Skip to content

Instantly share code, notes, and snippets.

@scotth527
Created November 3, 2019 17:45
Show Gist options
  • Save scotth527/7ea0d67ad4f1df5042973878dfc44b84 to your computer and use it in GitHub Desktop.
Save scotth527/7ea0d67ad4f1df5042973878dfc44b84 to your computer and use it in GitHub Desktop.
Created on Cognitive Class Labs
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<h3> Get to Know a numpy Array </h3>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You will use the dataframe <code>df</code> for the following:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"df=pd.DataFrame({'a':[11,21,31],'b':[21,22,23]})\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1) plot the first three rows:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>a</th>\n",
" <th>b</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>11</td>\n",
" <td>21</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>21</td>\n",
" <td>22</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>31</td>\n",
" <td>23</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" a b\n",
"0 11 21\n",
"1 21 22\n",
"2 31 23"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"df=pd.DataFrame({'a':[11,21,31],'b':[21,22,23]})\n",
"\n",
"df.head(3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"2) obtain column <code> 'a' </code>"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"0 11\n",
"1 21\n",
"2 31\n",
"Name: a, dtype: int64"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['a']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<hr>\n",
"<small>Copyright &copy; 2018 IBM Cognitive Class. This notebook and its source code are released under the terms of the [MIT License](https://cognitiveclass.ai/mit-license/).</small>"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python",
"language": "python",
"name": "conda-env-python-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment