d6vr29aJSqZCUlISUlJRq\nX9OlSxeD1PKipKQkg49paWlpUl9r5c+sU6dOfJZTM13HR1WP6cPCwrhj94iICI0PslKplN29e5d1\n7dpV6we3WgxZZ1lZWYwxxhITE3l/b6JflT+z7Oxs3t5TV8Zq3NNPnDgRv/76KwoLC9GxY0esWrUK\nS5cuxfjx47F79244Ojrihx9+AAC4urpi/PjxcHV1haWlJbZu3UpT7ZBGqcbQHzx4UOv66n6VLV++\nHMuXL294VYToEV2RJYLD+0wk+hAXF4cxY8agpKQEOTk5sLS0xKVLl1BYWIhly5aBMYbi4mIoFApj\nl0rqSKFQoLi4mFsODw+HtbU1XF1dcf/+fSQlJWHSpElo1aoVBg8ezMuYJrGnHzNmDICKT/p9+vTB\no0ePYGZmhqlTpwIApFIpbGxs8McffxixSlIfFy9ehI2NDffUWGhoKDw9PdGyZUu0bt0ajDEUFRXx\nFnjARPb0lSrPxQ4dOtS4hRC96dSpk9rpy+DgYN7HMIk9PSF8otATwaHQE72pPE5vbCj0RC82btyI\nBw8eGLsMrUzqgywxDenp6fjggw+MXUa1aE9PeDV8+HC4uroau4waUegJrzZv3mzsEnSi0BPe3Lhx\nA127djV2GTpR6AlvqjYDuH37NvLy8oxUTfUo9IQX58+fx8cff6y27uDBg2jfvr2RKqoehZ7w4smT\nJzA3/1+cbt26pfOxPWOh0JMGS0tLw6hRo9TWrV692kjV6EahJw22a9cuteWSkhJ8//33RqpGNwo9\naZDS0lKsX79ebV1kZKSRqqkdCj1pkDVr1qgtP3/+HBEREUaqpnYo9KTesrKysGrVKrV169atM1I1\ntUehJ/V2+vRpteWMjAx89tlnRqqm9ij0pF6uXLmCOXPmqK1LSEhQO23ZWNVYYW5uLgYNGgQ3Nzf0\n6tULGzduBGA67bqJ/ty+fVvjvPz8+fONWFHt1Rh6KysrrF+/Hmlpafjjjz+wZcsWZGRkIDIyEn5+\nfsjMzMSQIUO4T+vp6emIjY1Feno64uPjMWfOHKhUKoN8IcRwrl27hnfffVdt3YEDB0xiLw/oCH27\ndu3g6ekJAGjVqhV69uyJhw8f4tixY5gyZQoAYMqUKdz8pUePHsXEiRNhZWUFR0dHdOvWDZcvX9bz\nl0AMrWqD2KysrEZ/mvJFtX6I5N69e0hJSYG3t3eD23UbslU34Vdubq5GF7vVq1dj7969RqpIT626\nS0tLERQUhA0bNqB169Zq2+rTrpvvVt3EcBYtWoTY2FhuWSwWGzXwQN1bdes8CJPL5QgKCsLkyZO5\npkuV7boBNJp23UT/9u7dqxZ4oOIfgampMfSMMUyfPh2urq5YsGABtz4wMBD79+8HAOzfv5/7xxAY\nGIhDhw5BJpNBJBIhKysLb7zxhh7LJ4aUnZ2ttnzr1i1s27bNSNXUX42HN+fPn8eBAwfQu3dvbqr1\niIgIatctQDk5Ofjiiy/U1l26dAm9evUyUkX1V2PoBwwYUO0pR2rXLSw///yz2qHMlStXuDN4psY0\nTqwSo8rMzMRHH32ktu7333+HpaVpdpAxidCXlpYCqPhQLZVKIZFIcPr0aZw5c8bIlQnDwYMHYWFh\nwS1fvnwZH374oV7GunXrFr766iv8+OOPyM7Ohp+fH/Lz86udqbI+TCL0rVq1AlBxn3bz5s0xdepU\n3LlzBx4eHgAqpnVkjGHAgAHGLLNJunLlClauXKm27vvvv+fts5qPjw8YY2jevDkA4JVXXoGNjQ3c\n3d3x448/ok2bNli1ahW/ZwF5m92qlvQxJE20pj+LFi1SW66cfZ0vxphozST29MQ47t+/j+joaLV1\nO3bsMFI1/KHQk2pVXoupVFpairVr1xqpGv5Q6IlWJSUlGg+EDB8+3EjV8ItCT7Tavn27xjpTupOy\nJhR6oqa4uBjz5s3D4sWLNbZ5e3sboSL+UegJ5+TJk8jJydHaeXjhwoVq5+pNmWleUiO8Gzt2LI4c\nOaLx9FNZWRkOHDhgEl0Oaov29AKnUCiQkJCAn3/+WSPwJ06cwMsvv4xZs2YZqTr9oNAL2NatW/H0\n6VP4+/trbBsxYgRGjhxphKr0jw5vBEipVGLRokUa7fiAigd/EhMT8csvvxihMsOgPb3AxMXF4c6d\nO1oDv2LFCjRv3hyhoaFGqMxwaE8vIH5+fkhISNB6s9isWbOaxC0GtUGhF4CcnBxkZGQgMTFRY1ty\ncjI8PDwEE3iADm+avIULF8LJyUnrh9KwsDC8+eab+L//+z8jVGY8tKdvouRyOdauXav1/LpCocDX\nX3+tcQelUNCevglKSEiASCTCsmXLNLbt2rULeXl5Jtm6gy+0p29iBgwYgN9//13rttGjR+Po0aMG\nrqjxodA3ETdv3sSzZ8+0Bv6vv/7C6dOnKfD/VePhjUQigbe3Nzw9PeHq6sr9uqRW3Y3Lp59+Cjc3\nN/zzn//U2LZmzRq0bdsWM2fONEJljZSu5w3FYjFjjDG5XM68vb1ZcnIyCwsLY1FRUYwxxiIjI9mS\nJUsYY4ylpaUxDw8PJpPJmEgkYk5OTkypVNbp+cX6EOozsiUlJSw6OlrrNqlUypYtW2bgiuquUT4j\n+/LLLwMAZDIZlEolXnnlFWrV3QhcuXIFZWVlWj+QJiYm4tGjR416Lldj0nlMr1Kp0KdPH+Tk5OD9\n99+Hm5sbterWg5deekltmTGm9cppxY5MezdooOK+msptvr6+Tfoemkq8t+o2NzfH9evXUVJSgoCA\nAJw9e1ZtO7Xq5kd5ebnO19y8eRP5+fnw9fXV2Pb06VPs3LkTYWFh+iivUeO9VXcla2trjBgxAlev\nXqVW3UYwY8YMuLu7aw38rl27IJFIBBn4+qgx9IWFhdyZmfLyciQmJsLLy4tadRuQRCLB3r17Naai\nrzR16lTMmDED7dq1M3BlpqvGw5u8vDxMmTIFKpUKKpUKkydPxpAhQ+Dl5UWtug0gMjIS8+bN03qr\n77Nnz5CdnY19+/YZvjBTx9t5olrSx5BN7ZSlQqFggYGB1W5fsWIFU6lUBqxIf4xxypKuyDYyly5d\ngr29vdarp6WlpQgPDxfsjWJ8MYnQp6SkwMvLC2KxGIWFhYiJiUHXrl1RXl6O0NBQKBQKbN26VWMS\nOFOzcOFCREVFae37Hh8fj5YtWza5wOfl5WHr1q0YPHgwgIqOyPn5+ejWrRv69esHW1tbXLlyBZaW\nltxsOA1lEndZVn6xMTEx6Ny5M3r27In8/HyuzZxCocDcuXORk5NjzDLr7cmTJ9i/fz/WrVunNfCh\noaEYOnQofHx8jFCdfmVnZ2Pu3LncjDcDBgxAhw4d8Oqrr8LOzg5AxUVPvgIPoGkc09+8eZMBYCtX\nruT9vfXt9OnTTCaTad1WXFzMYmNjDVyRYX322WcMAEtLS+PtPXVlzCT29E1RSUkJwsPD4e/vDysr\nK43tGzduxEsvvYTx48cbobqmjUJvBLGxsSguLtaY4aNSSEgIPvjgA252DsIvk/ggq0/h4eFo27Yt\npk+fjmbNmul9vHnz5mntFQkAqampKCwsxPfff6/3OoRM0KF/6623uBuV9u7di6CgIL09JC0Wi5Gc\nnFxt4OfPn481a9Zw82gR/RHs4c3Zs2fV7swLDQ1F69atUVRUxPtYhw4dglQqxdChQzW2KZVKfPzx\nx9i0aZPGnZZEPwQb+kGDBmHSpElq68zMzNCsWTPs3buXlzHEYjFCQkIQHBwMGxsbje0//fQTysvL\n8dVXX/EyHqkdwYYeqDjvHxUVpbaudevWCA0NrfZDZm398ssvNR6fz5o1C2+//TY3XSgxHEGHHgCW\nLFmCPXv2QCqVqq0PDw/n7h6tq/nz52P48OHo3LmzxrZnz54hJiZGUB3FGhvBhx4Apk2bhpSUFI31\ncXFxCAgIqPX7VN4isWnTJq13l1bO2VT1sIoYFoX+v/r164enT5/ir7/+Ult/+vRprFmzBjKZrMa/\nP3fuXNja2moNtFwux7///W8sXbpUcC30GiMK/Qv+8Y9/wMbGBt99953a+sWLF+PUqVNqrU4qicVi\njBs3Dlu2bNH6nmlpafjzzz/x7bff6qVmUncU+ipatWqFkJAQjQ+4o0ePRkFBAf7++29uXVxcHB4/\nfozDhw9rfa/33nsPbm5u6N+/v15rJnVDodfCwsICS5Ys0fgg6+zsDMYYcnJyMG7cOAwfPhxOTk5a\n3yM6OhrffPONIcoldUShr0FcXByCg4PV1tnb2+P48eM4fPiw1tsWEhIS8OTJE3pIuxGj0Otw6NAh\nrFu3DhKJhFu3YMECjdepVCrMnDkT/v7+Wi9EkcaDQl8LU6ZMwcmTJ6vdnp2djZ9//hk7d+40YFWk\nvij0Ohw5cgT37t3D22+/rXX7smXL0LFjRwQFBRm4MlJfgr7LUpfZs2dj+/bt1W6fP38+Nm3aZMCK\nCB9qtadXKpXw8vLCqFGjADT9Vt1KpRLbtm2rNvD37t3D+fPnKfAmqlah37BhA1xdXblL65GRkfDz\n80NmZiaGDBnCXV5PT09HbGws0tPTER8fjzlz5nAP/JqKs2fPIj09He+//77W7fPnz4ejo6PWXvDE\nNOgM/YMHD3Dy5EnMmDGD65jbVFt1v/POOxg0aBDc3d01tonFYmzZsoX27k2AzmP6jz76CNHR0Xj2\n7Bm3ztRbdW/fvh39+/eHRCLBt99+i5UrVyI+Ph4//vhjtX9n69atdO69keK1VfeJEyfQtm1beHl5\nVfumptiqe/bs2dyf+/bti59++gnvvvuu2mveeOMN7rdUUFAQjhw5YtAaSe3x2qr7woULOHbsGLp0\n6YKJEyfizJkzmDx5cpNq1W1mZobr169rrA8ICICvry8OHTpEgW9qattA59y5c2zkyJGMMcbCwsJY\nZGQkY4yxiIgIjTmnpFIpu3v3LuvatatGo9E6DFlrfDR7ysvLU1t++vQpk8vlDayM6NLomz1VHqos\nXboUiYmJ6N69O86cOYOlS5cCUG/VPWzYMJNq1T1v3jy1ZWtra2zYsMFI1RB9qvXFqYEDB2LgwIEA\nABsbGyQlJWl93fLly7F8+XJ+qjOgbdu2aawbOXKkESoh+mZSV2RXrlwJBwcHFBYWwtPTE2lpabxN\n925nZ4c9e/Zg2rRp3DoXFxfEx8drbd1B9OPJkye4e/cuunfvjmfPnkEul+Pw4cPo0aMHAgMDeRnD\npEJvbW2NmTNnQi6X4+zZs9xtv+bm5pg0aRL3gbq+WrZsqbEuNTWVQq9Hbdu2xaRJk7hrQKWlpbh9\n+zYyMzNx7do13LhxA8ePH+e3xSFvnx5qqSFDFhQUMMYYKywsZBKJhFvP50wkOTk5assKhaLB70mq\np20mkvLycrXXlJSU1Ok9dWXMpO6ytLW1BQC0adNGb81N165dq7ZsYWFh9OsKQtOiRQu1Zb4fpjep\n0BuCtlm2XVxcjFAJ0RcK/X/J5XIAFR0Rqt5uMG7cOO6Yk5g+wYdeqVQiODgY5ubm+PXXXwEA/v7+\naq+xtLTUaAtCTJfgQ69QKBAdHQ0LCwuuY7Gfnx/Onj2r9jp9dDMmxiH40Ddv3py7Xfjtt9/mGq6e\nOHFC7XXz5s2DWCw2eH2Ef4IPPVDx4bW0tBQAuBvpoqOjUVJSwr3GysoK//nPf4xSH+EXhR4Vx+xz\n5swBAHz88cc4c+YMzM3NNVp9XLx40RjlEZ5R6P/r008/5f6ckZEBQPOc/eTJkw1aE9EPCv1/OTs7\nczOQzJ07FykpKWjTpo3a01Surq7cYRAxXRT6F7w4K3XlP4AXH4oBYLKzkpP/odC/wNPTk2u6unHj\nRvz9998ax/UrVqwwRmmERxT6KiwsLLg/T5kyBWZmZmrdy1atWmWMsgiPKPRVTJ8+HSKRCABw6tQp\nAFBruf3iIRAxTRT6KszNzbFv3z5u2d/fH3Z2dli3bp3xiiK8otBrsWLFCjx69AjA/67Mtm/f3pgl\nER5R6LWwsrLiDmmaNWuGESNGICQkBDdu3DByZYQPFPpqTJs2DQqFAkDFRMgA1A57iOmi0FfD0dER\n69evV1v31VdfoayszEgVEb7oDL2joyN69+4NLy8vvPHGGwCafqvuStomTv7kk0+MUAnhk87Qm5mZ\n4dy5c0hJSeF6OzblVt0v6t27Nw4ePKi2jpq4mr5aHd5UfVSuqbbq1qbqhMmvvvqqyf8GEzqdfW/M\nzMzg6+sLCwsLzJ49GzNnzjT5Vt118f777yMrKwvOzs7cusqvlzQOvLbqBoDz58+jffv2KCgogJ+f\nH3r06KG23RRbddfVkSNHuH6dABASEgKZTKZ1HllieLy26gb+d1HGzs4OY8eOxeXLl5tUq+7aWLRo\nER48eMAtW1hY4MMPPzRiRaQhagx9WVkZnj9/DqBi+pmEhAS4u7sjMDAQ+/fvBwDs37+fm04+MDAQ\nhw4dgkwmg0gkQlZWFnfGx5RZWlpi8+bNaute3PMT01Lj4U1+fj7Gjh0LoKJrwKRJk+Dv74++ffti\n/Pjx2L17NxwdHfHDDz8AUG/VbWlpaVKtunVZtWoVpFIp11mtc+fO2LFjB2bNmmXkykid1alJIA/0\nMSSfvSxrEhERobYcExOj1/GEQFsvy4bSlTGT6locExMDBwcHpKSkYPDgwXj06JFBOwpXzqNbKSQk\nROPMDmkYsViMkpIStG7dGrm5ubh9+zZatGiB9u3b83Zbt0ndhiCRSDBw4EC89tprKCgoQPfu3bn1\nLVu21Hu3Ajc3N8THx6utW7NmjV7HbOrOnz+Pli1bQiKRAKhoqnXkyBHcvHkTRUVF2LdvH4YOHap1\nmtP6Mqk9fZ8+fQAAnTp1gq2trVo/+bKyMiiVSr3XUPWZ2Z07d0KlUsHc3KT2H42GSqVCWVkZ99mv\nU6dOmD17Nnc62MfHR+26EB9M6idV+eutc+fOWidQMISZM2fizp07autenL2ENFzV6x98Bh4wsdA3\nFlWv/r04Ly1p/Cj09TBz5kzu4hwAvPnmm/SAiQmh0NeDubk59uzZo7ausk8Oafwo9PW0ePFitRvP\noqOjIZPJjFgRqS0KfT1ZWlpiy5YtassLFy40YkWktij0DRAaGqq2XPmMAWncKPQN0KVLF7Vj+759\n+2L37t1GrIjUBoW+gaqeQ66csI00XhT6BhoxYgRu3brFLb/33nv4+++/jVgR0YVCz4OqMw8uWbLE\nSJWQ2qDQ8yAqKgrl5eXc8pYtW2je2UaMQs+TFx8ffPnll9U6HZPGhULPk40bN6r1+GkKzwY3VRR6\nnrRo0QJz587llgMDA2k2wkaKQs+jyudls7OzER4ejjfffNPIFRFtKPQ88vLyQnJyMpycnLBy5Upj\nl0OqYVJPTpkCHx8fY5dAdKA9PREcnaF/+vQp3nnnHfTs2ROurq64dOmSYFp1k6ZJZ+g//PBDDB8+\nHBkZGbhx4wZ69OghmFbdpGmqMfQlJSVITk7mHny2tLSEtbW1oFp1k6anxg+yIpEIdnZ2CA0NRWpq\nKl577TV8/fXXgmrVTRo/Xlt1KxQKXLt2DZs3b8brr7+OBQsWcIcylYTQqps0bry26nZwcICDgwNe\nf/11AMA777yDa9euoV27doJq1U2alhpD365dO3Ts2BGZmZkAgKSkJLi5uWHUqFGCatVNmhadF6c2\nbdqESZMmQSaTwcnJCXv37oVSqRRcq27SdOgMvYeHB/7880+N9UlJSVpfv3z5cixfvrzhlRGiJyZx\nG0JcXBzGjBmD7OxsPHv2DMeOHUOHDh1QWFiIZcuWGbs8wqPw8HDY2dnB2dkZ3t7euHTpEsrLy9Gq\nVSsMHjyYlzFM4jaEys8MDx48QJ8+fSCRSKBUKjF16lQAFbf1MsYwYMAAI1ZJ6sPHxweMMW6Gl9DQ\nUIjFYjDGcOvWLZw6dQpFRUW8BR4wkT19pcrTUlVPm5Kmo1OnTmoTVPfv35/3MUxiT08Inyj0RHAo\n9ERwKPREcCj0RHAo9ERwTOqUZXVUKhWSkpKQkpJS7WtEIpEBK6rQpUsXg4/5+PFjtW5rhlLfr7Xy\nZ9apUyc+y6lRkwi9ubk5fH19AYD7f1XGuAfIGK39hg0bpjHXrSE05Gv19fVFTk4Oj9XUzIwZ+Cdj\nZmbGexikUilSU1OhVCphYWGh9TXPnz/ndczaaN26tcHHNNR8ulXV92ut/Jm5u7vjpZde4qUWXRlr\nEqEn5EW6MtZkP8iWlZUhJiYGIpEIO3bsgEqlwu3btxEVFYWMjAy9TZ4wYcIE7lkDuVyOK1euYPz4\n8Vi/fj0++eQTvYy5Z88eXL58GSqVCj/88APS09OxYcMGrF27FsHBwXoZs6ioCJmZmfjmm28gkUhw\n48YN3Lp1C0qlEvn5+di1a5dexuVDkwz99u3bIZFIAFT8+uzXrx/Mzc1haWmJYcOGQaFQwMrKitcx\n4+LicPz4cfj5+cHFxQUSiQRXr15F3759MXDgQLz66qv44osveB1TLBZj+/btmDZtGgoKCjBhwgT0\n7t0brq6uaNOmDaRSKRQKBa9jAkBsbCz3YNG//vUvbN++HYmJiXjy5AnmzZuH4uJizJgxg/dx+UKH\nN6TJEezhDSHVodATwaHQE8Gh0BPBodATwaHQE8GpMfR37tyBl5cX95+1tTU2btxIrbqJSav1eXqV\nSoUOHTrg8uXL2LRpE2xtbbF48WJERUWhuLgYkZGRSE9PR0hICP788088fPgQvr6+yMzMhLn5//5t\n0Xl6om+8nadPSkpCt27d0LFjR2rVTUxarW8tPnToECZOnAgA1KqbNCq8tuquJJPJcPz4cURFRWls\no1bdxNh4bdVd6dSpU3jttddgZ2cHoGLvboqtuuuyN6CxTX/s6tQq9AcPHuQObYCKltym2KpbqD98\noY5dHZ2HN2KxGElJSdi5cye3bunSpdSqm5gsnaFv2bIlCgsL1dbZ2NhQq25isoxyPz0h+lZTrA3e\nDYEuTBElrgeFAAADRElEQVRjo3tviOBQ6IngUOiJ4Bg09PHx8ejRowecnZ21Xt1tqGnTpsHe3h7u\n7u7cOkPdEZqbm4tBgwbBzc0NvXr1wsaNGw02vkQigbe3Nzw9PeHq6srNw2XIu2GVSiW8vLwwatQo\ng49dZ8xAFAoFc3JyYiKRiMlkMubh4cHS09N5HeO3335j165dY7169eLWhYWFsaioKMYYY5GRkWzJ\nkiWMMcbS0tKYh4cHk8lkTCQSMScnJ6ZUKus9dl5eHktJSWGMMfb8+XPWvXt3lp6ebrDxxWIxY4wx\nuVzOvL29WXJyssHGZoyxdevWsZCQEDZq1CjGmOG+7/VhsNBfuHCBBQQEcMsREREsIiKC93FEIpFa\n6F1cXNjjx48ZYxXBdHFxYYwxtnr1ahYZGcm9LiAggF28eJG3OkaPHs0SExMNPr5YLGZ9+/Zlt27d\nMtjYubm5bMiQIezMmTNs5MiRjDHjfd9rw2CHNw8fPkTHjh255eruwORbTXeEOjg46KWee/fuISUl\nBd7e3gYbX6VSwdPTE/b29txhlqHG/uijjxAdHa323IQxvu+1ZbDQN4aLUvW5I7SuSktLERQUhA0b\nNmg0NdXn+Obm5rh+/ToePHiA3377DWfPnjXI2CdOnEDbtm3h5eVV7TUYQ3zf68Jgoa96B2Zubq7a\nv3h9MeQdoXK5HEFBQZg8eTJ3E56h70i1trbGiBEjcPXqVYOMfeHCBRw7dgxdunTBxIkTcebMGUye\nPLlx34lrqOMouVzOunbtykQiEZNKpXr5IMuY5jF9WFgYdwwZERGh8YFKKpWyu3fvsq5duzKVSlXv\ncVUqFZs8eTJbsGCB2npDjF9QUMCKi4sZY4yVlZUxHx8flpSUZLCvvdK5c+e4Y3pDj10XBgs9Y4yd\nPHmSde/enTk5ObHVq1fz/v7BwcGsffv2zMrKijk4OLA9e/awoqIiNmTIEObs7Mz8/Py4cDDG2Jdf\nfsmcnJyYi4sLi4+Pb9DYycnJzMzMjHl4eDBPT0/m6enJTp06ZZDxb9y4wby8vJiHhwdzd3dna9as\nYYwxg33tlc6dO8edvTH02HVh8BvOCDE2uiJLBIdCTwSHQk8Eh0JPBIdCTwSHQk8E5/8BJfvB9OXe\n2EMAAAAASUVORK5CYII=\n" | |
} | |
], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"!mbm_plot -F-1 -I datalist.mb-1 -N -R-155.33/-155.14/18.7/19.15\n", | |
"!./datalist.mb-1.cmd 2>&1 | tail -5\n", | |
"!convert datalist.mb-1.{ps,png}\n", | |
"imshow(imread('datalist.mb-1.png'), cmap=get_cmap('gray'))\n", | |
"# !open datalist.mb-1.ps" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r\n", | |
"Plot generation shellscript <datalist.mb-1.cmd> created.\r\n", | |
"\r\n", | |
"Instructions:\r\n", | |
" Execute <datalist.mb-1.cmd> to generate Postscript plot <datalist.mb-1.ps>.\r\n", | |
" Executing <datalist.mb-1.cmd> also invokes ghostview to view the plot on the screen.\r\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"Resetting GMT fonts...\r\n", | |
"Running ghostview in background...\r\n", | |
"[1] 93389\r\n", | |
"All done!\r\n", | |
"ghostview: Command not found.\r\n" | |
] | |
}, | |
{ | |
"output_type": "pyout", | |
"prompt_number": 13, | |
"text": [ | |
"<matplotlib.image.AxesImage at 0x109454850>" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAD9CAYAAACvOdX2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXtYlGX6x7/DUQVDMwMVdGg4OYhAia7t7u+yAJVKtEg2\nD+SmpuaZXBVZK3MTMLHAU5DhrimptF6pq4KChpCoKAmpiEJAKOABApHjwPD8/mCZZZjTy/C+78ww\nz+e6vC7f53TfM/PlPT33cz8CQggBhcIhJrp2gNL3oSKjcA4VGYVzqMgonENFRuEcKjIK53AispSU\nFLi5ucHZ2Rlbt27lwgTFgBCw/Z5MKpXC1dUVaWlpGDFiBHx8fHDo0CGMHj2aTTMUA4L1M1l2djac\nnJwgFAphbm6Od955B8ePH2fbDMWAMGN7wPLycjg4OMiO7e3tceXKFdmxQCBg2ySFZ3p68WP9TMZE\nRIQQrf998sknOulLbZMei6sT1kU2YsQI3Lt3T3Z879492Nvbs22GYkCwLrJx48ahsLAQpaWlkEgk\nOHLkCAIDA9k2QzEgWL8nMzMzw65duzBlyhRIpVIsWLCA1SfLSZMm6aQvta09rL/C0GhQIND62k7R\nPdr8fvSNP4VzqMgonENFRuEcKjIK51CRUTiHiozCOVRkFM6hIqNwDhUZhXOoyCicQ0VG4RwqMgrn\nUJFROIeKjMI5VGQUzqEi60J2djbS0tKQmpqKwsJCtLS04MKFCwCAdevWAQCqqqpQWFiIOXPmAAA+\n/vhj3LhxA+fOnUNtba1srPT0dNTU1ODy5cuIiYlBQ0MDHjx4gMbGRrS1taGqqgoHDhxAc3Mzzpw5\ng4yMDISFhaGkpEQ2xpQpU3j89NxBRdaF8ePHIykpCSdPnoSFhQUePXqEjIwMuTbXr1/Hhg0b0NLS\nAgCwtraGvb09mpubMXv2bKxYsQIA4O7ujlu3biElJQUWFhY4cOAAVq1aBQC4ceMGYmNjYWlpifz8\nfFhaWuLBgwcAgEuXLmHx4sVISkqCt7c3j5+eO2hkrBIKCwsxZMgQWFpawszMDJaWlnL1Dx8+RGVl\nJby8vOTKJRIJLCwsAAB5eXnw9PSERCJBY2MjCCGorq6Gk5MT2tra0NLSgrKyMoXQ9EePHuH555/n\n9gP2Am1+PyoySo+g4dcUvYSKjMI5VGQUzlErsvnz58PW1hYeHh6yst9//x3+/v5wcXHB5MmT5R7b\nIyMj4ezsDDc3N5w9e5Y7r3VMTEwMLly4gPj4eKxcuRK3b9/GF198genTp6OgoIATm1KpFO3t7Zgx\nYwb27t2LEydOQCqVAgB27dqFH374gRO7bKBWZO+99x5SUlLkyqKiouDv74+7d+/C19cXUVFRAID8\n/HwcOXIE+fn5SElJwdKlS9He3s6d5zrgt99+w3fffYdr166hvr4eGRkZGDNmDEaPHo2rV68iJiYG\nbm5urNs9duwYiouL0d7ejtjYWLi6ukIqlcLU1BSEEEyePBlvvvkm63ZZg2igpKSEjBkzRnbs6upK\nHjx4QAghpLKykri6uhJCCImIiCBRUVGydlOmTCGXLl1SGI+BSYOgvb2dEELI06dPZWWNjY2c262v\nrydtbW1yZVVVVZzb7USb36/HaQoePnwIW1tbAICtrS0ePnwIAKioqMAf/vAHWTt7e3uUl5crHWPT\npk2y/0+aNKnXy+B1QWf2Imtra1lZ//79ObdrZWWlUDZkyBDO7KWnpyM9Pb13g2hSYfcz2aBBg+Tq\nBw8eTAghZPny5eTgwYOy8gULFpCjR4+y8pfAlG3bthEAvP4rKiri7POoory8nJFv0dHRhBD5s21v\n0eb36/GZzNbWFg8ePICdnR0qKytlb6e7p4y6f/8+RowY0dPhtSYtLQ2lpaVwdHTkzSbQMd/Zdb6R\nD2praxl9ztLSUqSlpcldYXSCJhV2P5OtXbtWdu8VGRlJ1q9fTwgh5NatW8TT05O0tLSQ4uJi8sIL\nL8juW3r7l8CUY8eOcTa2IdL5fej1mWzWrFm4cOECqqqq4ODggM2bNyMsLAzBwcFISEiAUChEUlIS\nAEAsFiM4OBhisRhmZmbYs2cPTd1J6YA1iTOES5PanMkaGxvJihUrOPBG9+jLmcyo3/g3Nzejra0N\nO3bsQHJyMhobG3XtUp/EaEV26dIl9OvXDwMHDgQABAQE4NGjRygqKtKxZ+xw7tw5la+Q+MYoRXb0\n6FG5qbJOhEIhhEIhdu7cqQOv2GPZsmXw9fXl9eleHUYnspKSEkyaNEnuJWpXzMzMsGLFCixYsIBn\nz9hh+fLl2L17t67dkMPoRHbo0CFGb8gTEhKwcuVKHjxih/T0dBQVFWHXrl26dkUBoxNZeHg44wiR\nHTt24LXXXuPYo97j5+eHSZMmwcnJSdeuKMXoRAYAkydPRnR0NKO2p0+fxocffoi2tjaOveo5Fy9e\nxIEDB5CWlqZrV9TD2gsUhnBpsqfvyUJCQhi3TU5OJr/++mtPXeKEtrY2smbNGiKVStW2o+/J9IBv\nv/0Ws2fPZtR26tSpMDExwbVr1zj2Sj337t3DlStXEB0dDRMTw/j5DMNLDvnuu+8Yb8sjFArh7e2N\n7du3c+yVclatWoXhw4fj5Zdf1ol9bTF6kQHAiRMnsHXrVkb3XaamplizZg3CwsJ48KyD+vp6hIeH\nIzY2FqamprzZZQsqsv+yfv36Hr2EjYqKwrJlyzj0qIOUlBQ8fPgQERERnNviCiqyLoSGhiIrKwtP\nnjxh1H737t0IDw/nzJ9FixZh6tSpEIlEPe6blZUlS32ga6jIuvHyyy+jtbUVqampjNpHRERg+/bt\nrC6aKSgowJkzZ/D1119r1T8gIAA+Pj6ws7NjzadewdqzLUO4NMl20OKXX37JuG1cXJzCAg9teOut\nt7Tu29raKreYR19eYVCRaWDRokWM2xYVFZHc3Fyt7NTW1pLQ0FCt+hJCSGJiImloaJAr0xeR0cul\nBuLj4xnf4ItEIjg6OuLAgQM9spGYmIja2lp88cUX2riI9evXY/bs2RgwYIBW/TmHNYkzhEuTXMb4\n7927l3HblpYWsnnzZkZtV65cqa1L5P79++Ts2bMq6/XlTEZF1gNSU1OJRCJh3P7DDz9UWVdRUUHS\n0tK09iU0NFTjYmIqMg7gY7VSaWkpKS0tZdz+xRdfVCj77LPPtLbf1tbGeE2CvojMYO7JmpqacOvW\nLVRVVaGgoABNTU3Iy8vj3Y9Ro0Zh1KhRjBOc5OTkYMmSJQA61hTMnDkTf//737WynZ6ejsrKSuzY\nsUOr/k1NTaiqqkJdXR0AoKGhAVeuXJFlAeAKgxHZ3bt3UVZWhueeew4ikQi3bt2S+6E3bNjAa2ab\n6dOnM55aiouLw9y5c3H//n18//33WtlbvHgxJk2aBHt7e8Z9jh07hg0bNsiOi4qKcPjwYWRkZGDV\nqlWYOXMm8vLy8Mwzz2jlE2PUnebKysrIpEmTiFgsJu7u7iQ2NpYQQkh1dTXx8/Mjzs7OxN/fn9TU\n1Mj6REREECcnJ+Lq6krOnDnDyumWkI5TfmZmJiGEkAsXLpCnT5+Smzdvyo3r6Oio1dja0t7eTubO\nnauxXUNDA7l165ZWNqqqqkhSUpJWfYVCIQEgu1zW19eT27dvk8bGRtLc3Ex+/fVXkp6e3qMxtfn9\n1PaorKwk169fJ4R0/MguLi4kPz+frF27lmzdupUQQkhUVJTCKnKJREJKSkqISCRSiHnSVmSa0IXI\nOgkLC1NZ19LSQkaOHNmjB4ZOEhMTSWtrq9Z+dRcZG7Ausu5Mnz6dpKam9ip9VF8UGSEdrzjYeONP\nCCFSqZRMnjy51+Poi8gYJ1wpLS3F9evXMWHChF6nj+oLqaO6s3DhQqSkpGDq1Km9GufixYvo168f\nzpw5w5JnvYON1FGMRFZfX4+goCDExsbKFsN2IhAI1Oa8UFbXVWR9iePHj/dKZCtWrEBMTIxexYx1\nPwl8+umnPR5D49Nla2srgoKCEBISghkzZgD4X/ooAHqVPkqXbN68GV999ZXW/ZctW4adO3fqlcBY\nQ921tL29nYSEhJDVq1fLlfcmfZQGk1oDHd2T1dXVkfz8fK37X758mbS0tLDo0f/Ql3sytT0yMzOJ\nQCAgnp6exMvLi3h5eZHk5GRSXV1NfH19lb7C2LJlCxGJRMTV1ZWkpKSw4iQT+BZZe3s7mTdvXq/6\nL126lD2HlKAvIusz294IBAI4OjqiuLiY9bG7c/v2bRQVFWHatGla9a+srMSpU6ewcOFClj2Tx9HR\nEaWlpXj69KnKtAw9hW57wwN79+6FSCTSWmCbNm2CjY0N5wLTJ3qcM9aYWblyJWJiYrRe77ho0SLE\nx8cbXQZKKjIGEEIQEhKCgwcPatW/qKgIzc3NWsfsGzr0cqmBwsJCnDx5UmuBhYWFwcnJCWPGjGHZ\nM8OBikwNixcvxqhRo7S6/6qoqMCuXbtk2wIZM1RkSqitrcWpU6cQHx8v24m3J+zbtw/W1tZYvnw5\nB94ZHlRk3QgPD4e1tTVef/11rfrHx8fjr3/9K/cxWgaE0Yjs6NGjCmXdd+qYMWMGIiIiYGam3fNQ\nUVERFi9ebDDZdvjCaL6NoKAghbLLly9j/vz5qKmpQWJiIo4dO6b1+L///jsGDx7cGxf7LEYjMlXE\nxcVh8+bNmDNnjsa2ubm5KmcUfv75Z053azNkjF5kFhYWjMNzMjIy8Nxzz+H06dOysoKCAty6dQt+\nfn5cuWj4sDZzyhCuTKKXE+R37txh1K6srIwQQsgnn3xC/vjHP2ptjw/0ZYLc6M9kncTGxjJq17kc\nbdOmTfjpp5+4dKnPQKMwulBXV6fx1YNEIgEhBJaWllrb4QsahaGHrFixQmMbCwsLvP/++zx403eg\nZ7IutLa2wtzcXGO7xsZG/c2g0wV6JtNDzM3NsW7dOo3tBgwYoDeriQwBKrJuzJw5k1E7rvNH9CWo\nyLrh4+PDKJFLSEgIbty4wYNHhg8VmRKYbPAlEAh6NQ1lTNAbfyU0NTWhf//+Gts1NDTAysqq1/a4\ngt7495C8vDxUVlYC6BDBoUOHsHr1alm9jY0N+vXrx4qt/v37M1opbWVlhS1btrBikwv69+8PGxsb\n2fGNGzcQFxeH06dPY8OGDZg8eTLy8vIY71ugLWpF1tzcjAkTJsDLywtisViW6+r333+Hv78/XFxc\nMHnyZNTW1sr6REZGwtnZGW5uboz3lWTCkCFDkJKSAqBjw9Np06Zh4sSJsvra2lpERkayZs/d3Z1R\nuzfeeIM1m2wTGRkp99s8++yzcHBwwLhx47B27VosXboUOTk5ckLkBE3zTp1pu1tbW8mECRNIZmam\nXqaOIoT9dJ7nz59n1C4nJ4dVu2xhMOk8O186SiQSSKVSDB48GCdOnMC8efMAAPPmzZPdAB8/fhyz\nZs2Cubk5hEIhnJyckJ2dzdkfCNcwnZvUdpGJsaAxBLS9vR0vvvgifv31V3zwwQdwd3c3mtRRH330\nEaqqqvDcc8+pbffiiy/y5BH/8JI6ysTEBLm5uXjy5AmmTJmCH3/8Ua6+r6eOWrJkCf7973+rbTN3\n7lzU1NT0ychYXlJHdWJjY4PXX38dOTk5RpU6SpPAOlm5ciXHnhguakVWVVUlezppampCamoqvL29\nERgYiP379wMA9u/fL8tbFhgYiMOHD0MikaCkpASFhYUYP348xx+Be7788kuNbbRNm24MqL1cVlZW\nYt68eWhvb0d7eztCQkLg6+sLb29vBAcHIyEhAUKhEElJSQAAsViM4OBgiMVimJmZYc+ePX0i7wOT\n1xlubm48eGKgsPZsyxAuTfb2FUZdXR2ZOHGi0rrffvtNY38/P79e2Wcbg3mFYSx89tlnsLS0RFZW\nFpYuXapQz2TraG1uio0Bo8/qU1dXh/T0dGzcuFFWtnbtWoV2oaGhGsd66aWXWPWtr2D0ZzJTU1ME\nBgbKlTk6OuIf//iHXNnw4cOxdetWtWNZWlpi0aJFrPto6Bi9yKysrJSepZTNSY4dO1bjeH/5y19Y\n8asvYfQiAzp2vm1ra5Mr8/b2xrfffitXFhAQgCtXrqgdy9fXFxUVFaz7aMhQkQGws7PDN998o1A+\nbNgwhbJDhw5pHG/v3r2s+NVXoCL7L13Dhjrx9/fHyZMn5cpiYmJQX1+vdqy+PJepDVRk/8XT0xNZ\nWVkK5fn5+QplmqaQpk2bJhfHZexQkXXh6tWrCmXr1q1DUVGRXNm+ffs0jnX9+nXW/DJ0qMi6sGrV\nKtnEf1eUrV7SFCeXkZHBml+GDhVZNz7++GOFsqCgIJw7d06uTJOIxGIxq34ZMlRk3YiLi1Na3v2S\nGRoaipqaGpXjzJw5E62traz6ZqhQkXXDxMQEwcHBCuWLFi1CaWmp7NjU1BSffPKJ2rGuXbvGtnsG\nCRWZEqKjoxXWFgoEAsTHx8uVffTRR2rXIGqahjIWqMiUMHLkSGzevFmhPDIyUm7NwtChQ9Wuu3zr\nrbc48c/QoCJTwZQpU5SWf/bZZ3LH6iIv3n33XVZ9MlSoyFTwhz/8Ad9//71C+a5du/D06VPZcUBA\ngNL3a508evSIE/8MCSoyNSibuzQ1NcVrr70mV7Z9+3aVYzBNRdWXoSJTw5/+9Ce51VedZGZmyh0f\nPnxYIYqjk4iICE58MySoyDSg7AEAgMLeS8qiaYGOkCFjh4pMA6rCdo4cOSJ3vH79eqXtBgwYgJs3\nb7LulyFhECKTSqXIy8vDqVOn0Nraig8++AAZGRk4deqUrM3ly5dRVlbGif2AgACFMmtra7kFJ3Z2\ndjhx4oTS/qmpqZz4pYmysjJcvnxZdnz+/Hns3r0bV69exYEDB5CVlYXPP/9c6S0BmzASmVQqhbe3\nt2xzUb5TR5mamsLExAQ//fQTzM3NIZVKMWjQIFy6dEnWZuLEiYwW4WrDiRMnlL507R62XVBQoLQ/\nk0UoXPDFF1/IxcnZ2tqivr4eFhYWsLW1xZkzZ/DkyRM4ODhw6wiTdXPbt28ns2fPJtOmTSOEEL1M\nHYVebnujiZkzZyot37Fjh+z/ra2tpKWlhTMfeorBbHtz//59nD59GgsXLpT9NRtL6qiuREdHKy3v\nure4mZmZygcAY0bjusvQ0FBs27YNdXV1sjJjSR3VlZEjRyIiIgLh4eFy5a+88gq+/vpr2VK4xYsX\n68I9zuA8ddTJkyfx/PPPw9vbW6Whvp46qiv+/v5Ky7u+phCLxYiLi8OSJUv4cotTOE8dlZWVhRMn\nTsDR0RGzZs3C+fPnERISYlSpo7ri4+OjsLCks/zAgQOy44aGBj7d0n+Y3rylp6eTN954gxDSceMf\nFRVFCCEkMjJS4ca/paWFFBcXkxdeeIG0t7f3+saRCeD4xr+Tzs+tiYKCAo490YzB3Ph3pfPSFxYW\nhtTUVLi4uOD8+fMICwsDIJ86KiAgoM+kjurK+vXrGU1679mzhwdvDAO6WYQWLFq0CF9//bXaNvqw\nLybdLMKA0SQwoGNfTPo6owMqMi0JCgrS2KZzK2ljh4pMS7onY1EF3aecikxrrKys8OGHH2ps98sv\nv/DgjX5DRdYLmMTw06R4VGS9wsvLS2NeDDMzM7z33ns8eaSfUJH1EiaP813z0RojVGS9ZMGCBRqz\nL4pEIqN+0qQiY4EffvhBY5tBgwbx4Il+QkXGApGRkXJrMZXx7rvvqoyc7etQkbGAQCBQWL2kjO6r\nz40FKjKWYJL07uDBgyrXZ/ZlqMhYhMnZLCYmhgdP9AsqMhZhMtWkbBOKvg4VGYsMGTJEY4y/m5sb\nzpw5w5NH+gEVGcswie1XlwWoL0JFxjLe3t4ao2KNbStpKjIOMDFR/7U+88wzWLduHU/e6B4qMg5Y\nsmSJxjDwkJAQnrzRPVRkHKEp1szDw4NRGHdfgIqMI44dO4aWlha1bSQSCU/e6BaD2B66sbERhYWF\naGtrg5OTExISEuDu7o60tDRs27ZN1+6pZPXq1fjqq69U1i9fvhyPHz/G0KFDefFn9+7dEAgE8PDw\nQE1NDcRiMWpra2FmZgYvLy/O7Go8kwmFQowdOxbe3t4YP348AP5TRw0YMABAx45tNjY2sLS0hKOj\no1wbQghnqaO0RV0u2U643BszJiZGLt7t//7v/9DQ0ABLS0sIBALExMTgypUrnAoMgOblwEKhkFRX\nV8uV6WPqKEIIOXbsGGdja8v777+vtj4rK4sz253fh0GsICfdoj+NMXWUtvztb39TWz9x4sQ+/x1p\nvCcTCATw8/ODqakpFi9ejPfff98oU0dpi4uLC3788Ue88sorKtvcuXNHdiuib3CeOgoALl68iGHD\nhuHx48fw9/eHm5ubXL0xpY7SltzcXLUiCwkJwS+//IKxY8fy6BUzOE8dBfxvw4ShQ4fizTffRHZ2\nttGmjtKW1atXo7CwUG2bpKQknrzhH7Uia2xslIUVNzQ04OzZs/Dw8EBgYCD2798PANi/fz9mzJgB\nAAgMDMThw4chkUhQUlKCwsJCvb0M8IlAINAYBtSnVzSpeyooLi4mnp6exNPTk7i7u5OIiAhCCCHV\n1dXE19eXODs7E39/f1JTUyPrs2XLFiISiYirqytJSUlh5emEKfr4dNmV4uJitfWhoaGs2tOXp0vu\nfnFVBo1YZEuXLlVbf+7cOVbt6YvI6LQSj+zevRtNTU0q61999VUcPXqUR4/4gYqMZ6ZOnaq2/vbt\n2zx5wh9UZDxz4cIFtfUbN27E48ePefKGH6jIdICmVU1MUlIZElRkOuDQoUNq67/55hu0t7fz5A33\nUJHpgGeeeQYrVqxQWW9packov4ahQEWmIzQtneu6A56hQ0WmI8aMGYOSkhKV9dHR0X0mcpaKTIdo\nuiT2lQyNVGQ65NVXX1W7DiAuLq5PnM2oyHSIl5eX2nRSAwcO7BMT51RkOmbNmjVq6zsjXAwZKjId\nM2jQICQmJqqsf/nll5GVlcWjR+xDRWYAJCcn69qFXkFFpgfMmTMHFRUVKutXr16N1tZWHj1iFyoy\nPSE2NlZl3ZAhQ/Dxxx/z6A27UJHpCZGRkWrnKzXV6zNUZHqCiYkJ1q9fr7bNv/71L36cYRkqMj0i\nLCxM7cvZu3fv8ugNe1CR6RFDhgxBRESEyvqoqCgevWEPKjI9Izg4WG39zJkzefKEPQxCZDU1NcjL\ny0N5eTkqKysRGxuL27dvyy3KaGlp6RMbMbi7u+PIkSMq63fu3Ml4LKlUKnf5XbZsGeLi4pCamgoA\nSEtLw5MnT5CWlqa9wwzQKLLa2lq8/fbbGD16NMRiMa5cucJ76qjBgwcD6BDbsGHDcPv2bdy7d09u\nXq9fv359ZmP5kSNHqqyzs7PD6tWrGY2zZs0a9OvXT3a8ZMkSSCQS9OvXD8ePH0diYiJ++ukn+Pn5\n9dpntWhaM/fuu++ShIQEQgghra2tpLa2Vi9TRwEgjo6OnIytC27evKmyLj8/n9EYQqGQANDvdZdP\nnjxBZmYm5s+fD6BjF1obGxuaOooH1L2uuHjxIn+OsIDarD4lJSUYOnQo3nvvPeTl5eGll15CTEwM\nTR3FA6rSlM6bN0+Wh4QP2Egdpfbcd/XqVWJmZkays7MJIYSsWrWKbNy4kQwaNEiu3eDBgwkhhCxf\nvpwcPHhQVr5gwQJy9OjRXp9umYA+drkkhJDAwEBCCCF1dXXko48+kss5wgSDuFza29vD3t4ePj4+\nAIC3334bP//8M+zs7GjqKB44fvw49uzZg4EDB2Lz5s0Gu/uvWpHZ2dnBwcFB9qY5LS0N7u7umDZt\nGk0dxRNLly7VtQu9RmOmxZ07d2LOnDmQSCQQiUT45z//CalUiuDgYCQkJEAoFMoSuInFYgQHB0Ms\nFsPMzAx79uxRm4WRYhwI/nud5c+gQKCQ6JitcR0dHTVuN2NMODo6orS0FE+fPoW1tTUrY2rz+xnE\nG3+KYUNFRuEcKjIK51CRUTiHiozCOVRkFM6hIqNwDhUZhXOoyCicYxA79zLB0dER5ubmnG5SqgwH\nBweYmfH7NUqlUpSVlWlsZ2FhobD5rE5gLQaEIVya3LZtGwHA67+ioiLOPo8qysvLGfkWHR1NCNH9\njiR9Zu4yOzsbLS0tvCeNs7KygokJv3cdhBDU19drbGdhYQFLS0v4+PiwFqigze/XZ0RG4Qc6Qc4T\nr732GlJSUvD48WO0tbWhoqICAQEB2L9/P+7cucOJzYqKCrS1tSEpKQlHjx5FQ0MDKioqQAhBbm4u\njh8/zoldNqAi6wFFRUWIj4/Hs88+i8ePH2Pjxo3Yt28fhg8fjkGDBmH8+PFwdXVl3e7BgwdRU1MD\nABg7diwsLS2RmZmJ4cOHAwDq6uowffp01u2yBb1cUnoEvVxS9BIqMgrnUJFROIeKjMI5VGQUzqEi\no3COWpHduXMH3t7esn82NjbYsWMH76mjKAYO00lOqVRK7OzsSFlZmV6mjqLwgza/H+PLZVpaGpyc\nnODg4EBTR1F6BONAqMOHD2PWrFkAQFNHGRFspI5iJDKJRIL//Oc/2Lp1q0KdQCBQG0airK6ryCj6\nTfeTwKefftrjMRhdLpOTk/HSSy9h6NChADrOXrpKHdWbv6re/kVS29rBSGSHDh2SXSqBjhRRukod\nZahftrHaBhhcLhsaGpCWliYXOx8WFkZTR1EYo1FkVlZWqKqqkit79tlnVeZ+Dw8PR3h4ODveUfoE\nOoknoxg2PZUM70vieNY0RQ+gc5cUzqEio3AOFRmFc3gVWUpKCtzc3ODs7Kx09kAZQqEQY8eOhbe3\nt+ydm6ookPnz58PW1hYeHh6y/j2JGFHWf9OmTbC3t5dFoiQnJyvtn5iYiFdeeQXu7u4YM2YMduzY\nwdi+SCSCp6enQl+mtk+ePIkJEybAy8sLYrEYGzZsYGzbxcUFbm5uCn2Z2mYUacPyJL1K2traiEgk\nIiUlJUQikRBPT09GG1EJhUJSXV0tV6YqCiQjI4P8/PPPZMyYMRrbKosYSU9PV+i/adMmsn37dgW/\nuvcfNWoUycnJIYR0pAVwcXEh+fn5jOxnZ2cTe3t7IpVK5foytS0SiWSpCFpbW8mECRNIZmYm48/u\n6OhIpFJbN811AAADO0lEQVSpXN+e2O4eadMd3s5k2dnZcHJyglAohLm5Od555x3GC1JJtydSVVEg\nf/7zn2XbFmpqqyxixNLSUqG/MvvK+ru5uclSJFhbW2P06NEoLy9nZN/Hxwfu7u7Izs6W68vUtpOT\nE27evAmgY55ZKpVi8ODBjD+7i4sLsrOz5fr2xLamSBveRFZeXg4HBwfZsaoIje4IBAL4+flh3Lhx\nslkHVVEgylAXMWJvb8/In507d8LT0xMLFiyQXXLU9S8tLcX169cxYcKEHtvv7NsZzcLU9r179+Dl\n5QVbW1vZZZup7REjRmDWrFlyfbX53KrgTWTavoS9ePEirl+/juTkZOzevRuZmZkK4zIdW5uIkQ8+\n+AAlJSXIzc3FsGHDsGbNGrX96+vrERQUhNjYWAwcOLBH9pubm/H2228jNjYW1tbWPbJtamqK3Nxc\n3L9/HxkZGfjxxx8Z2xYIBNi+fbusb3p6eo8/tzp4E1n3CI179+7J/UWoYtiwYQCAoUOH4s0330R2\ndrbKKBBl9DZi5Pnnn5f9QAsXLpRdGpT1t7W1RVBQEEJCQmRBA0ztl5WVYefOnZg7d66sb09sd/pu\nY2OD119/HTk5OT3+7J19r127ppVtVfAmsnHjxqGwsBClpaWQSCQ4cuQIAgMD1fZpbGzE06dPAXRM\n1J89exYeHh4qo0CU0duIkcrKStn/f/jhB9mTZ/f+d+/eRXx8PMRisdz2zUzsFxcX49KlS5g4caJc\nX6a2CwoK4OLiAgBoampCamoqvL29GdnOyclBQUEBxo8fL9e3U5yabDOKtFH7WMAyp0+fJi4uLkQk\nEpGIiAiN7YuLi4mnpyfx9PQk7u7usj7V1dXE19eXODs7E39/f9k+kO+88w4ZNmwYMTc3J/b29mTf\nvn0q2xJCyJYtW4hIJCKurq4kJSVFoX9CQgIJCQkhHh4eZOzYsWT69OnkwYMHSvtHR0cTgUBAPD09\niZeXF/Hy8iLJycmM7Ds4OCj0PX36NGPbX331FfH29iaenp7Ew8ODfP7552q/p679hUIhEYlECn2Z\n2k5JSdH4O/I+QU4xPugbfwrnUJFROIeKjMI5VGQUzqEio3AOFRmFc/4fHAklvviW2u8AAAAASUVO\nRK5CYII=\n" | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"!mbm_plot -I datalist.mb-1 -C -G1\n", | |
"!./datalist.mb-1.cmd 2>&1 | tail -5\n", | |
"!convert datalist.mb-1.{ps,png}\n", | |
"imshow(imread('datalist.mb-1.png')) # , cmap=get_cmap('gray'))\n", | |
"# !open datalist.mb-1.ps" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\r\n", | |
"Plot generation shellscript <datalist.mb-1.cmd> created.\r\n", | |
"\r\n", | |
"Instructions:\r\n", | |
" Execute <datalist.mb-1.cmd> to generate Postscript plot <datalist.mb-1.ps>.\r\n", | |
" Executing <datalist.mb-1.cmd> also invokes ghostview to view the plot on the screen.\r\n" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"Resetting GMT fonts...\r\n", | |
"Running ghostview in background...\r\n", | |
"[1] 93483\r\n", | |
"All done!\r\n", | |
