- Glass culture tubes with metal caps and labels
- Growth medium, from media room or customized
- Glass pipette tubes
- Parafilm
- Vortexer
Time required:
Cells are grown 6 hours to overnight; a total of less than 5 minutes bench time for each strain.
Day 1
Typically, an equal volume of TE-saturated phenol is added to an aqueous DNA sample in a microcentrifuge tube. The mixture is vigorously vortexed, and then centrifuged to enact phase separation. The upper, aqueous layer carefully is removed to a new tube, avoiding the phenol interface and then is subjected to two ether extractions to remove residual phenol. An equal volume of water-saturated ether is added to the tube, the mixture is vortexed, and the tube is centrifuged to allow phase separation. The upper, ether layer is removed and discarded, including phenol droplets at the interface. After this extraction is repeated, the DNA is concentrated by ethanol precipitation.
Author: Biotechniques
Polar lipids are generally extracted from dry cell material using chloroform:methanol:0.3% NaCl (1:2:0.8 v/v/v). This may be carried out by adding 9.5 ml of this mixture to 100 mg of freeze dried cells, or by adding a suitable amount of chloroform, methanol and 0.3% NaCl to the cell material, or to the aqueous methanolic phase remaining from the lipoquinone extraction.
Authors: Greenfield Sluder, Joshua J. Nordberg, Frederick J. Miller and Edward H. Hinchcliffe
This protocol was adapted from “A Sealed Preparation for Long-Term Observations of Cultured Cells,” Chapter 18, in Live Cell Imaging (eds. Goldman and Spector). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2005.
The continuous long-term observation of cultured cells on the microscope has always been a technically demanding undertaking. This protocol describes a sealed preparation that allows the continuous long-term observation of cultured mammalian cells on upright or inverted microscopes without environmental CO2 control. The preparation allows for optical conditions consistent with high-quality imaging and good cell viability for at least 100 hours. The preparation is an aluminum support slide with a square aperture cut in its center. The coverslip bearing the cells is attached to the top of the slide with a thin layer of silicone grease, and the bottom of the slide i
Authors: Joachim Weischenfeldt and Bo Porse1
Corresponding author: ([email protected])
Bone marrow-derived macrophages (BMM) are primary macrophage cells, derived from bone marrow cells in vitro in the presence of growth factors. Macrophage colony-stimulating factor (M-CSF) is a lineage-specific growth factor that is responsible for the proliferation and differentiation of committed myeloid progenitors into cells of the macrophage/monocyte lineage. Mice lacking functional M-CSF are deficient in macrophages and osteoclasts and suffer from osteopetrosis. In this protocol, bone marrow cells are grown in culture dishes in the presence of M-CSF, which is secreted by L929 cells and is used in the form of L929-conditioned medium. Under these conditions, the bone marrow monocyte/macrophage progenitors will proliferate and differentiate into a homogenous population of mature BMMs. The efficiency of the differentiation is assessed using fluorescence-activated cell sorting (FAC