"ghostview: Command not found.\r\n" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAMAAAAD9CAYAAADqOHh0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FMUbxz97JQ1CCIGEKoE0CAESeu+Q0ESkS5OmgqAg\nosJPRaQLiBQFQUAQBSyASG8JvXdCQkiDQALpvVyb3x8xJxEI7ZIgt5/nuedud+fmnbmd9/ad3Znv\nSEIIgYyMmaIo7gLIyBQnsgPImDWyA8iYNbIDyJg1sgPImDWyA8iYNYXiALt376ZGjRq4ubkxd+7c\nwjAhI2MSJFM/B9Dr9Xh4eLB//34qVapEw4YN2bBhAzVr1jSlGRkZk2DyK8Dp06dxdXXF2dkZtVpN\n//79+fPPP01tRkbGJKhMneGdO3eoUqWKcbty5cqcOnXKuC1JkqlNysgUSEFBjsmvAE/SwIUQRfaa\nOnVqkdorDpuyvUe/HofJHaBSpUpERUUZt6OioqhcubKpzcjImASTO0CDBg24ceMGkZGRaDQaNm3a\nxKuvvmpqMzIyJsHkfQCVSsXSpUvx9fVFr9czYsSIYr0D1KZNm5fepmzv2TH5bdDHGpSkJ4rNZGRM\nwePam/wkWMaskR1AxqyRHUDGrJEdQMaskR1AxqyRHUDGrJEdQMaskR1AxqyRHUDGrJEdQMaskR1A\nxqyRHUDGrJEdQMaskR3gBWL79u2Eh4dz+fJlFi9eTGpqKjqdDn9/fyBXbSM4OJjhw4cb01+9epV5\n8+YRGBgIQEZGBu+//z6XLl1i1apVpKenc+fOHW7dukVoaKgxr8DAQC5evMinn35KdHS0sQzTpk0r\n4loXL7IDvEB069aN33//nXXr1qHVahk+fDgrV640Hg8ICODNN98kISEBAD8/PxQKBQkJCXz44YcA\nrF+/npiYGFatWoXBYGD8+PHMmjWLO3fuMHPmTOPQ4GrVqmFvbw/A+fPn6dy5M5cvXy7iGhc/8nyA\nFxC9Xk9OTg5arRaNRkO5cuWMx+Lj49HpdJQvXz7fd2JjY3F0dDRuazQahBBoNBqysrJwdHR8IE0e\n6enplCxZsvAqVIw8rr3JDiDzUiNPiJGRKQDZAWTMmgIdYPjw4Tg5OVG7dm3jvsTERDp27Ii7uzud\nOnUiOTnZeGz27Nm4ublRo0YN9u7dW3illpExEQU6wLBhw9i9e3e+fXPmzKFjx46EhITQvn175syZ\nA8C1a9fYtGkT165dY/fu3YwZMwaDwVB4JS8EhBCkpaURFRXF5MmTmTdvHtHR0eTk5PDJJ5/kU7h7\nXjIzM9FoNHz00Ud88MEHzJ492/hnMmnSJGbMmGEyW2lpaQghCA4OZtWqVbz//vsAZGdnk5iYSGpq\nqkltAZw7d461a9eycuVK9Ho9CxYsIDU1lYyMDJPZMgniMURERAgvLy/jtoeHh7h7964QQoiYmBjh\n4eEhhBBi1qxZYs6cOcZ0vr6+4sSJEw/k9wQmi52srCxx8eJFcfPmTZGRkSHS09PF2bNnRUBAgMlt\nXb9+XezevVuEhYWJnJwco/179+6Z3FZWVpYIDAwUBw8eFEIIceDAAXH8+HGT2xFCiPT0dHH9+nUR\nFRUlDAaDOHXqlNi9e3eh2CqIx7W3p9YFunfvHk5OTgA4OTlx7949AKKjo2nSpIkxXeXKlblz585D\n8/jiiy+Mn9u0aVMs2j0FYWVlRd26dfPtq1+/fqHYcnd3x93d/QH7VlZWJrdlZWWFp6cnnp6eALRr\n187kNvIoUaJEvno1atSo0GzdT0BAAAEBAU+c/rmEsSRJKlAL9FHH7neA4mbnzp106dKF27dvP1TC\nsajEfO3t7UlMTCwSWw0bNuTs2bNFYis8PJxq1ao91Xf2799Phw4dnsnev/9QH/dk+6kdwMnJibt3\n71K+fHliYmKMD1b+rQl6+/ZtKlWq9LTZFzk6nY79+/cTHx9P2bJlHzjeunXrIimHlZUV+/fvLxJb\nrq6ulChRokhsnTt3jrCwsKf6zoULFwCe2QmeisfFUP/uA0yaNMkY68+ePVt8/PHHQgghAgMDRd26\ndUVOTo4IDw8X1atXFwaD4aljsqJmx44dQgghoqKiirkkMnns27fPZHk9rr0VeAUYMGAAhw4dIj4+\nnipVqvDll1/yySef0LdvX1atWoWzszO//vorAJ6envTt2xdPT09UKhXfffedvBaAzAuP2Q+FeFwf\nQKboeZ4+wL95XHszuTr0i8i5c+dwcnJCpVKRmZlJ9erVCQoKktct+48QFhZGVFQUjo6O3Lt3D3d3\nd0JCQmjbtu1z520WQyHmz5/Pli1bsLa2pkyZMvj6+hrvgsTHx8uhWiEihKBz585P9Z2TJ0/mOydb\nt25l165deHp6EhAQwJ49e0x269wsrgAbNmxAo9FgYWFBTk4Oe/bsMR5TKpXFWLKXnxMnTjBy5Eg2\nbdpEv379nimPiRMnkpKSAsCYMWNwcHAw2Z+WWVwBACwsLACwtLQs5pKYF82aNePo0aOsWbOGnJyc\nZ87Hzs4OwBjKmgqzcQCZ4mPhwoV069bthfzzkR1ApkgYO3YsKbF3GNPVB7F1ZHEXx4jsADJFQ+QJ\nknbO5Mue1Wn64R/FXRojsgPImJRFixaRlZWVb54IBj2Hf/2OoNAQ9lyI4OS0RqSfW1t8hbwP2QFk\nTIpOp2PChAm8+uqrjBs3joSEBNrWc+Ovk0F08iqLMOjQKhSc27Py8ZkVAWZxG1Sm8Pnll1/o3Lkz\nEydOBODKlSucOHGC7b/+xJJRLbDSJdLy8z0cn9WM2dsi+WDleUJCQh4YCl7UyA4gYxIuXrzIvXv3\nGDp0KL/88gtjx46ldu3a9G7uzq9Z6ZSxgeNfNqHpZyc5sbAtgwe9xpC3Pih2B5BDIJlnJiUlxTh0\n+auvvmLIkCEsX76csWPHArDqvY78/l49GlWz4af3fJi4KZQT81sjFArc7e9y6NAhbty4UZxVkB1A\n5tnZu3cvJ0+eZNiwYVy9ehUHBwemTJmSe3DLKBpV0rLpaBBT+3vw3k/BLHirDlko+HJDEJNH1GXz\npmUsXzCsWOsgO4DMM9OnTx+aNWuGr68vly9fpkWLFsTGxgJwLigUryqWNPV04H+/hbJ4tDf+VxPI\nEPDpO/URaiU7V/ejXsvRxVoHuQ8g81zUrVvXOH/azc2N4OBgRnWuw+q3ayFZqEnVa5k5vDbf745k\n2Gvu/Hn6LneSYmje9BUavrqKqkJw4MAB2rdvXyzll68AMiajYcOGuHKDWQPcmPlXJHO3R+LlYs+4\n7y8zqncNNCo1+8/dY8iA2pyJeIULFy6wd+9egoODmTFjBocPHy7yMstXAJmnZvPmzSiVSmrWrPnA\nXZyKd/9g+elYujSqQIeG5Wk/5Qj7lnRCb2lBu+E7OLS5L3pLNecu3qBbTwe8vLzw9fVlxYoV7N27\nF41GU6R1kR1A5qlRKBSkpaVx7NgxQkNDad68uXG05vKDt/lyiCeolXT5/Dh7l/qis7Zk2sqLBGzt\nh85SzSczj7JqzUkOHz5M6dKlUavVvPXWW0aV6pMnTxZZXWQHkHlqXnvtNQDu3r2LtbU1Op0OgJNz\nWvBONxdQqxi68Bx/LerInTQdF6/d5X8fNkNvoWbyrKPM+moUISEhuLq6YmVlxfjx45kxY0axSLQX\n2AeIioqibdu21KpVCy8vLxYvXgzI+qDmSmRkJGvWrDFuly9fnvj4eBwcHPhl0UccCEwECxUfrglk\n9RctCbqXRVyOoFadChwLTGDrwUhmz/sfdiVH4O7uTsWKFcnKyuL111/nwIEDHD16tMjrVKADqNVq\nFi5cSGBgICdPnuTbb78lKCjopdYHlXk0Bw8epGbNmowcOZL4+HgAXFxcAFDdPURCpo4Ok48wd3xD\nwhM1WJa2oUbt8vzwWxA7/SNJyZZIz8ivvWRnZ0erVq1wcXGhRYsWRV6nAh2gfPnyeHt7A1CyZElq\n1qzJnTt32LZtG0OHDgVg6NChbN26FYA///yTAQMGoFarcXZ2xtXVldOnTxdyFWSKiuHDh3P79m0+\n/PBDYmJimDBhQu6Bw+Po2+YVTl1PYt57DdBbWrDv3F0qVrXHYKHizVEN6d7LmyytwMGu/kOVAb28\nvIq2Mn/zxH2AyMhILly4QOPGjZ9bH/RF1waVeTS9e/cGcie7e3p6Eh8fz0ezd2JpqeTI935oLS04\ncT2JNwfWwaBWMu+7M4yd2JaSFSyo06ADFhYWxj/PwqBQtEHT09Pp1asXixYtwtbWNt+xZ9EHfZG0\nQWWeDUmSGDVqFNlH3mXOuPocvBjHws03cHctQzs/dwyWKn7eep33PmiFRqlCr1BS1jK38/y0WqFP\nw9Nqgz72QZhWq6VXr14MHjzY2PvP0wcFXgp9UJmnY/PmzZw4cQIAC2Ua9uVt2Xf+HnHpOtLStRgs\n1bz3qT+9B/igU6rRS2peKTGpmEv9cAq8AgghGDFiBJ6enowfP964/9VXX2Xt2rV8/PHHrF271ugY\nr776Km+88QYffPABd+7c4caNG0Umiy1TdJw4cYIyZcoQf+lbrgaF8OveCI5v649BpQRJolbTHzh1\n+QPuJeVgV1bFtMm7+GHJi+kABSqHHjlyREiSJOrWrSu8vb2Ft7e32LVrl0hISBDt27cXbm5uomPH\njiIpKcn4nZkzZwoXFxfh4eHx0AURHmOyyFm/fr0AZHHcRzBlyhSxffv2BxY7iY+PF+8OqCVcq5YW\nG7/tItJvThCp0R8Kd7ey4l7yNHHw3ETh6uEkuvepJ06dOiV++umnJ7Y5ffp0k7WTx+VT4BWgRYsW\nj7yN+Sgp7ylTpvwzJFbmP0+/fv2oWbMmly9fZsuWLfTs2RMAe3UMxy7e4/Rf/dFbWXA7MZvQW6kc\nPT0WjdKCb77yZ9eFyQSd0ZGWlkaJEiU4ePAgqamp2NjY0KlTp2KuWS5mMRju3Llz3L59m7t37xId\nHQ1AUFBQMZfqv0GdOnVQq9VERkbSqVMno7jVqz26c/zP/liUssbS1pIzV+Np1MoNjcoSv1bfseDH\noehUlnRvNZE2bdpgZWVlXJMgNDSUFStWPHEZwsLCCAgIMD5funPnDv7+/iapn1kMhZg/fz7NmjVj\nyJAhJCUl4efnx8CBA6lZsyYKhYLmzZsXdxFfeHr16mX8nBg4h9++74pBrcKgVtKu28/s2jcKnULF\nteBEtpyYhE5So5XUQK785P36oFFRUVSpUuWRtkqVKpXvnGzdupXY2Fjmzp3L7Nmzadu2LcOGmWYi\njdnIo+dpg/4bWR794Xz00Ue0bt0alUqFr69vvmNZN8ZhUCkRFioOn4mmQbNqYGmFVqlm2uf7mDC3\nD8ePRjK8zSwk6emDjIfJo6ekpBgH3Ol0uieWR5RXiv+bhzV+mUfzzjvvcOPGDS5dusSXX35JSEgI\nAJkR4zFYqBBqFWkaQdNW1ZEsLDBIEgZJwcAxbdArVBzfH4okKcjKyjJJefIaP2BSbVCzCIFknp7q\n1aszfvx47t69a1xDbc+ePcTeOstHE5pyKyad0FtpNG/rikFSICQFIGFtY4lBUrJ45vesXLmSKlWq\nYGFhQdOmTbG2ti7uaj2A2VwBZJ6N8uXLM2jQoNwbCdH7CI5Mod+IbcRn6Gnazh2t0oK4NAO7dt/g\nk/e2YFe2JJIQlMCBUaNGkZWVRVZWFgEBAfmeJb0oyFcAmSdiwKAE9IqGZGb5kJOjZ+/eGyxYcoYB\nI5vToE0NlHZJVK1VGStVdTwUfsbv5d021Wq1xS6B8jBkB5ApEJ0uiqT01egVKgwKFek6wdJFR5g0\nqyetBrYlJiqBo8dusmL+ftSWFvh2ziAs5iDVqlXLN+ZHrVbz3nvvFWNNHo7sAGbG5cuXqVOnzhOl\njUv9GoPIwKBQo1eo+PabQwx9rz0fzOnNpaAEYpNy8GrpiZurYG4rb/RIXFkeQ/36FalYsSKpqamU\nKlWqkGv0fMgOYGZkZ2ezaNEi3n///QLTRafNxqBQcOtWFr+sPY2FpZqxU/zQKVTkKC3Z+MNR+kzp\nzbud5tJ7Si8MeoF7Ew/Gjh2LVqtl/fr1VKhQgfPnz6PVahk+fHiB9/6LC7kTbGasWrWKDh06cOTI\nEeO+mzdvGieix6Wv4Hb6XPq99iOR0Zk4VXdi/Jc9GP2/LugUKvSSkq8+/I0xC4dy8cJt3vn1f/z5\n3T7OHQ/j2Incp+wKhYLevXvj5+dHmTJliIiIoHTp0sVS38dhNg/CHoU5PghbsmQJHTp0oFKlSpQq\nVYqAgABCQq5Tp8kNyjuXY/H8AMZM6YxBoUQv5Y7lRwASZGRoiEoWLJi4gQErPuBWWBq21TywSlfw\ncVXTjPwtynWC5SuAGTJu3DgcHBwIDg4G/p5E0iOWTz/ZRUqmYMz/uqBTqNEqLNAq1eglJfu2X+Wv\nXy+Qpldj7eTAqFXjWTFgDrbV3BlmV8dkjb+okR3ATHF0dMTDsyIj32vLnOUDUNjZ0apLbZYu8Ef7\nd6dXr1ChExLD2szlzs0E2vZvioWtDUKATkh0/+Yjpjo05RWVTXFX55mRO8FmTJxqM5Pm98EgKciR\nlPR4uwOSUkFyWjY2tpbs2HCKn7/Zy5rTX+Y2eoOEDgmFBCPtXkdh999fYFy+ArxEzJs3jytXrjw2\nXbaIJVizHI3KCq3SgrNnbrNw6l+ER6YQfS+TI/uvs3Tqn/gObM7a09PQC8gxSGiERDWpDl0s+/Pj\n6jWPvZP0X0B2gJeIlJQU7t27x5kzZx6Z5ppuBSH6v7gRmUK7apPJEGpcmtRg2PR+2FergFW5MuhQ\noDVAjsaAAQkhJLRCoq3qDaopc+VLBg8ezNy5c1m+fHlRVa9QkB3gJWLGjBnodDqioqJISEh44HiQ\ndjnbfr3A8SPhlHGpzG+Ri8lGRbZeQYZOgcYgoRXQ5NWG6LQGfv56F3ci4ignudJe/Ua+vNRqNXfv\n3sXJyYns7OyiqqLJkfsALxl+fn7Ex8cTGBhIq1atAEg2XCPacJQtv5yj/eDW6IREjpDQGyQEoBeQ\nN/FViQSSYMSs/lzcfYWKcc1wq974obacnZ1JSkpCqVQWTeUKgQKvANnZ2TRu3Bhvb288PT2ZPHky\nIGuDvsgsX76c6dOnGxetuKfdTbThKAd3B9FhSGs0Bik3ntfnxvTZhlxn0Bok9EJCJyR0BgkvRSt6\ner2NWq0mLi7ukfbyZtX9Vymw5FZWVvj7+3Px4kUuX76Mv78/R48elbVBixG9Xl/g8SFDhtCvXz/W\nrVtHeNY3pIgwxvX5nso1q5BjkMg2KMgyKNAKibu3E/mw1edoDRIpSZl8O24V3Sz709lyAOUUlXF2\ndqZevXqUK1fukfasrKxe3isAgI1N7j1ejUaDXq/H3t5e1gYtJn4N/9moxpE3OT3WcDdfGhsbG06E\nrqd29ww0Kit0CjVWJa0p5+xEpk5Bpl7B3KHfkqVXYO1Qmmn+M9AKCUu7kmxesbXI61TcPLYPYDAY\nqFevHmFhYYwePZpatWrJ2qDFRN/qA1lzaA0///wzAwcOBCBCG4WjZXkADGgJ1q3B9416/LI8AJ8m\n1dn28ykm//gOwYHRfPPeOibv+IzRq8ahERJCpUYIsJVK0LNEl+KsmskwuTaoQqHg4sWLpKSk4Ovr\n+4AchawNWrRcuXeNV5t0NW43tmzIHxm7aGVlT4LhIgaFCoOk5I8fDlO7sQtvfdmbkNBEDGXK8uFf\nn7N3xV7ajOyEIPe8dLNpSzmlQ3FVx+SYXBs0Dzs7O7p27cq5c+dkbdBi5OtP5jHlu6ksXbrUuM9L\nHUmQNhidQoVOoeLjQStZe34WTjWd0Vpas37WVpR2Jbm4/zLpadns+GYbegHDbHtzWXOD8znXirFG\nxUuBDhAfH2+8w5OVlcW+ffvw8fExaoMCD2iDbty4EY1GQ0REhKwN+oycPXu2wOOHft5vXI39Rs5S\nDJJEGZUWISm4dCyUL356h2yDAo2FFTNH/MCgpaPRGyRqtqtLUnQCjfu1ZmSpXJnz9tZNqGfpWeh1\nelEpMASKiYlh6NChGAwGDAYDgwcPpn379vj4+NC3b19WrVqFs7Mzv/76KwCenp707dsXT09PVCoV\n3333XYHhkczDiYuLY/Xq1QwbNuyhv59arWb6/DEMetcdSaEEJISkZOXcXSQlZOLcpCYag4TGIGEg\n919OL+W+f/r1FzRV1GHv3r0vjDxhcSLPB3hB5wNMnDgRPz8/OnbsyGeffcb06dONx4K1y5CEQEIg\nCYFOoeaL93+lTd9meLWsgVZI5Ohz7+/fjkigVGVHdCLXGfqX7MLv637Fz8+P8uXLF18FC0CeDyCD\nk5MTWq2WrVu30rZtW+bPn0+C/hzB2uUYJCVapQU5SisiozPpUudLWvZqTM0WuY1f//dw5S0Ld+Dw\nSjmQQCEJRpbqTUmFDW+++eYL2/iLGrNwgAEDBvDtt9+SmpoKwOjRo40rXiYnJ+e7dfui0KRJEw4d\nOoSLiwsKhYK4xHCOnvsdvaTEICkwSAo6u03mkH8o665+hUcrL7R/P8XN+7e3sbMhLTaF6upKvGnb\np7ir9MQEBgbmOycLFiwwLsWa188MDw83iS2zcIBBgwZRr149ozrxnDlzjB13IQSnTp0q8jIZDAa2\nbNnyyOP29vbUrVsXf39/atQ7ys7df3ErPB69QsXJw2F0fOVDBk7qiu/Q3OENAAYhoQf0Ine707B2\n+Cl9Obvsv/UwMi0tLd85ad26NX/99ReQu1Cfh4cH1atXN4ktsxgM17Vr13zbdnZ2+bQmC4u0tLQH\n1lTLIyYmhszMTMaMGcN3330HwM8//0y/fv1QqVTUrl2bCuXt6dmjGc19B7LlxEecOBFFyNU77Pn1\nFNujFmMQoBWglOD+MFcCWll0wF5RlinLp/DFF1+g1WpRq9WFXufCoEGDBjRo0AD4Z5FuU2EWV4DC\nYOawFnDim0ce1+v1LF26NF/n9X4qVapEZGQkEydOJDY2FoPBQJcuXYzqDNnJvzJ9Wi+6vlqT6IhY\nLp65Sf0WrkwbtYaJ3w5HL0BPbmOXECjIjfMVQFfL/tgrctfjnTZtGhYWFvz4448mrf/LgllcAUxF\n2h89+GFXBBP8qpCVFA2RR8DVF8rVfCBtSkoKQ4cOpWLFio/M73//+x9hYWFIkoRCocDe3p4KFSow\n45OWvDu2CR9MbImNvS06hYrJH+7Es7Ebb33eAwN5IU+uWAOAJIGTVJk6ylb5bKjVas6cOcOBAwdQ\nKBSMGDHCZL/Hy4B8BXgKItJ0jOxSnev3skjJ1IPQQ8AM2D42X7qMjAzs7e0LbPx5lCpVCnt7e+O2\nIXY2d+MyWf7DWaysLf654yMkdEo1t28lsW7OX2xfc9g4hl8hQTPVaw80/jwaNmxI69atefPNN5+1\n6i8tsgM8KZm38XIrg+/UY2y7EM//+rqx48JtkFQs2XIWNvSGjFggN/zJe4A1bdo09uzZA8Dp06cJ\nDAzMl225cuVQqVQc2LGSzLD3qVjBljq1yjH2rQZkpGejVyhp6DqDL759g++/2MLR7RfpO7EbqJQs\n+2QjFtjSUjkQSwpWZhg9evR/ethyYSE7wBOij1yHQaXk6HI/HO2teH3BBbK1eoQuE/tSNqCyhm3v\n8P3y5fn0MOvUqcPNmzeZMWMGWVlZ7Ny584G8m3hXoJnrpbyAnoG9PBFKBTpJhUCiSWs39AoVR/YF\n07JXY4LPR9KiZyM+Gj6V8rfrFuGv8PIhO8ATovScAgqJ3w9FkZSm4fiCNmy/msi+S5EMaFAaEKC0\n4m3b7Ux6902j6JSvry+HDx8mOTkZf39/Jk2aZLz9KTLC0Vx+m/lTmufGMXoDIGGwVNNv6BYcyliz\nb3cw169Gc/ZoKGuOf8a9yDhAUN6qKiqdpTzr7jmRHeApSHD6gHZNKvGKc2kwCNZMbMiXf0bw59kI\nXp29DyQlqGxoYXmVDh06cPDgQRQKBRUrVuT999/H0dGRDRs2EBwcjDboc7Q3ZgOCyNu5D+iQJIRS\nQigk1m8YgEZpweEDIdRrXJWGTZ2Z0ncJHfo35eiqq2yd4U/t2rUZOXJksf4m/3VkB3gKJn+xkNKt\n1tLN15VRyy4Rk6KhnY8jn/4exqYPfBiw8ACgoEcjFzq7q5j54UguXbrEZ599hr+/P2PGjKFPnz6U\nydjBvkO5Iz4TUzR071Q9N/xR5p4OoZCYNSsABQJUKvqMaEHw9QR6fdCdMq6V6N7+NeN9cXmw4fMh\nO8BTsHr1aiRJwqLuMr77sg1z/rhB65ZVcShthe+sM8zs68bolSdAgpWjWzCpU0X2zh9KUFAQ/fv3\nB+Dimu50bVWFc9fiQSHRqN8fqK0sEAoFBqUSoVAgCfhwXCOibyUyde6rJKfriU/K5q2mn9PZYgCO\njo755l3IPDuyAzwlSqUSFGomri1BxYq2rN0dwdi+NbAtacHcnZF8N6wGGDQIwMnehiGtXah1aTJH\n/ffy1fDaDJ9zEicHa8YNqUP9PpsJ8R8KCgmDWoVQKxEqJd8sOUn0vXTOnbrF/h2BNG5bA4eE+mzc\nuJFVq1bRvn17HBwcuHjxYj5FDpmnR34Q9gzcu3cPDw8P3nlnIdrIz2jUZQXabB1rP6jPioO3mLju\nGjcXt+PY9ThSM3VUsFNQJ24WQbdScS5fAgS0Hvwnw3vXJDouE7W9DaVtLBGShKvXUq4HT0AvKalQ\n4xUSNGo81W/h+XruBKXffvuNL7/8ks8//5xJkyahVCqNqhwyT4/sAM+Ak5MT7777LgBKl1ms/N6d\nMwdXM3tzKIkJWZya1QyHUkqCbycSHpvNmfBk4la2xy9Zy434HIRKya61PShtb826P4LIUijp18eL\nK9cTCL7+AVqFCq3SghJWbXG0rm+0W7ZsWaKiohg1ahSQqwUq83zIIdBzEBMTw5IlS2jc5k1GDG/F\n7Ckt2Xr6LsO/D+R4RBpju1WjrVcZvhtRC9fxh+k3/muOXUvgo69PobRUISzVJGXpmfz5Qbr33kiD\nxlXRKC3RKdRUKvkJpVWN+fLLL42qGwCzZs3i+++/N0rRyDwfsgM8BxUqVGDcuHF8++23WFSZxrzf\nJBJ29SHeg+zwAAAgAElEQVRdo6dJHUdquJXFt0lFypa1IfSHTrw/dgTbv+nA9cgUNu0MQydJjB3T\niA4dXJj2RQesLFtha92ZiraTjTZ69+7NiRMnuHjxonHfhAkTTD4q0lyRQyAT0L59e5RKJeNH2nDu\neiarZrTh7eVXcChlwYxlO1Fal8HHsypnfu5BaHwWS2a14+u1V5g69xgODtZs3x7MlClT6Na9/QN5\n16lTh0OHDqFUKvH29gYwajLJPD9PdAXQ6/X4+PjQvXt3QNYGzSPvyW5lmz/JiVtHcFgSnp6OOLg5\n8krV0gx5vSa1vH143a8u08c1pM//DlPFw5Hyr9jTvr0LDRr70bj5ZP744w9q165NWlraQ+2MGzeO\n2NhYhg8fXsQ1fPl5IgdYtGgRnp6exocu5qoNasi5bXwBNGrgxYBOd1HootFlnMe5uj3Xw5KoUKkU\nlWpV4OeAKIYN8KJR0yq0616T9at6oLO2JCwmg179N5GU7ECnTp3o1asX9+7dY/78+Y+0PWLECFav\nXl1UVTUbHusAt2/fZufOnYwcOdI4u94ctUGzbowj5+Zccm7NJTvqKzLD3kOKm0ENlzIIhYLbsZms\n3xSIu5sDyhL16dbNgwyVmvodaxKTpqdlr1/5Zu0VwuM11Kw3gfj4eMaNG2fMf/z48XTu3Jlly5YV\nYy3Nj8f2ASZMmMC8efOME8oB89UGVeTq6eeO2pQQkoQkBNkaPU7lSjBiSF2EUok25yJqSyUqpURg\nSApR8TmUe6UcjdrVwNW1PTu2BxEdHU2lSpXydWZ9fHyoX7/+o6zLPAEm1Qbdvn07jo6O+Pj4PDJT\nc9EGtXzlIwzZ4WgSNuc2fsXfs7IkBZmZOZS2Uec6hF4PSiVKCVxrVSLgUCRzV7+JXu3AxmlBzJiy\ngEOHDnH27Fl+++23fA5gaWlJVlbWf3bu7ovA02qDFugAx48fZ9u2bezcuZPs7GxSU1MZPHiwURu0\nfPnyZqMNqrCsgtDndlKN888lCQmwt7fO3a+QEAKEBG++vY2R49vRRGXF6m8PkxxijyRJvPLKKyQn\nJ9OgQQMMBgMzZsxg/PjxlCxZEgBra+uir5wZU2AfYNasWURFRREREcHGjRtp164dP/30k9lqg+bE\nLEcYr2i570KSjA4RfiuV1wf+QdDNdL5ZN5SwO5m06eyFa6mOeHt7M2PGDL766iujxk2jRo1o0aIF\nKpV8N7q4eKpfPi+c+eSTT8xSG9TGJVdMKyNyAuLvfgDS3/J7wFtjt7Nj70g0Skvqe87lUPDnHN1U\nipEjhxMTE8OqVatISUnBx8cHvV5Pv379/jv9n5eUJ34S3Lp1a7Zt2wZAmTJl2L9/PyEhIezdu5fS\npUsb002ZMoXQ0FCCg4Px9fU1fYmLgaNHj+bbFkopd+y+BEKhyA19lAr2/zWQOV/sQSH0HA2czLz/\n/YkkSQwbNgyFQkHlypUZO3YsERERHDt2rJhqI3M/ZnHtzVvTQKVSYTAYqFixIkFBQdSs+aCcyb9Z\nuXIlDRo0ICsryxif25T/iIz4r3OjIAFIEgpd7tpdUz9uQZYwsPmnk7Ro7UKrLjrCwytz+PBh3ngj\nd6nRSZMmFVZVX0rCwsKIiorC0dGR2NhY3NzcCAkJoW3bts+dt1mMBZo/fz5btmzB2tqaHTt20KlT\nJ6MGv0KhoHnz5o/87qhRowgNDeWvv/4iOjoaPz8/FOryvDf5AMPf3UnpyvNBkxvTS1odAYdu4tt6\nOXOm7iI1Po2klBSmT59Onz7/aHOmpqaycOFCsrKyCrfi/1FKlSqV75xs3bqVXbt24enpSZs2bdiz\nZ4/JQkezkUfXaDRYWFig1+vzyYM8Th49JyeH4OBgVq5cSalSpfD09GTQoEEkpC1F0sUSdiOeIUN/\np18XV9b/cQ1JkmjVtDKVqzsQlynR+/3ONH7lLdav2IStrS2SJGFpacm1a9eoV68eXbq8HGtzmZKH\nyaOnpKRgZ2dHbGwsZcqUeeIbB49rb2YRAgFYWFgAPLU2zqxZs7CwsKBEiRKkpaUxaNAgADZsuIjC\nkMCSb47RtFEl3nnNnb7NK+HmXIoMGxtyStlwOd6C1d8cRNO7Js7Ozqxdu5avvvqKypUr8/rrr5u8\nji8zeVquebfcTYXZXAEexdMukLFw+Tg6dLbHwkLJ4f0hOFrqcCqpol5ZC7QpmRwNTWXn5QROXE1k\nxKevobUuyYFtF+n6vwGMtO9XBDX67yMvkPGCYkDL+rXbuXkrBesSlqxefpx2Pk5MmRbAzO/P0+69\n/bRtUomqVUujEIIDm89S9pWyOHhUJSZdRagmvrirIPMvZAd4Cn7Z+yEWFiosFIIP39rAvk2v491h\nHbsWd6SZqx2nlnRg2S+B3AhPwqm8LSVtrVg66RdS0rUobBzY/I08mvNFQ3aAJ2T+/PnUc3udJq1d\nqeBcjmuBsSiytXi5lGHv0dv41nPik1WX+XjxGSqVUGJjKWFprUah05EZm4gksglMiiYgIMD4JFim\n+JEd4AlRKBS4V2mOi1s5om4m4uZRDqFWEp+cxdXQRNDq+Li3O8mbe3DgyE1KWipIjktj9JLh+PRs\nQfLdDF5r6ysPe3jBkM9GAQghCAgIICYmhi5duvDHH3/QwbcGkiYbhSF3eYqwqDQsmlXEc8wBtn7W\nBCsLJZ/1dmfwN+excyyF7U+HCY1I5HZoPNa/fc80B3m484uEfAV4BEFBQUybNo3ExERSU1NxdXUl\nPDycrBQD9rYqWjSvilApsLRUMG9DENEJ2fywKwIpR8f+szEIoEVbNxq3cKF0mRLYOZVCSXZxV0vm\nX8hXgEdQs2ZNnJyc6NWrF5C7fpdCocDHbTI//dQXKyVEBMWycVYbrp6/g6eTNc1d7UCSGNPpFVYc\niOL2jRjurThAaQ9nGr3ejJA9xwnqXYeaFracP3+eevXqFXMtZWQHKIDRo0cbPw8cOND42cWtHNsu\n3KFmBRtesbeiqa8zmYkZLNtzk37NK1LWWoln5ZKodHrS4pOhZBwNR3Xj4rlkdqz8kSSf+k80Dkmm\n8JEd4AnYs2cPZ86cISMjg+PHj+Pl5YEmPZOVG67SyLU0rV4pQa2yajrVduDY9SS6e5fFf0p9Rv0S\nRo5ekBGfypy2kzEo1Jzzrkt6XAKVK1fOtzSSTPEg9wEeQ3BwMP7+/jRo0IALFy4wefJkFi9ehl+3\npnRpV42xr7uhVitQSxKbjsXgVcEaFBJKCxXHL96jcoUSjPm8G05VymBRwpJRS6dia2tLXFwcoaGh\nxV09s0d2gMewYcMGRo8ejZ+fH5s3b6Z+/frMnz+f1q2robS2YMqKy4xdfpkrdzKp4mhDqZKW1Pvk\nOHq9oKqjDTeux7Ptx6NYpFoxcdA7nHp/AQB//PEHV65c4cyZM8VcQ/NGdoDHMG3aNKKiooiMjGTx\n4sWkpqZiY2PDwkXJfLvuCok5eiJjM/nj3D0Gt6iAg50lgVFpKJQS9vbW3IlOIyzoLhVaVmTt2rW8\n++67TJw4kUaNGhmHZ8vDoosPuQ/wBERHRxMfH8+HH36IJElotVpatmxJUNhBPOra0qhueaKD7hGe\nkIOtjYqcX/yo9cERmtZywFIt4eFSmoGfv07brwZy8+ZNli5diqWlJUlJSUycOFGeCF+MyA7wBPTt\n2zff9gcffEBsbCyb/U4w6XM/wqITGd3Nnd3+Ycz+LQQrCyVHv26LbeXSnL2bw5l7BsZ3ns78ZaXp\n6NWVq1evsnz58mKqjcz9yA7wlISGhvLzzz+TlpZG7dq18WziTmqENRHpBm4l5hC1xheUSi7EaVi2\n+BxvjqhPXGA89Vt5sGDpEjou7/pA4z906BCtW7cuphqZN4/tAzg7O1OnTh18fHyMEifmKo77xRdf\nYGlpSefOnRkzZgxDhw6lXpdWVPRx5+0pB2jX8hU0Bhi08DxuzqVoVtcJ39c3oZLg7KHrWFVwZGnC\nFWN+8fHxfPrpp/z666/cvn27GGtmvjzWASRJIiAggAsXLhh1Ps1VHDc+Pp67d+/SqFEjqlevDsBv\nn16kcl0Xlix7nc1Ho9kZmMjaaS0Y9dVp+gzypkXzVyhX0Y7q7o6gUKLZdwGAhQsXcvToUWJjY5k9\ne/YTTcaRMT1PdBfo3zNqzFEcF2Dp0qU0bNiQY8eOceDAAbZv386kSZNoWuItWnd+DVvHksz7PYR0\nrWBgr5rMXXqadZsGkZgBXUZ1wKGKA6f1uVfLli1bYm1tzYoVK4wry0dERBRn9cySx/YBJEmiQ4cO\nKJVK3n77bUaNGmW+4rjkTtdzdXVl1apVuLu7/zNX1fI1gm5+RlKmjhEzjzN3Wlti0nUISYFTVQeq\n1q1GwNlTRFw9zavKP9nWvweQqxAhhMDOzo6FCxeyePHi4qzefx6TiuMCHDt2jAoVKhAXF0fHjh2p\nUaNGvuPmIo6bR4cOHcjJyWH69OkcO3aMkydP4uPjw9KlS1m1fjk1q3aiZycXHKuUZt+Ck/yxJ5Kv\nt77Hsct3sLCxJEejICHoGtCDqVOn4u3tzeHDh+nfvz9z584t7ur95zGpOC7kroMFUK5cOXr27Mnp\n06fNUhz3fvbt20dycjJVq1alXLly6HQ6tFot4bdT2XN9OpsX7cTFeznLVryGewNXsrL1GNQWhJ++\njvfb08g0lObSpUsMHjyYgwcP8vXXX79UEpL/JQrsA2RmZhqX7cnIyGDv3r3Url3bbMVx8+jWrRsp\nKSm0bNkSd3d3SpQogbe3N/E3dAzr8i2ZkhV93/DB06sCxwLCuBOVTNzNWDITUri2cQMHx7zBqJS6\nuLq68tZbb8mNvxgp8Apw7949evbsCYBOp2PgwIF06tSJBg0amKU47v3krRM8c+ZM4y3f0NBQFkz/\nDuvWd5k3fBmDBv9OhcqlmTOgNWfPx2BpX5q4sOs4tu6O6unkiWQKCVkX6Cl1ge7n1KlT5OTkkJCQ\nQNeuXY3iW7OPzeXAyj3U8ChHw3pONGpXizlTd2HpXRv/1adQuzVHX8kb94av8lf7l/MP4nmQdYFM\nzIABA/juu+/Iyspi4sSJvPPOO8a7LcnJyfnuXD0NmzZtolWrVvTs2ROVSsXkybnr+3qVaUibKUNI\ntSrFO71WMn7QGvZtPMEt/7M41aqOyEpDk5QhN/5HEBgYmO+cLFiwgF9++QWA/v37s3HjRsLDw01i\nyyyGQgwaNAh7e3vUajU9e/bEy8vLuOaZEIJTp049U75ff/01P/zwA7a2ttSqVQtHR0eSk5Pp4NyU\ngdX6Ua2lD6WrlsemWmValrfnlH8Q7r08ULg0Quv2ckjHFwZpaWn5zknr1q25ceMGAD169MDDw8P4\nIPK5EUVMMZgskPXr1wtAREVFPdP39Xq9WLhwYb59+/btE52WrRWVmrcR7149LZqP6StcmnkKx6qO\nopx7NeHz9rui6hsThMaQPy+tVit+/PFHMWzYsGetzkvB9OnTTdZOHpePWYRAhYlCoWD8+PHEx8cz\na9YsOnXqRHp6OurmQ6g/fyMB81eRnq7Gsa43Dfu2okQpNRk3r6FPuEXzfamsvZ6bz/r169Hr9dy6\ndUseKVqEyA5gAg4ePEjZsmVp2bIlP/zwA3Xq1GFM1E4MM0fi1H8y0VfDuH3lDreux3DzfCgD18/A\nubE3EZ92Z2Fw7sIaderUISoqis8++8zYmZYpfGQHMAHh4eEIIWjZsiW3bt3ir7/+4u7du7i5uZFp\nsKb6pOVYVqmBsK7A5KDf+K7lm3gPG4LX8HGkH1nBzfRcB3B1dS3uqpgdsgOYgJEjRyJJEgkJCWzY\nsIH69eszcOBAPDw82NfShriju8hOTcPttV6cXLsfv0XzSItNolK7blR8dSif+r88I2b/a8gOYEIc\nHBxYsGABLVq0wMLCgujoaKysrLDzfZuqY+Zi27QP0dduoyxdiWNfLeD67+sxpMbyY5cH71NfunSJ\nzz77rBhqYV7IDmBirKysuHDhAkIIateujUql4nx3e1ISsgkYOxiP4ZM4tXgZLb9ZR/Cqrwmc9S71\nt/5zGo4fP05ISAhubm54eHgUY03MA7N4DlCUDBs2jEWLFrFr1y569OhBdHQ0Op2OzNBgdDpB0Kaf\nce//Nj952NJyfzxH/SoiKQQgMWPGDK5du4aHhwf9+vUzLsckU3jIDmBi1qxZA0DXrl2B3BUPN2/e\nzJah7RlgZ0mFJs1IjI+lzrJDnOjjRTm/wQiFxPAl+1j96aesX7/e2PBDQkK4cuWKUZ9UxvTIIVAh\nU6JECYYMGYKDJdSLO8epkR24d+E6evtqeHx7mcTjO8EApy3rAtCvXz90Oh1//PEHBw4c4Nq1a8Vc\ng5cb+QpQyEiSxJgxYzh//jyDBw/mgOfrKHDk9jeTyQw/hSRZkXHmDBb29UjOgojgq2zbto1atWpR\nv379l3I4+YuE7ACFyNSpU/nkk09wcXGhc+fOtGnThqVxVui1t3Hq9i2SBYgc0CWmoI2No8Xnaq7O\n88HHx6e4i242yA5QiFSvXp1Ro0axYMEC4xzqoC/AqcN6lDZlKFXvNVLO/AoasHPtze39o2He1uIt\ntJkh9wEKkaFDh7J+/Xpj48/j3v7PKOXSl+X9y2NXvT8ly7emjWsmTg2m8cEiWRmiKJEdoAg5e/Ys\nc+bMITIykphtQ+g/fDpkZzFtSFX0mUB2Nl+/X624i2lWyCFQEXDixAl27NhhVJb+7bffKGdnjb60\nNyI1hWlL7oJez+4VDYq7qGaH7ACFjF6vJyIiAltbW6pWrcqoUaMAmDQJdhxNYNnP4Yzu70rX1o7F\nXFLz5LEOkJyczMiRIwkMDESSJNasWYObmxv9+vXj5s2bxknxpUuXBnK1QVevXo1SqWTx4sV06tSp\n0CvxIqNUKnnjjTceeqxrCwe6tnAo4hLJ3M9j+wDvv/8+Xbp0ISgoiMuXL1OjRg2z1QaVefko0AFS\nUlI4cuQIw4cPB0ClUmFnZ2e22qAyLx8FhkARERGUK1eOYcOGcenSJerXr88333xj1tqgMi82JtUG\n1el0nD9/3qiKPH78eGO4k4e5aYPKvNg8rTZogSFQ5cqVqVy5Mg0bNgSgd+/enD9/nvLly3P37l0A\ns9QGlXl5KNABypcvT5UqVQgJCQFyFbtq1apF9+7dzVobVObl4bG3QZcsWcLAgQPRaDS4uLiwZs0a\n9Hq92WuDyrwcPNYB6tat+9DFnPfv3//Q9FOmTGHKlCnPXzITcu7cOSpXrowQgvLlywMQFBREzZo1\ni7lkMk9CWFgYoaGhVKlSBaVSScmSJQkJCaFt27bPnbdZjAWaP38+v/zyC3Z2dqxevRo/Pz/Onj0L\n5ApbNW/evJhLKHM/pUqVyndOtm7dSnh4OJ6enqxbt449e/aY7M6h2ahD6/V6lMoHNcmfRx1apnB4\nmDp0bGys8WaLTqdDpXqyUTyyOvTfPKzxy/x3yGv8wBM3/ifBbBxARuZhyA4gY9bIDiBj1sgOIGPW\nyA4gY9aY/YwwvV7PxYsXiY2NJT4+/oHjRSVRUqpUKQ4dOlQktgYNGkRgYGCR2NqxYwcVK1Z8qu+E\nh4dz8eJFvL29C6lU/2D2DqBUKvH29i725wB55SgKrK2ti8QOQM2aNalW7ekm+sfHxxfZb2E2D8Jk\nzJPHtTezvwI8jKSkJBYuXEjz5s1xc3OjevXq7N+/n9u3b/Pmm2+a1NbWrVvZsGEDffr0oUKFCsYh\nAAcOHKB9+/YmtZWUlMQ333xDcHAw9evXR6lUYmNjg5eXFy1btjSprbi4OL7//ntat25NixYtmDBh\nApUrV6Zdu3bUq1fPpLaeB7kTfB/Z2dmsXr2a9PR0evfujRCC+Ph4srKysLGxMenguT///JOrV69y\n/PhxVq5cSZkyZahQoQIAEyZM4PLlyyaztXr1anQ6HWlpaVy+fJmlS5fy0Ucf8fbbb9OjRw+TNv7V\nq1cjhCAxMZG9e/eyYcMGDAYDVatW5a233nqhGj/IIdBTIYQolOHdhZXv4+wVpd28c17Uw+PlEMiE\nFNbJK45GUdR2X9R5IXIIJGPWyA4gY9bIDiBj1sh9gL/x8/PDzrYkCEPuy2AAof9n++99eoMepQQI\nAQjA8M9n4768F4AEEnB/DHz/tpR7XCD981mS/jmuyH0XkvR3mty0IjcThITx3aAHlAqEuK8UAgxI\nxs+5+6XcoqJAoPgnLxQPvBu/J8j/+b6XPjsDhUWJB6t/30sIgcjJRFJZ//1Fwz8ZGPK2DQghcK5k\nw9Ytv5vy9D6SAh3g+vXr9O/f37gdHh7O9OnTGTRo0EunDTpy+DB6d/eDnFTQZEB2GuSkgyYdctIg\nOx1y0klLTcLWEtDngEHz8He9BtCDUvHPSyGBSpn7ft9+oVQg1CoMamXuu0r5z7Yqb78SvVKFTqFG\nr1ChU6jyveslFVqlmvQMLaqSJcgxSGgMEtkGCY1BQY5Byn0JiRy9hEZI6IQleqzQYYXh73edsMaA\nJTqs0f/9rtMr0GhBq8P4nqMBrf6f7aRLx7F2bYbIEQgNCI1A5PCvz4LMkCNYV2iMyMmGnGzIycn3\nmewsRE4OIaEzi+y8FxgCeXh4cOHCBS5cuMC5c+ewsbGhZ8+esjZoMfJC3EsprEIUw52iJw6B9u/f\nj6urK1WqVGHbtm3GgVtDhw6lTZs2zJkz55HaoPfLJb6ofLf8ezZs2PBP2JMXAt0fChn0ufNRldJ9\nYY+BfOFP3nYeeef0/rDm77Dl/mNC+idUMoZAxnDo7/3888rd/vv43yGQTmdAoVIZwxXD36GO4O8o\nAzAAOq0epUr9d4iTF+78OwRSkJOjRW1h+UD4Y/hXCKRJSUJha58vBDL+DMZIUSBS4qGkA1JeCGQQ\nSHmhkOGfEMjJsURhnOKH8sQOsHHjRgYMGADwUmqDrlu37okGw6WlpWFra1sEJXp60tPTKVmy5GPT\nPenAv8DAQGrVqvXYdMePH6dZs2aPTfewye6PSvesPK026BM9CdZoNFSqVIlr165Rrlw57O3tSUpK\nMh4vU6YMiYmJjBs3jiZNmjBw4EAARo4cSZcuXXj99df/MfgffhIs89/DJKoQu3bton79+pQrVw7I\n/dd/2bRBDx48WODxTz75BIDLly/nhkqPQAjBokWLWL58OcBDr4B5DB48mKVLl7Jly5ZHpomJieGr\nr77Kl+e/SUlJISUlhVGjRvH111/z7bffPjTd2bNn0Wq1bN68mXnz5rF48eKHptu+fTtarZbJkyez\nbNkyvv7660eWLzw8HJ1Ox2+//ca8efMemsZgMBATE8PixYvx9/dn6dKlD003ePBgIHcg3eXLl9m4\nceMj7ZoM8QT069dP/Pjjj8btSZMmiTlz5gghhJg9e7b4+OOPhRBCBAYGirp164qcnBwRHh4uqlev\nLgwGQ768ntBkkZKWliYWLVpUYJrAwEBx/vx58fbbb4uAgIBHpjMYDCIjI0PExcWJdevWiV69ej0y\nbXJyskhOThanT59+6PGIiAgRFRUlDAaDSE9PF7GxsQ9Nd+XKFZGYmCiuXLkicnJyRFJS0kPTXb16\nVSQkJIi//vrLmOfDCA0NFZmZmWLq1KkiKipKZGdnPzTdwoULxfTp00VUVJTYs2eP0Ov1D023ZMkS\ncfLkSdGiRQuxcOFCcffu3Yemi46OFp9//rno0qWLeOutt4S/v/9D0z0Nj2tvj22N6enpwsHBQaSm\nphr3JSQkiPbt2ws3NzfRsWPHfD/4zJkzhYuLi/Dw8BC7d+9+6gIVF/921EcdNxgMjzzReej1+sfm\nl5fuSdLqdLonSve4/PL26/V6Y54FpTMYDAWm+7dtnU732HR5eT4qj/vTPYndx/G49iaPBpV5qZGV\n4WRkCkB2gP8YkZGRbNy4kaioKBITE7ly5Qr+/v5A7q3cyMhIUlNTycrK4syZM2RnZ5OWloZOpyvm\nkr+YyA7wH0On09GmTRvOnj3LokWLOHToEJaWlgC4uLhQsmRJZsyYwQ8//MC1a9f4/vvv0Wq18rJU\nj0DuA/yHCQsLw8XFxbh9/wNKmVwe195kB5B5qZE7wTIyBSA7gIxZIzuAjFkjO4CMWSM7gIxZIzuA\njFkjO4CMWSM7gIxZIzuAjFkjO4CMWSM7gIxZ89I7wNMoBPxXbcr2nh3ZAV4Cm7K9Z+eldwAZmYKQ\nHUDGrCmW+QAyMkVJQU28yOXR5ckwMi8ScggkY9bIDiBj1sgOIGPWFKkD7N69mxo1auDm5sbcuXNN\nkufw4cNxcnKidu3axn2JiYl07NgRd3d3OnXqRHJysvHY7NmzcXNzo0aNGuzdu/ep7UVFRdG2bVtq\n1aqFl5eXUWC2MG1mZ2fTuHFjvL298fT0ZPLkyYVuE0Cv1+Pj40P37t0L3Z6zszN16tTBx8eHRo0a\nFUn9gKIT6tTpdMLFxUVEREQIjUYj6tatK65du/bc+R4+fFicP39eeHl5GfdNmjRJzJ07VwghxJw5\ncx4Q79VoNCIiIkK4uLg8tf5kTEyMuHDhghAiV1TX3d1dXLt2rVBtCiFERkaGEEIIrVYrGjduLI4c\nOVLoNhcsWCDeeOMN0b17dyFE4f6uzs7OIiEhId++wq6fEE8gjmsqjh8/Lnx9fY3bs2fPFrNnzzZJ\n3hEREfkcwMPDw6hAHBMTIzw8PIQQQsyaNcuoai2EEL6+vuLEiRPPZbtHjx5i3759RWYzIyNDNGjQ\nQFy9erVQbUZFRYn27duLgwcPim7dugkhCvd3dXZ2FvHx8fn2FcVvWmQh0J07d6hSpYpx+1Grx5iC\nglawuX9llOctQ2RkJBcuXKBx48aFbtNgMODt7Y2Tk5MxBCtMmxMmTGDevHkoFP80kcK0J0kSHTp0\noEGDBqxcubLQ7eVRZM8BiusBmCRJBdp+1nKlp6fTq1cvFi1a9MCSSYVhU6FQcPHiRVJSUvD19TXq\ngRaGze3bt+Po6IiPj88jx+GYuo7Hjh2jQoUKxMXF0bFjR2rUqFGo9vIosivAv1ePiYqKeqJ1qp6F\nwq/5XnMAAAFSSURBVF7BRqvV0qtXLwYPHsxrr71WJDbzsLOzo2vXrpw7d67QbB4/fpxt27ZRrVo1\nBgwYwMGDBxk8eHCh1rFChQoAlCtXjp49e3L69Omi+U2fKXB6BrRarahevbqIiIgQOTk5JusEC/Fg\nH+B5VrB5HAaDQQwePFiMHz8+3/7CtBkXF2dchCQzM1O0bNlS7N+/v1Bt/r+9u0eBEAaiAEyKHEKw\nE2xCmNh6Ek9kkUN4DEO6gDfwAJ5C67fVpt0F17CQ9x0gw0BekR+Yt5RSPgM8Ve+6rjyA5TxPjOOI\nGGOR/oqOa1nXFX3fo+s6zPP8kzWnaULTNNBao21bLMtya4LNJ9u2QSkFEYFzDs45hBAerbnvO4Zh\ngIjAWgvvPYB7k3q+lVLKt0BP1TuOAyICEYExJu+NEv0V/wxH9E/4EkxVYwCoagwAVY0BoKoxAFQ1\nBoCq9gL8d5/9e0YJ8gAAAABJRU5ErkJggg==\n" | |
} | |
], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"cd .." | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"/Users/schwehr/Desktop/mbcookbook/loihi" | |
] | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"\n" | |
] | |
} | |
], | |
"prompt_number": 16 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"!mbinfo -I MBARI1998EM300/datalist.mb-1 | grep -A 40 'Data Totals'" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"Data Totals:\r\n", | |
"Number of Records: 9917\r\n", | |
"Bathymetry Data (135 beams):\r\n", | |
" Number of Beams: 1338795\r\n", | |
" Number of Good Beams: 1207888 90.22%\r\n", | |
" Number of Zero Beams: 79143 5.91%\r\n", | |
" Number of Flagged Beams: 51764 3.87%\r\n", | |
"Amplitude Data (135 beams):\r\n", | |
" Number of Beams: 1338795\r\n", | |
" Number of Good Beams: 1207888 90.22%\r\n", | |
" Number of Zero Beams: 79143 5.91%\r\n", | |
" Number of Flagged Beams: 51764 3.87%\r\n", | |
"Sidescan Data (1024 pixels):\r\n", | |
" Number of Pixels: 10155008\r\n", | |
" Number of Good Pixels: 10153984 99.99%\r\n", | |
" Number of Zero Pixels: 0 0.00%\r\n", | |
" Number of Flagged Pixels: 1024 0.01%\r\n", | |
"\r\n", | |
"Navigation Totals:\r\n", | |
"Total Time: 15.4770 hours\r\n", | |
"Total Track Length: 286.9084 km\r\n", | |
"Average Speed: 18.5377 km/hr (10.0204 knots)\r\n", | |
"\r\n", | |
"Start of Data:\r\n", | |
"Time: 03 02 1998 20:06:01.740000 JD61 (1998-03-02T20:06:01.740000)\r\n", | |
"Lon: -154.798805300 Lat: 19.473399550 Depth: 1000.6700 meters\r\n", | |
"Speed: 0.0000 km/hr ( 0.0000 knots) Heading: 243.2100 degrees\r\n", | |
"Sonar Depth: 6.0700 m Sonar Altitude: 994.6000 m\r\n", | |
"\r\n", | |
"End of Data:\r\n", | |
"Time: 03 03 1998 11:34:38.985000 JD62 (1998-03-03T11:34:38.985000)\r\n", | |
"Lon: -154.793818600 Lat: 19.445800850 Depth: 1502.0900 meters\r\n", | |
"Speed: 18.0000 km/hr ( 9.7297 knots) Heading: 59.4300 degrees\r\n", | |
"Sonar Depth: 5.0100 m Sonar Altitude: 1497.0800 m\r\n", | |
"\r\n", | |
"Limits:\r\n", | |
"Minimum Longitude: -155.341233539 Maximum Longitude: -154.778216873\r\n", | |
"Minimum Latitude: 18.661225521 Maximum Latitude: 19.487286286\r\n", | |
"Minimum Sonar Depth: 3.8700 Maximum Sonar Depth: 7.4600\r\n", | |
"Minimum Altitude: 700.2800 Maximum Altitude: 4867.2000\r\n", | |
"Minimum Depth: 331.8400 Maximum Depth: 4919.0700\r\n" | |
] | |
} | |
], | |
"prompt_number": 18 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 2, | |
"metadata": {}, | |
"source": [ | |
"4.5 Determin Roll and Pitch Bias" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment