Created
May 18, 2022 10:10
-
-
Save scottyla19/287003587c1d581430bfb9b08d9dd1c1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "id": "6e2f69f5", | |
| "metadata": {}, | |
| "source": [ | |
| "# Pandas/Jupyter Intro\n", | |
| "Pandas is a Python library that allows us to manipulate tabular (spreadsheet) data. Seaborn is a visualization library that allows us to easily create charts and graphs. Jupyter is a web-based Python interpreter that allows us to create and run python code. \n", | |
| "\n", | |
| "Today, we will focus on the basics of Jupyter and pandas/seaborn to create our bar charts and histograms." | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "bf95120d", | |
| "metadata": {}, | |
| "source": [ | |
| "First, we will need to import our two libraries. [Pandas](https://pandas.pydata.org/docs/) for data analysis and [Seaborn](https://seaborn.pydata.org/) for visualization. We also us the `as` keyword to create a shortcut for them. Now we can use `pd.` and `sns.` to access the methods in the pandas and seaborn libraries. **Click in the cell below and hit command + enter or run in the menu above to run the code in the cell**. You will have to do this on each cell with code in it to make it run." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 21, | |
| "id": "powered-tennessee", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "import seaborn as sns" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "403c0d97", | |
| "metadata": {}, | |
| "source": [ | |
| "Next, we can read in data from a csv to use later. The `df` variable now holds all the data from the `Dogs.csv` file. The `df` variable has a special type called a dataframe. A dataframe is an object in the Pandas library that allows us to store and manipulate tabular data." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 22, | |
| "id": "9ca9cd22", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>id</th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Breed Group</th>\n", | |
| " <th>Bred For</th>\n", | |
| " <th>Minimum Life Span</th>\n", | |
| " <th>Maximum Life Span</th>\n", | |
| " <th>Minimum Height</th>\n", | |
| " <th>Maximum Height</th>\n", | |
| " <th>Minimum Weight</th>\n", | |
| " <th>Maximum Weight</th>\n", | |
| " <th>Temperament</th>\n", | |
| " <th>Image</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>1</td>\n", | |
| " <td>Affenpinscher</td>\n", | |
| " <td>Toy</td>\n", | |
| " <td>Small rodent hunting, lapdog</td>\n", | |
| " <td>10.0</td>\n", | |
| " <td>12.0</td>\n", | |
| " <td>9.0</td>\n", | |
| " <td>12.0</td>\n", | |
| " <td>6.0</td>\n", | |
| " <td>13.0</td>\n", | |
| " <td>Stubborn, Curious, Playful, Adventurous, Activ...</td>\n", | |
| " <td>https://cdn2.thedogapi.com/images/0LJiOVlxp.jpg</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>2</td>\n", | |
| " <td>Afghan Hound</td>\n", | |
| " <td>Hound</td>\n", | |
| " <td>Coursing and hunting</td>\n", | |
| " <td>10.0</td>\n", | |
| " <td>13.0</td>\n", | |
| " <td>25.0</td>\n", | |
| " <td>27.0</td>\n", | |
| " <td>50.0</td>\n", | |
| " <td>60.0</td>\n", | |
| " <td>Aloof, Clownish, Dignified, Independent, Happy</td>\n", | |
| " <td>https://cdn2.thedogapi.com/images/tChrH8dDJ.jpg</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>3</td>\n", | |
| " <td>Airedale Terrier</td>\n", | |
| " <td>Terrier</td>\n", | |
| " <td>Badger, otter hunting</td>\n", | |
| " <td>10.0</td>\n", | |
| " <td>13.0</td>\n", | |
| " <td>21.0</td>\n", | |
| " <td>23.0</td>\n", | |
| " <td>40.0</td>\n", | |
| " <td>65.0</td>\n", | |
| " <td>Outgoing, Friendly, Alert, Confident, Intellig...</td>\n", | |
| " <td>https://cdn2.thedogapi.com/images/PG8UPLSVU.jpg</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>4</td>\n", | |
| " <td>Akbash Dog</td>\n", | |
| " <td>Working</td>\n", | |
| " <td>Sheep guarding</td>\n", | |
| " <td>10.0</td>\n", | |
| " <td>12.0</td>\n", | |
| " <td>28.0</td>\n", | |
| " <td>34.0</td>\n", | |
| " <td>90.0</td>\n", | |
| " <td>120.0</td>\n", | |
| " <td>Loyal, Independent, Intelligent, Brave</td>\n", | |
| " <td>https://cdn2.thedogapi.com/images/SyfsC19NQ_12...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>5</td>\n", | |
| " <td>Akita</td>\n", | |
| " <td>Working</td>\n", | |
| " <td>Hunting bears</td>\n", | |
| " <td>10.0</td>\n", | |
| " <td>14.0</td>\n", | |
| " <td>24.0</td>\n", | |
| " <td>28.0</td>\n", | |
| " <td>65.0</td>\n", | |
| " <td>115.0</td>\n", | |
| " <td>Docile, Alert, Responsive, Dignified, Composed...</td>\n", | |
| " <td>https://cdn2.thedogapi.com/images/36TXlWMDf.jpg</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " id Name Breed Group Bred For \\\n", | |
| "0 1 Affenpinscher Toy Small rodent hunting, lapdog \n", | |
| "1 2 Afghan Hound Hound Coursing and hunting \n", | |
| "2 3 Airedale Terrier Terrier Badger, otter hunting \n", | |
| "3 4 Akbash Dog Working Sheep guarding \n", | |
| "4 5 Akita Working Hunting bears \n", | |
| "\n", | |
| " Minimum Life Span Maximum Life Span Minimum Height Maximum Height \\\n", | |
| "0 10.0 12.0 9.0 12.0 \n", | |
| "1 10.0 13.0 25.0 27.0 \n", | |
| "2 10.0 13.0 21.0 23.0 \n", | |
| "3 10.0 12.0 28.0 34.0 \n", | |
| "4 10.0 14.0 24.0 28.0 \n", | |
| "\n", | |
| " Minimum Weight Maximum Weight \\\n", | |
| "0 6.0 13.0 \n", | |
| "1 50.0 60.0 \n", | |
| "2 40.0 65.0 \n", | |
| "3 90.0 120.0 \n", | |
| "4 65.0 115.0 \n", | |
| "\n", | |
| " Temperament \\\n", | |
| "0 Stubborn, Curious, Playful, Adventurous, Activ... \n", | |
| "1 Aloof, Clownish, Dignified, Independent, Happy \n", | |
| "2 Outgoing, Friendly, Alert, Confident, Intellig... \n", | |
| "3 Loyal, Independent, Intelligent, Brave \n", | |
| "4 Docile, Alert, Responsive, Dignified, Composed... \n", | |
| "\n", | |
| " Image \n", | |
| "0 https://cdn2.thedogapi.com/images/0LJiOVlxp.jpg \n", | |
| "1 https://cdn2.thedogapi.com/images/tChrH8dDJ.jpg \n", | |
| "2 https://cdn2.thedogapi.com/images/PG8UPLSVU.jpg \n", | |
| "3 https://cdn2.thedogapi.com/images/SyfsC19NQ_12... \n", | |
| "4 https://cdn2.thedogapi.com/images/36TXlWMDf.jpg " | |
| ] | |
| }, | |
| "execution_count": 22, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df = pd.read_csv(\"Dogs.csv\")\n", | |
| "# print the first 5 rows using the head() function. The tail() function does the same thing but for the end of the \n", | |
| "# data.\n", | |
| "df.head()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "f10ea4d0", | |
| "metadata": {}, | |
| "source": [ | |
| "The `describe()` method will calculate the measures of central tendancy and spread for all the numerical values in a dataframe." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 23, | |
| "id": "bde07795", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>id</th>\n", | |
| " <th>Minimum Life Span</th>\n", | |
| " <th>Maximum Life Span</th>\n", | |
| " <th>Minimum Height</th>\n", | |
| " <th>Maximum Height</th>\n", | |
| " <th>Minimum Weight</th>\n", | |
| " <th>Maximum Weight</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>count</th>\n", | |
| " <td>105.000000</td>\n", | |
| " <td>105.000000</td>\n", | |
| " <td>105.000000</td>\n", | |
| " <td>105.000000</td>\n", | |
| " <td>105.000000</td>\n", | |
| " <td>105.000000</td>\n", | |
| " <td>105.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>mean</th>\n", | |
| " <td>53.000000</td>\n", | |
| " <td>10.828571</td>\n", | |
| " <td>13.495238</td>\n", | |
| " <td>18.466667</td>\n", | |
| " <td>21.819048</td>\n", | |
| " <td>43.561905</td>\n", | |
| " <td>66.304762</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>std</th>\n", | |
| " <td>30.454885</td>\n", | |
| " <td>1.740121</td>\n", | |
| " <td>2.005396</td>\n", | |
| " <td>5.781380</td>\n", | |
| " <td>6.745057</td>\n", | |
| " <td>27.672509</td>\n", | |
| " <td>42.557003</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>min</th>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>6.000000</td>\n", | |
| " <td>8.000000</td>\n", | |
| " <td>8.000000</td>\n", | |
| " <td>9.000000</td>\n", | |
| " <td>3.000000</td>\n", | |
| " <td>7.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>25%</th>\n", | |
| " <td>27.000000</td>\n", | |
| " <td>10.000000</td>\n", | |
| " <td>12.000000</td>\n", | |
| " <td>14.000000</td>\n", | |
| " <td>16.000000</td>\n", | |
| " <td>24.000000</td>\n", | |
| " <td>35.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>50%</th>\n", | |
| " <td>53.000000</td>\n", | |
| " <td>10.000000</td>\n", | |
| " <td>14.000000</td>\n", | |
| " <td>19.000000</td>\n", | |
| " <td>24.000000</td>\n", | |
| " <td>40.000000</td>\n", | |
| " <td>60.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>75%</th>\n", | |
| " <td>79.000000</td>\n", | |
| " <td>12.000000</td>\n", | |
| " <td>15.000000</td>\n", | |
| " <td>23.000000</td>\n", | |
| " <td>27.000000</td>\n", | |
| " <td>65.000000</td>\n", | |
| " <td>90.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>max</th>\n", | |
| " <td>105.000000</td>\n", | |
| " <td>15.000000</td>\n", | |
| " <td>20.000000</td>\n", | |
| " <td>30.000000</td>\n", | |
| " <td>35.000000</td>\n", | |
| " <td>120.000000</td>\n", | |
| " <td>200.000000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " id Minimum Life Span Maximum Life Span Minimum Height \\\n", | |
| "count 105.000000 105.000000 105.000000 105.000000 \n", | |
| "mean 53.000000 10.828571 13.495238 18.466667 \n", | |
| "std 30.454885 1.740121 2.005396 5.781380 \n", | |
| "min 1.000000 6.000000 8.000000 8.000000 \n", | |
| "25% 27.000000 10.000000 12.000000 14.000000 \n", | |
| "50% 53.000000 10.000000 14.000000 19.000000 \n", | |
| "75% 79.000000 12.000000 15.000000 23.000000 \n", | |
| "max 105.000000 15.000000 20.000000 30.000000 \n", | |
| "\n", | |
| " Maximum Height Minimum Weight Maximum Weight \n", | |
| "count 105.000000 105.000000 105.000000 \n", | |
| "mean 21.819048 43.561905 66.304762 \n", | |
| "std 6.745057 27.672509 42.557003 \n", | |
| "min 9.000000 3.000000 7.000000 \n", | |
| "25% 16.000000 24.000000 35.000000 \n", | |
| "50% 24.000000 40.000000 60.000000 \n", | |
| "75% 27.000000 65.000000 90.000000 \n", | |
| "max 35.000000 120.000000 200.000000 " | |
| ] | |
| }, | |
| "execution_count": 23, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.describe()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "a030ac29", | |
| "metadata": {}, | |
| "source": [ | |
| "# Seaborn bar plots and histograms\n", | |
| "\n", | |
| "Seaborn (barplots)[https://seaborn.pydata.org/generated/seaborn.barplot.html] are best for comparing two columns using bars to summarize. We are learning about single column plots today but I wanted you to be aware the Seaborn barplots are not the same as what we are calling bar charts. Instead, we will use the [seaborn.countplot()](https://seaborn.pydata.org/generated/seaborn.countplot.html) to make one column bar charts." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 24, | |
| "id": "a943da99", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<AxesSubplot:xlabel='id', ylabel='Maximum Life Span'>" | |
| ] | |
| }, | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqQklEQVR4nO3deZhdVZX38e8iAzONQibGgJ2mRUTAiCAiII1CmElsQRsQ0QAtIi92C9iKU3eLEyoEQSRhnjQhjAFEZBQQAoIkHSAEEshYGQgZyFTJev9Y69S9CVWVm5O6VZXk93me+9x9z9nn7H2mvc58zd0RERFZUxt1dAVERGTdpAAiIiKlKICIiEgpCiAiIlKKAoiIiJTStaMr0Ja23XZb79u3b0dXQ0RknfHcc8/NcvceZYZdrwJI3759GT16dEdXQ0RknWFmk8oOq1NYIiJSigKIiIiUogAiIiKlKICIiEgpCiAiIlKKAoiIiJRStwBiZjua2cNmNs7MxprZN7L7+83sQTMbn9/va2H4w83sFTN7zcwuqFc9RUSknHoegTQC33T3DwL7AV8zs92BC4CH3L0f8FD+XomZdQEuB44AdgdOymFFRKSTqFsAcfdp7v58pucD44DtgWOB6zLbdcBxzQy+L/Cau7/u7kuBW3M4ERHpJNrlGoiZ9QX2Bv4K9HL3aRBBBujZzCDbA29V/Z6c3Zob92AzG21mo2fOnNmm9RYRWdc0DLmXhiH3tktZdQ8gZrYFMAI4193n1TpYM92a/etEd7/K3fu7e/8ePUq9zkVEREqoawAxs25E8LjJ3W/PzjPMrE/27wM0NDPoZGDHqt87AFPrWVcREVkz9bwLy4ChwDh3v6Sq113AqZk+FbizmcGfBfqZ2S5m1h04MYcTEZFOop5HIAcAJwOfNrMX8jMAuBg4zMzGA4flb8xsOzMbBeDujcDZwAPExfffu/vYOtZVRETWUN1e5+7uT9D8tQyAQ5vJPxUYUPV7FDCqPrUTEZG1pSfRRUSkFAUQEREpRQFERERKUQAREZFSFEBERKQUBRARESlFAUREREpRABERkVIUQEREpBQFEBERKUUBRERESlEAERGRUhRARESkFAUQEREpRQFERNZJ9986i/tvndXR1Shtxi//xoxf/q2jq7FWFEBERKSUuv2hlJkNA44CGtx9j+x2G7BbZtkamOvuezUz7ERgPrAcaHT3/vWqp4iIlFO3AAJcCwwBri86uPvni7SZ/QJ4p5XhD3H3dff4VERkPVfPv7R9zMz6NtfPzAz4V+DT9SpfRETqq6OugRwIzHD38S30d+CPZvacmQ1ux3qJiEiN6nkKqzUnAbe00v8Ad59qZj2BB83sZXd/rLmMGWAGA+y0005tX1MREWlWux+BmFlX4ATgtpbyuPvU/G4ARgL7tpL3Knfv7+79e/To0dbVFRGRFnTEKax/AV5298nN9TSzzc1syyINfAYY0471ExGRGtQtgJjZLcBTwG5mNtnMTs9eJ7LK6Ssz287MRuXPXsATZvYi8Axwr7vfX696iohIOfW8C+ukFrp/qZluU4EBmX4d+Ei96iUiIm1DT6KLyAbj2WsaePaaho6uxnpDAUREREpRABERkVIUQEREpBQFEBERKUUBRERESlEAERGRUhRARESkFAUQEREpRQFERERK6ajXuUt66qqjANh/8D015b9/6ICm9OGnj1qp3x3DjgDguC/f10a1k1UdOeIqAO4dqL+pqZdbR1T+iPTEgdt2YE3Wbw2/afGF6DXTEYiIiJSiACIiIqUogIiISCkKICIiUooCiIiIlKIAIiIipdTzL22HmVmDmY2p6vZ9M5tiZi/kZ0ALwx5uZq+Y2WtmdkG96igiIuXV8wjkWuDwZrr/0t33ys+oVXuaWRfgcuAIYHfgJDPbvY71FBGREuoWQNz9MWBOiUH3BV5z99fdfSlwK3Bsm1ZORETW2mqfRDezHsBXgb7V+d39yyXLPNvMTgFGA99097dX6b898FbV78nAx1up32BgMMBOO+1Uskqtm3r5eU3pFf5OU3qHs4cy6dLjANj5nDsYPyTiXL+z76xLPTq7n9z6WQDOP/GBNh3vEXeeCMB9x97apuM98vafV/2qbAr3nnDuKvmuyO5ntWn5Rw2vfhK4si93z6DPrfG4jh1emed3Dvrs2lSLQSNeaEoPH7gXnxsxFoA/DPxQi8OcM7KyyV56/I5N6R+PnNaUvvD4PmtVL4C7fx9PqR/9r7U9of7kdTOb0p84tcdal7+mpv/i5aZ072/+c4v5ZvzqWQB6nfsxZvz66UoPa2xK9jrnkysN03DZQwD0/PqhNAyJ5d/z7JWXfcPldzWle37tmDWs/erVcgRyJ/APwJ+Ae6s+ZVwBfADYC5gG/KKZPNZMN29phO5+lbv3d/f+PXq0/woiIrKhquVdWJu5+/ltUZi7zyjSZvY7oLkXQE0Gdqz6vQMwtS3KFxGRtlPLEcg9Ld0ttabMrPoY9nhgTDPZngX6mdkuZtYdOBG4q5l8IiLSgWo5AvkG8G0zWwIsI04xubtv1dpAZnYLcDCwrZlNBr4HHGxmexGnpCYCZ2Te7YCr3X2Auzea2dnAA0AXYJi7jy0xbSIiUkerDSDuvmWZEbv7Sc10HtpC3qnAgKrfo4D33OIrIiKdR03/B2Jm7wP6AZsU3fI2XRER2UDVchvvV4jTWDsALwD7AU8Bn65rzUREpFOr5SL6N4CPAZPc/RBgb2Bm64OIiMj6rpYAstjdFwOY2cbu/jKwW32rJSIinV0t10Amm9nWwB3Ag2b2NnouQ0Rkg1fLXVjHZ/L7ZvYw8VT6/XWtVTtquPISAHqeed5qcnacB6+uegynuef0mzH8mniP5aDTyi2qq26IVyIMPnnl15JcelPlVQnnfLG2V5Z89w9Rlx99ruW6nDay8t7Na46vrc5H3HFuU/q+437VYr4BI/8bgFHHf4cBIy9u6m613UOy1o4afiMA9wz6N44afnOmv9Bi/qOH396UvnvQCSv1O2Z4PHt716Cj2rqabeY7I6c0pTdvp3+MeOjmyln1Q79Q2xsp/nZ1AwB7f6UnY34bzzjvcUYvXv5N0/POdGusvATjA+f0rmm803/+WuVHjdtrLWZc+khTutc5B6/x8A2XV9arnl87oZWctav1Lqx9gE8Sz2/8JV9yKCIiG7DV7h6Y2UXAdcA2wLbANWb2nXpXTEREOrdajkBOAvauupB+MfA88N/1rJiIiHRutZygnEjVA4TAxsCEutRGRETWGbUcgSwBxprZg8Q1kMOAJ8zsUgB3P6eO9RMRkU6qlgAyMj+FR+pTFRERWZfUchvvdQBm1g3YA5ji7g31rpiIiHRuLV4DMbMrzexDmf4H4EXgeuBvZtbcm3ZFRGQD0tpF9AOr/ofjNOBVd/8w8FHgW3WvmYiIdGqtncKqfljwMOAPAO4+3awNH6+sk5lXXFv5Ycuakj3O/GqLw8y44n8B6HXWt5n2m++2WV1euKLyZ/aNG1WebO1/xt0r5Xv8d/F08YFfbe6ffjufS26uPJV+3hdqeyp9fXLkiKub0vcO/MpK/Y4acT0A9ww8Za3LOXr4nQDcPejYtR5XSwaOeLYpbXSrWzktue72ypPkG7fl49tSV60dgcw1s6PMbG/gAPL1JWbWFdi0PSonIiKdV2tHIGcAlwK9gXPdfXp2PxS4d3UjNrNhwFFAg7vvkd1+BhxNHN1MAE5z97nNDDsRmA8sBxrdvX+N0yMiIu2kxSMQd3/V3Q93973c/dqq7g+4+zdrGPe1wOGrdHsQ2MPd9wReBS5sZfhDsmwFDxGRTqhur8rMv7yds0q3P7p7Y/58mviXQxERWQe1z7uWm/dl4L4W+jnwRzN7zswGtzYSMxtsZqPNbPTMmfqjRBGR9tIhAcTM/gtoBG5qIcsB7r4PcATwNTP7VEvjcver3L2/u/fv0aO2/wEQEZG1V8vr3HuZ2VAzuy9/725mp5ct0MxOJS6uf9Hdvbk87j41vxuI16jsW7Y8ERGpj1qOQK4FHgC2y9+vAueWKczMDgfOB45x93dbyLO5mW1ZpIHPAGPKlCciIvVTSwDZ1t1/D6wAyIvgy1c3kJndAjwF7GZmk/OoZQiwJfHf6i+Y2ZWZdzszG5WD9iLe9vsi8Axwr7uvN3+hKyKyvqjlbbwLzWwb4sI2ZrYf8M7qBnL35t6XNbSFvFOBAZl+HfhIDfUSEZEOVEsAOQ+4C/iAmf0F6AEMqmutSmqcOYeZV9xIj7P+rcU8M6+8vCnd48yv1a0uY39TeX1JmTczPHz1kQAc8pWWn9m8Z9gRTemjvtzSDW1w2zWVx3E+f1rlYO66az/TlD71S39scfjf3Fh5ZcnavmXiW8MrdVlUffy7yniPuzPy3XFsbQefA+64oCk96riLGTDyokgf/8NS9Tzy9iEA3HvC2TXlP2rENU3pewaeVqrMNXXs8FFVv7o0pY4b/lBT+o5Bh3L8iEcAGDnw4JWGP2HEU01pq6kpWHu/HhnPI3/j+N7tUl5bevOS6U3pnc7rzbSfTAOgz/l9OqpKHa7FtcbMPufufwDeBg4CdiM281fcfVlLw4mIyIahtWsgxVPiI9y90d3HuvsYBQ8REYHWT2HNNrOHgV3M7K5Ve7r7Mc0MIyIiG4jWAsiRwD7ADcAv2qc6IiKyrmgxgLj7UuBpM/uEu+sdISIispLWLqL/yt3PBYaZ2XueGNcpLBGRDVtrp7BuyO+ft0dFRERk3dLaKazn8vvRVfuZ2W3Ae7qLiMiGo+zbePdv01qIiMg6p30ePxVpI0fcWf33MJt1WD02VJ8fMR6A2wb26+CaSGfQ2kX0fVrqBXSrT3VERGRd0doRSGvPfrzc1hUREZF1S2sX0Q9pz4qIiMi6pSP/E11ERNZhCiAiIlKKAoiIiJRSUwAxsz3N7BgzO6H41DDMMDNrMLMxVd3eb2YPmtn4/H5fC8MebmavmNlrZnZBc3lERKRjrTaAmNkwYBgwEDg6P0fVMO5rgcNX6XYB8JC79wMeyt+rltcFuBw4AtgdOMnMdq+hPBERaUe1PEi4n7uvcQPu7o+ZWd9VOh8LHJzp64BHgPNXybMv8Fr+NzpmdmsO939rWgcREamfWgLIU2a2u7u3RQPey92nAbj7NDPr2Uye7YG3qn5PBj7e0gjNbDAwGGCH92/TBlVcv9107Wdb7Df0+viP9NNPafn/0Wv1o9uinO9+/oG1Hpe0neNHPAHAyIGf7OCawG9vbwDgjBOaawbKe+zGyr9PtNerNqb/bBIAvf9z55bzXPJSU7r3eR+ue53aQy3z9zoiiEwHlhBPoru771mnOlkz3d7zOvmmHu5XAVcB7LXzri3mExGRtlVLABkGnAy8BKxYy/JmmFmfPProAzQ0k2cysGPV7x2AqWtZroiItLFa7sJ6093vcvc33H1S8SlZ3l3AqZk+FbizmTzPAv3MbBcz6w6cmMOJiEgnUssRyMtmdjNwN3EKCwB3v721gczsFuKC+bZmNhn4HnAx8HszOx14E/hc5t0OuNrdB7h7o5mdDTwAdAGGufvYNZ4yERGpq1oCyKZE4PhMVTcHWg0g7n5SC70ObSbvVGBA1e9RwKga6iYiIh1ktQHE3U9rj4qIiMi6ZbUBxMyuoZm7oNz9y3WpkYiIrBNqOYV1T1V6E+B4dFeUiMgGr5ZTWCOqf+fF8T/VrUYiIrJOKPM23n7ATm1dERERWbfUcg1kPnENxPJ7Ou99f5WIiGxgajmFtWV7VERERNYtNb1rzMz2BPpW51/dg4QiIrJ+q+UU1jBgT2AslXdhrfZBQhERWb/V7f9ARERk/VbLXVhP6R8BRURkVZ3x/0BERGQd0N7/ByIiIuuJWgLIm+6u/+MQEZGV1O3/QEREZP1Wt/8DEZH12xdvjz8mvemEnetWxu3DZzWlTxi0bd3KkXL0fyAiIlJKiwHEzL7l7j81s8to/v9AzilToJntBtxW1WlX4CJ3/1VVnoOJ/0t/Izvd7u4/LFOeiIjUR2tHIOPye3RbFujurwB7AZhZF2AKMLKZrI+7+1FtWbaIiLSdFgOIu9+dydvcfXF1PzNrq5ORhwIT3H1SG41PRETaSS1Poj9jZvsVP8xsIPBkG5V/InBLC/32N7MXzew+M/tQSyMws8FmNtrMRs9eMK+NqiUiIqtTy11YXwSGmdkjwHbANsCn17ZgM+sOHANc2Ezv54Gd3X2BmQ0A7iD+yOo93P0q4CqAvXbe9T3XakREpD5WewTi7i8B/wOcCRwCnO3uk9ug7COA5919RjNlznP3BZkeBXRrw9NmIiLSBmp5nftQ4APEK93/CbjbzIa4++VrWfZJtHD6ysx6AzPc3c1sXyLQzV7L8kREpA3VcgprDPAVd3fgjbwecsnaFGpmmwGHAWdUdTsTwN2vBAYBZ5lZI7AIODHLFxGRTqKWBwl/ucrvd4DT16ZQd3+XuJZS3e3KqvQQYMjalCEiIvVVyymsfsCPgd2BTYru7r5rHeslIiKdXC238V4DXAE0EhfRrwduqGelRESk86slgGzq7g8B5u6T3P37tMFtvCIism6r5SL6YjPbCBhvZmcTrx7pWd9qiYhIZ1fLEci5wGbAOcBHiX8nPLWOdRIRkXVALXdhPZvJBYBe7S4iIkDrr3Nv9W9s3f2Ytq+OiIisK1o7AtkfeIt4WvyvgLVLjUREZJ3QWgDpTTwtfhLwBeBe4BZ3H9seFRMRkc6txYvo7r7c3e9391OB/YDXgEfM7OvtVjsREem0Wr2IbmYbA0cSRyF9gUuB2+tfLRER6exau4h+HbAHcB/wA3cf0261EhGRTq+1I5CTgYXEK9zPMWu6hm6Au/tWda6biIh0Yq39J3otDxmKiMgGSkFCRERKUQAREZFSFEBERKSUDgkgZjbRzF4ysxfMbHQz/c3MLjWz18zs72a2T0fUU0REWlbL69zr5RB3n9VCvyOAfvn5OPGHVh9vr4qJiMjqddZTWMcC13t4GtjazPp0dKVERKSiowKIA380s+fMbHAz/bcnXuRYmJzd3sPMBpvZaDMbPXvBvDpUVUREmtNRp7AOcPepZtYTeNDMXnb3x6r6N/fmX29uRO5+FXAVwF4779psHhERaXsdcgTi7lPzuwEYCey7SpbJwI5Vv3cAprZP7UREpBbtHkDMbHMz27JIA58BVn3P1l3AKXk31n7AO+4+rZ2rKiIireiIU1i9gJH5bq2uwM3ufr+ZnQng7lcCo4ABxCvk30V/pSsi0um0ewBx99eBjzTT/cqqtANfa896iYjImumst/GKiEgnpwAiIiKlKICIiEgpCiAiIlKKAoiIiJSiACIiIqUogIiISCkKICIiUooCiIiIlKIAIiIipSiAiIhIKQogIiJSigKIiIiUogAiIiKlKICIiEgpCiAiIlKKAoiIiJTSEf+JvqOZPWxm48xsrJl9o5k8B5vZO2b2Qn4uau96iohI6zriP9EbgW+6+/NmtiXwnJk96O7/t0q+x939qA6on4iI1KDdj0DcfZq7P5/p+cA4YPv2roeIiKydDr0GYmZ9gb2BvzbTe38ze9HM7jOzD7UyjsFmNtrMRs9eMK9eVRURkVV0WAAxsy2AEcC57r5qy/88sLO7fwS4DLijpfG4+1Xu3t/d+2+zxVZ1q6+IiKysQwKImXUjgsdN7n77qv3dfZ67L8j0KKCbmW3bztUUEZFWdMRdWAYMBca5+yUt5Omd+TCzfYl6zm6/WoqIyOp0xF1YBwAnAy+Z2QvZ7dvATgDufiUwCDjLzBqBRcCJ7u4dUFcREWlBuwcQd38CsNXkGQIMaZ8aiYhIGXoSXURESlEAERGRUhRARESkFAUQEREpRQFERERKUQAREZFSFEBERKQUBRARESlFAUREREpRABERkVIUQEREpBQFEBERKUUBRERESlEAERGRUhRARESkFAUQEREpRQFERERK6ZAAYmaHm9krZvaamV3QTH8zs0uz/9/NbJ+OqKeIiLSs3QOImXUBLgeOAHYHTjKz3VfJdgTQLz+DgSvatZIiIrJaHXEEsi/wmru/7u5LgVuBY1fJcyxwvYenga3NrE97V1RERFpm7t6+BZoNAg5396/k75OBj7v72VV57gEudvcn8vdDwPnuPrqZ8Q0mjlIAdgNmA7Py97ZV6VV/r016Qx++M9VF09I569LRw3emunT2adnc3XtQhru36wf4HHB11e+TgctWyXMv8Mmq3w8BH61x/KObS7fWb03TG/rwnakumpbOWZeOHr4z1WVdmZYyn444hTUZ2LHq9w7A1BJ5RESkA3VEAHkW6Gdmu5hZd+BE4K5V8twFnJJ3Y+0HvOPu09q7oiIi0rKu7V2guzea2dnAA0AXYJi7jzWzM7P/lcAoYADwGvAucNoaFHFVC+nW+q1pekMfvjPVZW2H70x1WdvhO1NdOnr4zlSXtR2+veqyxtr9IrqIiKwf9CS6iIiUogAiIiKltPs1kHoxs2HAUUAD8ST79UBvwIHNgbnE9A4HfgiMBqYAewDzgeWZdwKwD7Ad8CZxDeafgbeJZ0x6A1sDjcALwK7ZfSugF7AMWAL8Q5ZpwBY5/vFAn/z9BjAP+BhxT/ZmQPcc70TiKXwDllJZTstyPN2zrkX/acTOwHb5bZlnYtZjC2BFdieHXQ7MyHnTM383Zr+Xcr5snL8bc7zF+c5iXF2yX2OWV4x7PnF/+ds5/o1yPi7L+jRmefMzf58c59Icx1jgQ1XTuaJq3DNzfu2W45sE7JzDvk3csddIZZl3B14H/inzvE6sI32y/h/M31sBr2S+BmIZ/mOOa1zWx7IuK7IuGwMLgLdyPMuy38aZ921g0yynepiFWe9+wBxinQJYnN/FetC1ajjL+bgk8y0m1sNi3lhVnmL5zwM2yXp1y/FMBrbMeb8V0CPrsFWOs1vV9yY5zKJMd8l5WNRn48w7OedVsQ5tnHV6h5WXd7f8XgxMz2GM2H62qZp/3TPfRvlZlvm6Vo1rcdZri1X6zc1xbZLpTavmT7HeLiO2jZ75WZzz4P3Eero5FSuyDl3ye2mOY0lO5zJi+3tf1mWjnM7Xc/l0z49lOcW0PQbsTSz7ebk8tslp6lb1KbbZYn54VTfL+s6jsg13yc8SKuvB8hxv96xvMT1LgbOyLuOy/9gc99PufiarsT4dgVwLHJ7pRuCb7v5B4OPEjDoJ2CvzXELMsMIh7r4X8Hfgfnffldig9gWOJlbOg4g7xjYBLiYu8HcFvko0lndn/oXA48BzxEI7PrvPJ55vOR74NZVGY3pV/T+evxcCB2QdP5/dnbi54CCi8ZmQeS8mVv73Ec/UXA7cQays3wLOI1bwfYCbsvs+wC+IlW48lRV4H2AgETxOc/cuwCeIQHMT0VDMAj5KBNelwCHAX3K8BxGvnXHgReC7RAPyAnFn3U2ZPgT4DrGBvEk0NNOz+9FEw3pslr9Tjms40VAvAB4lNgQHrsluZNkTiYb79ZxHj+a8nQg05HJeSGzsRZCbTQT064EniQbkauC2HP56YoOcTtxOPhl4Oev+naz/O8D2wG9y/E/m9G+Zw1wDXJrD/C/wBBGoxuWwc4lb1wfkfN0lp3/7HH4acDPwB+CGrP/jwIX5PQ84n1j+bxLr57cz/4VZr8uAZ4A/A08R28kcYCix7n+b2PlaBHwnyx+Z3acAtxDr7VtZ7xnARURQXwB8IMtZBDyd82YGESiuzO79svszuQyn5LyZn/2OzO67Ew3azOw+nVjeH8rpg9j+niTWqUbixpzHMt+rwM+IxvPrwHVEo/l14KfETuHMnPeTsqzjgP+rGmZfIoB8PZfVcuAbWZctiJ2/vxA7jm8TF6TvyfL/Kz8bZb7fE8FsX2AIcBixjr6Ty+5dom14lWj4Pwb8P2K7mpDzaS6xHRU7ukOIbWga0U50JQLA0Tk9k4h1DWCMu29M7CR1yfSlwG+BXwGPALPcfa/8rDZ4wHoUQNz9MWJjwN2nufvzmZ5PrBTbEzN7M6JRvLp6eDPbCvgUsTHh7kvdfS7wSWLFmUWsvHOIhQBwJ7AfEWx+kP1mEXuxjcC77v5wdl8I7JD1dGJl+mqOG6IBK/aCLiA2PNz9ruzeFXg8p2sHolF9IYfbm7g9eh7wcyJQLgR6uPu1mW97IsjNy/QiYkW9IeszPbt/Cfhb1bx8Joc/kmjIpma+HYhG1XN6i6OVy3J+LAf+SmVv5yViQ+uS+bYiGtfLikWQ3c8iNtZ3svvcHObQnCebEsuvO7HRHZn5Ns30d4k9uW2IZblxdr8Z2MTMdgA+nN0n5HB/z/l7ZH6/RexoXJ31P5JYd+ZmWdtR2QF5hAioRRD7ObGTAfBXd2/M9FM5zyDWQSeW9Q9Y2Vk57UsB3L0hu/fIefgponHelJjvQ4ijsW0zfSVxRDYFGEPsiAwhGtadgP1zeg+gcrTYHeib+b6e5f0qt4n+2b0X8ExuEzsQDeYE4lVE/YFx7j6JCAzFHroDE7L7XGBRpjcHPk1sl41Z39nZ7yJgvLuPJ5b5eCJg9CQa81lZ/iIq6952xDoyitjZKo4y/k4svznE9lGkt8j8w3Jai6Ozs4gAWOSbm/nm5PxdQOyI9Ml+xTv7LH9fTLQH7+b8nUPsaBxBbF/zM70jsX08k+XPzc+XgT9WDTON2BHYMuf/08Ty34g4g3JD1n1LIjAVZ1vG5Hg3y+VkxPoDsUPX1cw2JtqvTYhANp4y1uYpxM72ITaCMc10e5NYmRbkwvkocDCxt/AG8DyxMr9B7K3+jWg8NidWsuE57ByiAd6LiPRPZf7l1eXnQnuaeOdX0X1eLrC3iD3YOdlvMrEnNJFolBqBn2QdFhJ7Iv9K7Im8mcMvIfY23yT2Lj3TW+U436FyRFBM/1bAn4iVe3J+FmT3eVluUfd5xAr6KHAM0XA/T2zQjVROY9xHBBfPOr2Q41xMNKyv5O+fVtXpyRx+ReYvhp9HpVF4mgg+C7K+N+f3QqJhmJ7jmEssyyU5vmK5rsj6n0FshB/NcqfneKYRwXQaERBvyekan/VcQDTWL+Sy+QqxbizKfCtyec3K+eiZfp448lxBNBbjiNfsvEGlkShOJxTje57KaZli/MW0zgf+J+u4KKe9MfstyrreSOW02o3E+r0ip/UNIhjfmHmn5nxbQCznhkzPzvLfrip/VpbzNtGoLcq8k3N+PwGcTRzhOnB2rnvDcvhHiPW96F5sg28Re8Yv5/ATs/vs/F4MPEgs/2nEuvOprMdCKqf0niaOBopTnKOzfkW6mJ6i+5L8vSL7zazKv5AIuJ51X7DK8O9SWe5Tch4uBX6X86XIu03O5+XEkdve2f93xLZUnLadmuP7HbFOLM1+c4ijsRU57V/M+TGPaG+KoLyCWCf7UtkJuC67v53dV+R0/EfRPZfDwix7bNV0bkEchSwh2p1HgQNranM7utGvZwDJGfMccEL+/jyV6x4HEwFku+x3WC6MM/L3r4mNdzZxiqAHEe2fJzaChcTe3lBWH0B+liuBEXsFU4CZVQFkPLGns0vVwu1L7OG9QTQAC4GBOcy3Mt+ErKNXTeMWVILBgcX0E3u6b2e6R660t2f+pcSRx5ZEI/Vm1vWgXKnuJwJVA/DTLOfCzDuWSuO2B3Hedxmxx9c/f79OBK+tgYeBPak0JHtk+gniyGBmTusexF7VpJxfPyP2MGdnv3uIlf+5LG95Vb2WEw3YEKKB+q9chs8QpxnezP4T83NJfm9EbFTFee7Lc9xXEI3baGJv91xiY19ENJgrcj58ithTbiQ2xMOII8WbiAalZ+b7LdGIjMthJhPB9qCc/sXZ/bNV8//xXIae0/AilcC1ONNDc557jv9kKg3qSCJQFsHlWiqBblCmh+Z0FeM6NdPjsvx7gB8B38z8LxLXE53YQ+6e9ZlLNEJzs/tFOR29iPW/uLbYi8opxz7EUeEKIrh0z+En5fxalvXoQQStpTn/F2WdZxJHEHMz/SrwL5m+kzh9PBP4GrG+vZv53yQC5NjsPy6/L86yZ+a0PEGsx28Q290yKtckF+c4ns9uc7NOjxHr2YKcL48QO2OLc9xF+tocfhmx7j+Swy8m2pEVRGB6IOfjNGI7eCnn/WziNGurAYQ4g7KceDAbYt1dThyF/Ai4KLt/NOfRVhtsACEa+weA86r6/zgXxBwqe6M3Zr/eueD/I38fSGx4LwJDq8ZxCnHoOIY4v/idXKh9svyXicbgaeLw89Rcscbm8B/O8ou92GKPvncOvzBX0r5ZxoRc+ZYTjVoxXcWFzsdzxeuTvx8mGvpHiSOk84hD47nEUUs34rxt0VAWe1Bv5rBF0CrKmZXjeyTzFs8OFRcF/4PYsKZluk8OM4FozE7NlfHCHO57xGmmWVTOwRcXP3+Q9X67ajlMyLr+KMsrlt8CYuMp9iKL9EIqNwm8W5WenvPpXSo3TBSfYg9+QVW/BVVlFHneJYK5ETsE3ycamkXEqavmpn8ksZw3y+n5fuYtprmY/ndamP45RCM/j6p1NLtNIxrGSTlt9xLBuZFoVD6b+d8mGu5js66ziGVf7FVPJhqze4kjtcZM9870kiz/wOx+LNCY9Tsr51mf7P4Isf6/RGwDpxLbxJ+q1v95VNb/4sirdw4/h1j/jiUa1QlUjtyGVq17S4jGvmjUi2tdUzI9hVjfXyaW/Rez+8NV5RdH3vOJgPNozodHiVNZ04ltqLhQfUp2L8r/9yx/eqb75LRPIl4GC3Gk+3rO//8ljpqK7Xk2lWV/QZb7Rub795z2opGfl91n5jQVN+CsIHZWfpLjeo1KAJlMrCvLc16/mt2KHdsiOE2lsi4WR4yPAP1X1+auN9dAqpmZEXtQ44AbzGzr7PVDYk/yFOKC+KPEBgCxEm1E5Tz3ocQprLuA/cxssxzvkcRC6kbszd9FLMxTc7itiT0eiJXmfOJwsxuAu79EHN3Md/e+xMo3yd2Li+nFKQqIvbCtsrxlxB7qUCp7/kOJw+Y/ZflDs5xrifPibxCn5i4hLgjfnnmeJfbUp1HZG36KCJbPZ/lDs3/ReL5ABILimsNXsx6vULnL52XgdCp3Cu1P7P1PB14yswOJRu1vOQ/m5rJoIFbuZ4mNqzvwlpn9E3HOtrieMpHYOE+hclpsq+w23d23IPb2JxCB9XdEEOhN7DU/4O6bEUcQj1FpfL8MjMrhH89lswVwJtHQPpbT/hKxvpyQ8/ZwIkg8SZxmHJP9l+Y8PCin93vA9mbWI4fZjDiaehn4AtFojc9lMJfYEx9jZh8hjgqLo7C9iHW0N9EoFXfgLahKD8iylxDXBzbL6dyeOKUymziiuivHuTDruDiHn0LlFMpWRGM5J7ufTqxP/wlMNrONiKPhscT6dxKVPf5exHp7PrEdPghN6/944Llc/xcD/53r/0m57BZm+s9Zh6VZh0+b2WY5/4u70BbnsvgIcZ3iz5leRByt9CMa/SXZ/W7iCK6RCObTcr5vmfNmQeabm9P+YWL7mEIcpRenJZ24/tOY8/jBnAd/znIfyDeNfyY//YkXyV5PXLx+l7i5oCE/I/J7aeZ7hrjONSCncQbwb8RRYO+ch8WR4wSiDbCsa3GtbUJ+r8h5c2FOx5Ts/kjWY8+cJz929yFmtmvOt9dZjfXmSXQzu4U4LVXcWVNcdOxOXDycQayYv3f3H5rZwcSh9TY5iq7Ewt+fyh0MBxCnlc4jTn81Egu9S+YvGsriVlV47612ULkV0IkVu7jVbhmVC65UDbeCyi2ZK7Kc4pbWrqx8W+M7ROP2AWKFW5zdu1K59c+o3A5c3Ba5NOs9MedP0X1RprfIca0gNpCJ2X1HKrcCGpU9/c2qpqHYqIoL48up3JYKlXP+C3O5fCjLacxxNxANHlXdJ2WdNiEaqV5E4zKZ2Ck4mFjuG1G5nbko7yViuXUnGu1JxDnjLxGnw94gDtsnEg3ILkRj0p1opC4iAuT/5HeXHO9GVBqdYqMly7X8NFK5zbk4mnk3h9s0p3WPqulcXjV+iODbjVgW22dZm+Y4tsg6zM9hiovzRuXW0WL92TjH/Raxzk/Nef8JKutksW4tJhpUspx3cxzbEo3PP+f3kpzuDxLn7j9FNLDvJ/bGl1PZuSiOFKcQOzd7Eke984lg1i/H+2CWfzQRkBuyjgOzjPdTuZ22+lbVblSOaHtVLQPPvMWF8uKIf3JO8z9mHZbk/FtB5TbkacQOzNKcB8XF72Jbd2Ln8a2cB0Zl2y62+eIor7r8JTn/PefFW0R7VVyf2aQq7+ZUtrNlVLbtwoqq9OoOCIpxdK+qx7+7+41mdhuxwzMj833P3e9ezfjWnwAiIiLta708hSUiIvWnACIiIqUogIiISCkKICIiUooCiIiIlKIAIlIHZvZkC92vNbNB7V0fkXpQABGpA3f/REfXQaTeuq4+i4isKTNb4O5b5NsLLiPePvsGKz9gKrJO0xGISH0dTzxt/GHi9S86MpH1hgKISH19CrjF3Ze7+1TidTki6wUFEJH60/uCZL2kACJSX48BJ5pZFzPrQ/xtr8h6QRfRReprJHEB/SUq/zkhsl7Q23hFRKQUncISEZFSFEBERKQUBRARESlFAUREREpRABERkVIUQEREpBQFEBERKeX/A19Bdyuw0dJYAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "needs_background": "light" | |
| }, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "sns.barplot(x='id', y = 'Maximum Life Span', data = df)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 30, | |
| "id": "be2b3a01", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "Text(0.5, 1.0, 'Max Life Span Counts')" | |
| ] | |
| }, | |
| "execution_count": 30, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ3UlEQVR4nO3debwkZX3v8c9XQATZYVhFRxFRkMugA3GLIogXQbYoKm7gckeNREFMwtVXFE1icOWKGhTDJiKiYRdUkIA7mAEHmLkDYRvZhmFAkcUIDHzzRz0HmjPdZ3rOOdVneb7v16tfp7qqun5PnTnz7eqnq56SbSIioh5PmegGRETEYCX4IyIqk+CPiKhMgj8iojIJ/oiIyiT4IyIqk+CPaUPSxyT9W8fz/SXdKukBSTtOZNsiJpMEf4yJpEWSHpa00bD58yRZ0sxxrjezbHfV4ctsf8b2eztmfQE4xPZatn+7knWeIekMSXdL+qOkayQdPMbmj4qk50n6fkdbrpb0EUmrtFz3JEn/1GaNmBgJ/hgPNwMHDj2RtD2wxsQ153HPAhaM8rWnALeWbWwIvBNYMk7t6pukrYDLS1u2t70ucAAwG1h70O2J6SHBH+PhFJpgHHIQ8K3OFSTtJem3ku4r3S9Hdix7s6SbJK1Tnr9O0p2SZqxMIyQdKenbklaX9ACwCnCVpBvL8s3LUfxSSTdL+tAIm9sJOMn2g7aX2f6t7R+W7Qx96pgj6Q5JiyUd3tGOnSX9WtK9ZdlXJT21Y7klvV/S9ZL+IOlrktSjHZ8CfmX7I7YXA9i+zvZbbd9btrePpAWl3qWSXjCs1nM7nj9+FC9pF0m3STpc0l2lre8qy+YAbwP+rnSVnVfm/72k2yXdL+k6Sbv1+c8Tk0iCP8bDZcA6kl5Quh/eDHx72DoP0rw5rAfsBXxA0n4Atk8Hfg0cI2lD4HjgvbaXjqYxth+yvVZ5uoPtrSQ9BTgPuArYAtgNOFTS/x5hn74m6S2SntljnVcDWwOvBY6Q9Joy/1HgMGAj4KWl1l8Pe+3rad5cdgDeBPRqx2uAf++1r5KeB5wGHArMAC4Azut8o1mBTYF1aX4n76HZ5/VtHwecCnyudJXtLWkb4BBgJ9trlzYv6rNOTCIJ/hgvQ0f9uwPXArd3LrR9qe1rbD9m+2qasHpVxyofBHYFLgXOs/2DcW7fTsAM25+2/bDtm4BvAm/psf4BwM+BfwBuLt9Z7DRsnU+VTwTXACdSurtsX2H7svJJYRHwDZ68rwBH2b7X9i3AJcCsHu3YEFg8wn69GTjf9kW2H6H5XmMN4GUjvKbTI8CnbT9i+wLgAWCbHus+CqwObCtpNduLbN/YZ52YRBL8MV5OAd4KHMywbh4ASX8h6ZLSzfJH4P00R8QAlG6L7wMvBL7YQvueBWxeukPulXQv8DFgk24r2/6D7SNsb1fWmQecPaxL5taO6d8Bm8PjX8b+oHRX3Qd8ho59Le7smP4TsBbd3QNsNsJ+bV5qD7X7sdKuLUZ4zZO2b3tZP22xfQPNJ4sjgbskfVfS5n3WiUkkwR/jwvbvaL7k3RM4s8sq3wHOBbYsX1B+HXg8RCXNAt5N80ngmBaaeCtws+31Oh5r295zRS+0fTfNkfTmwAYdi7bsmH4mcEeZPpbmU8/WtteheYPp1Ye/Ij8B3jDC8jto3tQAKG9MW/LEJ64/AWt2rL/pStRebuhe29+x/YpS08BnV2J7MUkk+GM8vQfY1faDXZatDfze9p8l7Uzz6QAASU+j+U7gY8C7gC0kDe8TH251SU/reKzob/k3wH3ly8k1JK0i6YVdum+G2vTZsnxVSWsDHwBusH1Px2r/IGlNSduVdp/esa/3AQ9Ien557Wh9EniZpM9L2rS07bnlS+z1gO8Be0naTdJqwOHAQ8CvyuvnAW8t+7sHy3c5jWQJ8JyhJ5K2kbSrpNWBPwP/TdP9E1NMgj/Gje0bbc/tsfivgU9Luh/4BE1gDfkX4Dbbx9p+CHg78E+Sth6h3AM0wTP02HUFbXsU2JumL/1m4G7g32i+2OxmTeAs4F7gJpoj3H2GrfNT4AbgYuALti8s8z9K88Z2P833CKczSqUP/aXATGBB6SY7A5gL3G/7Oprf11fKPu0N7G374bKJD5d599KcpXP2SpQ/nqY//15JZ9P07x9V6twJbEzzZh1TjHIjloiVo+aitJuB1Yb1j0dMCTnij4ioTII/IqIy6eqJiKhMjvgjIiqz3AiHk9FGG23kmTNnTnQzIiKmlCuuuOJu28uNeTUlgn/mzJnMndvrLMGIiOhG0u+6zU9XT0REZRL8ERGVSfBHRFQmwR8RUZkEf0REZRL8ERGVaS34JW1ZbryxsNwP9MNl/pHlnp3zymOF46FHRMT4afM8/mXA4bavLOOZXyHporLsaNtfaLF2RET00Frw215MuVeo7fslLaT/28FFRERLBnLlbhm/fEfgcuDlwCGS3klzM4nDbf+hy2vmAHMAnvnMZw6imRET6vwFi1rd/l7bzWx1+zF1tP7lrqS1aO4YdKjt+2juR7oVzZ2QFtPjxtq2j7M92/bsGTOWG2oiIiJGqdXgL/cAPQM41faZALaX2H7U9mM0t6Xbuc02RETEk7V5Vo9o7tm50PaXOuZv1rHa/sD8ttoQERHLa7OP/+XAO4BrJM0r8z4GHChpFmBgEfC+FtsQERHDtHlWzy8AdVl0QVs1IyJixXLlbkREZRL8ERGVSfBHRFQmwR8RUZkEf0REZRL8ERGVSfBHRFQmwR8RUZkEf0REZRL8ERGVGch4/BFTRdtj4kPGxY+JlyP+iIjKJPgjIiqT4I+IqEyCPyKiMgn+iIjKJPgjIiqT4I+IqEyCPyKiMrmAK3rKxUwR01OO+CMiKpPgj4ioTII/IqIyCf6IiMok+CMiKpPgj4ioTII/IqIyCf6IiMok+CMiKpPgj4ioTII/IqIyCf6IiMq0FvyStpR0iaSFkhZI+nCZv4GkiyRdX36u31YbIiJieW0e8S8DDrf9AuAlwAclbQscAVxse2vg4vI8IiIGpLXgt73Y9pVl+n5gIbAFsC9wclntZGC/ttoQERHLG0gfv6SZwI7A5cAmthdD8+YAbNzjNXMkzZU0d+nSpYNoZkREFVoPfklrAWcAh9q+r9/X2T7O9mzbs2fMmNFeAyMiKtNq8EtajSb0T7V9Zpm9RNJmZflmwF1ttiEiIp6szbN6BBwPLLT9pY5F5wIHlemDgHPaakNERCyvzXvuvhx4B3CNpHll3seAo4DvSXoPcAtwQIttiIiIYVoLftu/ANRj8W5t1Y2IiJHlyt2IiMok+CMiKpPgj4ioTII/IqIyCf6IiMok+CMiKpPgj4ioTII/IqIyCf6IiMok+CMiKpPgj4ioTII/IqIyCf6IiMok+CMiKpPgj4ioTII/IqIyCf6IiMok+CMiKpPgj4ioTII/IqIyCf6IiMok+CMiKpPgj4ioTII/IqIyCf6IiMok+CMiKpPgj4ioTII/IqIyCf6IiMok+CMiKpPgj4ioTII/IqIyrQW/pBMk3SVpfse8IyXdLmleeezZVv2IiOiuzSP+k4A9usw/2vas8rigxfoREdHFCoNf0sX9zBvO9s+A34+yXRER0ZKewS/paZI2ADaStL6kDcpjJrD5GGoeIunq0hW0/hi2ExERozDSEf/7gCuA55efQ49zgK+Nst6xwFbALGAx8MVeK0qaI2mupLlLly4dZbmIiBiuZ/Db/rLtZwMftf0c288ujx1sf3U0xWwvsf2o7ceAbwI7j7DucbZn2549Y8aM0ZSLiIguVl3RCra/IullwMzO9W1/a2WLSdrM9uLydH9g/kjrR0TE+Fth8Es6haZ7Zh7waJltYMTgl3QasAvNdwS3AZ8EdpE0q7x+EU13UkREDNAKgx+YDWxr2yuzYdsHdpl9/MpsIyIixl8/5/HPBzZtuyERETEY/RzxbwT8f0m/AR4amml7n9ZaFRERrekn+I9suxERETE4/ZzV89NBNCQiIgajn7N67qc5CwfgqcBqwIO212mzYRER0Y5+jvjX7nwuaT9GuPAqIiImt5UendP22cCu49+UiIgYhH66ev6q4+lTaM7rX6lz+iMiYvLo56yevTuml9FccbtvK62JiIjW9dPH/65BNCQiIgajnxuxPEPSWeU2iksknSHpGYNoXEREjL9+unpOBL4DHFCev73M272tRkWcv2BRq9vfa7uZrW4/YjLr56yeGbZPtL2sPE4CMkB+RMQU1U/w3y3p7ZJWKY+3A/e03bCIiGhHP8H/buBNwJ00t0t8Y5kXERFTUD9n9dwCZCTOiIhpop8LuJ4N/A3L33oxbwYREVNQP2f1nE1z56zzgMdabU1ERLSun+D/s+1jWm9JREQMRD/B/2VJnwQu5Ml34LqytVZFRERr+gn+7YF30IzIOdTVYzJCZ0TElNRP8O8PPMf2w203JiIi2tfPefxXAeu13I6IiBiQfo74NwGulfSfPNHHb9sZmjkiYgrqJ/g/2TEt4BXAge00JyIi2rbCrh7bPwX+COwFnATsBny93WZFRERbeh7xS3oe8Baao/t7gNMB2X71gNoWEREtGKmr51rg58Detm8AkHTYQFoVERGtGamr5w00I3JeIumbknaj6eOPiIgprGfw2z7L9puB5wOXAocBm0g6VtJrB9S+iIgYZ/18ufug7VNtvx54BjAPOKLthkVERDv6uYDrcbZ/b/sbtjNcQ0TEFLVSwR8REVNfa8Ev6QRJd0ma3zFvA0kXSbq+/Fy/rfoREdFdm0f8JwF7DJt3BHCx7a2Bi8l3BRERA9da8Nv+GfD7YbP3BU4u0ycD+7VVPyIiuht0H/8mthcDlJ8b91pR0hxJcyXNXbp06cAaGBEx3U3aL3dtH2d7tu3ZM2bMmOjmRERMG4MO/iWSNgMoP+8acP2IiOoNOvjPBQ4q0wcB5wy4fkRE9do8nfM04NfANpJuk/Qe4Chgd0nXA7uX5xERMUD93IhlVGz3ulnLbm3VjIiIFZu0X+5GREQ7EvwREZVJ8EdEVCbBHxFRmQR/RERlEvwREZVJ8EdEVCbBHxFRmQR/RERlEvwREZVJ8EdEVKa1sXqmm/MXLGq9xl7bzWy9RkREjvgjIiqT4I+IqEyCPyKiMgn+iIjKJPgjIiqT4I+IqEyCPyKiMgn+iIjKJPgjIiqT4I+IqEyCPyKiMgn+iIjKJPgjIiqT4I+IqEyCPyKiMhmPP6Jybd9rIveZmHxyxB8RUZkEf0REZRL8ERGVSfBHRFRmQr7clbQIuB94FFhme/ZEtCMiokYTeVbPq23fPYH1IyKqlK6eiIjKTFTwG7hQ0hWS5nRbQdIcSXMlzV26dOmAmxcRMX1NVPC/3PaLgNcBH5T0yuEr2D7O9mzbs2fMmDH4FkZETFMTEvy27yg/7wLOAnaeiHZERNRo4MEv6emS1h6aBl4LzB90OyIiajURZ/VsApwlaaj+d2z/aALaERFRpYEHv+2bgB0GXTciIho5nTMiojIJ/oiIyiT4IyIqk+CPiKhMgj8iojIJ/oiIyiT4IyIqk+CPiKhMgj8iojIJ/oiIyiT4IyIqk+CPiKhMgj8iojIJ/oiIyiT4IyIqk+CPiKhMgj8iojIJ/oiIyiT4IyIqMxE3Wx+T8xcsanX7e203s9Xtj0aN+xzRptr/T+WIPyKiMgn+iIjKJPgjIiqT4I+IqEyCPyKiMgn+iIjKJPgjIiqT4I+IqMyUu4ArIqaHti+igsl3IdVk2ecc8UdEVCbBHxFRmQR/RERlEvwREZWZkOCXtIek6yTdIOmIiWhDREStBh78klYBvga8DtgWOFDStoNuR0RErSbiiH9n4AbbN9l+GPgusO8EtCMiokoTcR7/FsCtHc9vA/5i+EqS5gBzytMHJF03ynobAXeP8rVjNVG1a6s7kbWzz3XUnqr7/KxuMyci+NVlnpebYR8HHDfmYtJc27PHup2pVLu2uhNZO/tcR+3pts8T0dVzG7Blx/NnAHdMQDsiIqo0EcH/n8DWkp4t6anAW4BzJ6AdERFVGnhXj+1lkg4BfgysApxge0GLJcfcXTQFa9dWdyJrZ5/rqD2t9ln2ct3rERExjeXK3YiIyiT4IyIqM22CX9JhkhZImi/pNElPG7Zcko4pw0RcLelFY6h1gqS7JM3vmLeBpIskXV9+rt/jtaMerqJH3QPKfj8mqecpXy3U/byka8vv8ixJ64133RFq/2OpO0/ShZI2H+/a3ep2LPuoJEvaaLzr9qot6UhJt5d9nidpz/Gu3WufJf1N2eYCSZ8b77q9aks6vWN/F0maN961e9SdJemyUneupJ1bqLulpEskLSy/1w+X+a3nCAC2p/yD5qKwm4E1yvPvAQcPW2dP4Ic01xG8BLh8DPVeCbwImN8x73PAEWX6COCzXV63CnAj8BzgqcBVwLZjrPsCYBvgUmB2j9e1Ufe1wKpl+rNt7O8ItdfpmP4Q8PVB7HOZvyXNiQm/AzYa4D4fCXx0Ba9r49/51cBPgNXL840Htc/Dln8R+MSA9vlC4HVlek/g0hbqbga8qEyvDfwXzRA2reeI7elzxE9zhtIaklYF1mT5awP2Bb7lxmXAepI2G00h2z8Dft9l+yeX6ZOB/bq8dEzDVXSra3uh7RVd1dxG3QttLytPL6O5HmNc645Q+76Op0+nywWAY63d498Y4Gjg73rUHHPdFdRekTb2+QPAUbYfKuvcNd51R6gNNJ/WgTcBp4137R51DaxTptel+3VGY6272PaVZfp+YCHNAWzrOQLTpKvH9u3AF4BbgMXAH21fOGy1bkNFbDGOzdjE9uLSnsXAxl3WabsNvbRd9900n6YGVlfSP0u6FXgb8IlB1Ja0D3C77atGWK3N3/UhpYvrhB5dAG3Ufh7wl5Iul/RTSTsNqG6nvwSW2L5+QLUPBT5f/r6+APzfNutKmgnsCFzOgHJkWgR/+U+wL/BsYHPg6ZLePny1Li8d9LmsE9WG1upK+jiwDDh1kHVtf9z2lqXuIW3XlrQm8HG6v8m0VrfDscBWwCyag5svDqj2qsD6NN2jfwt8rxyBt12304F0P9pvq/YHgMPK39dhwPFt1ZW0FnAGcOiwT7IjvmystadF8AOvAW62vdT2I8CZwMuGrdP2UBFLhrqOys9uH4knariKVupKOgh4PfA2l87HQdQd5jvAGwZQeyuaA4urJC0q27tS0qYt1wXA9hLbj9p+DPgmzcf94dqofRtwZuki/Q3wGM2gYW3XBaB03f4VcPoI7Rvv2gfRZAjA92npdy1pNZrQP9X2UL2B5Mh0Cf5bgJdIWrMcjexG02fW6VzgnWq8hKY7aPE4tuFcmj8Yys9zuqwzUcNVjHtdSXsAfw/sY/tPg6pbam/d8XQf4Nq2a9u+xvbGtmfanknzn+9Ftu9ss+6QYd9H7Q8sd7ZRS7XPBnYtbXgezZeJw0eKbPPv+jXAtbZv67G8jdp3AK8q07sC3bqYxlS35NTxwELbX+pYNJgcWZlvgifzA/gUTQDMB04BVgfeD7y/LBfNDWBuBK6hxxkwfdY6jebj9iM0AfAeYEPgYpo/kouBDcq6mwMXdLx2T5pv8G8EPj4Odfcv0w8BS4AfD6juDTT9jPPK4+vjXXeE2meUf+ergfOALQaxz8OWL6Kc1TOgfT6l/N1eTfOffLMB/Ts/Ffh2+X1fCew6qH0u80+i/B/uWLftfX4FcAXN2TKXAy9uoe4raLpnruaJ/0N7MoAcsZ0hGyIiajNdunoiIqJPCf6IiMok+CMiKpPgj4ioTII/IqIyCf6YUGpGuTyl4/mqkpZK+sEot7fPqEYrHCeSLtWwUVIlzZZ0TJleXdJPysiPb+5zm9uU7c4rozlO5N2gYhoY+K0XI4Z5EHihpDVs/zewO3D7aDdm+1wm2T2cbc8F5panOwKr2Z61Eps4Bjja9jkAkrYf3xZGbXLEH5PBD4G9yvSTxmWRtLOkX0n6bfm5TZn/EUknlOnt1dyHYU1JB0v6apl/kqRjy7jnN0l6VRngbKGkkzpqPNAx/cahZf2+fkUk7SLpB5I2prkYalY5et9K0ovL4GdXSPqxuo8YuxnNxUVAcxVx2e7Bks6R9CM1Y7N/sqPm2WWbCyTN6dxXNQPcXaVmzPlN+t2PmD4S/DEZfBd4i5qb5/wvmqslh1wLvNL2jjQDpH2mzP9/wHMl7Q+cCLzP3YeOWJ/msvvDaK7yPRrYDthe0qw+2jbW1z/OzZDG7wV+Xo74bwG+ArzR9ouBE4B/7vLSo4H/kPRDNTccWq9j2c40I5TOAg7o6GZ6d9nmbOBDkjYs858OXGZ7B+BnwP9ZmX2I6SFdPTHhbF+tZmjaA4ELhi1eFzi5jM9jYLXymsckHUxzyfs3bP+yx+bPs21J19AM7Tt0tLwAmElzqfxIxvr6kWwDvBC4qBm6hVVohg94EtsnSvoxsAfNKLTvk7RDWXyR7XtKm86kGQpgLk3Y71/W2RLYGrgHeBgY+v7kCpqutahMgj8mi3Npxj7fhWa8kiH/CFxie//y5nBpx7KtgQdoxjHp5aHy87GO6aHnQ3//neOWPOmWnX2+frQELLD90hWtaPsOmk8EJ6i5TeALhxYNX1XSLjSDm73U9p8kXcoT+/WInxin5VGSAVVKV09MFicAnx46ou6wLk982Xvw0ExJ6wJfprl13oaS3jiG2kskvUDSU2gGvRuU64AZkl4KzTC9krYbvpKa+6uuVqY3pXljHPqd7K7mPq1r0Nyt6Zc0v7M/lNB/Ps1Y+hGPS/DHpGD7Nttf7rLoc8C/SPolTVfIkKOBf7X9XzQjKh5VvjwdjSNouj/+gy5dLaNwvqTbyuP7vVZyc9u8NwKflXQVTbfR8PtIQHN/4/llnR8Df+snhoP+Bc3InfOAM8oZRD8CVpV0Nc0npsvGYZ9iGsnonBFTVPmOY7btbncgi+gpR/wREZXJEX9ERGVyxB8RUZkEf0REZRL8ERGVSfBHRFQmwR8RUZn/AbPn94a/JgTyAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "needs_background": "light" | |
| }, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "p1 = sns.countplot(x='Maximum Life Span', data=df, color='lightblue')\n", | |
| "p1.set_ylabel('Amount')\n", | |
| "p1.set_title('Max Life Span Counts')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "id": "f724d001", | |
| "metadata": {}, | |
| "source": [ | |
| "## Histograms\n", | |
| "A histogram is a popular chart to check the distibution for one column of data. The [seaborn.histplot()](https://seaborn.pydata.org/generated/seaborn.histplot.html) function will take care of all we need." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 26, | |
| "id": "c3db9759", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<AxesSubplot:xlabel='Maximum Life Span', ylabel='Count'>" | |
| ] | |
| }, | |
| "execution_count": 26, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAATEElEQVR4nO3df7BfdX3n8edLAoraIpELm0KysW3KqqhQr4yi2yqUlv4YgR0QHduNU9ow/WEVu3ZpnWnH3ekuazvV/i6ZSpNaV8UVS7QqphF06w80UEAYsHFcJDHZJNLuqmtHRd77xzkpX29uki8393y/N/fzfMzcOed8zjnf8z5Jvq+c+/l+z+ekqpAkteNx0y5AkjRZBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmNWDPniSR4Avgp8G3i4qmaTrATeBawFHgBeVlX/NGQdkqRHTeKK/yVVdXZVzfbL1wDbqmodsK1fliRNSIa8gau/4p+tqi+PtH0OeHFV7UmyCri1qs483OuccsoptXbt2sHqlKTl6Pbbb/9yVc3MbR+0qwco4MNJCriuqjYCp1XVHoA+/E890ousXbuW7du3D1yqJC0vSb44X/vQwf/Cqtrdh/vWJPePu2OSDcAGgDVr1gxVnyQ1Z9A+/qra3U/3Ae8FzgX29l089NN9h9h3Y1XNVtXszMxBv6lIkhZosOBP8qQk33VgHvhR4B5gC7C+32w9cNNQNUiSDjZkV89pwHuTHDjOf6+qDyX5DHBDkiuBB4HLB6xBkjTHYMFfVV8AnjNP+0PABUMdV5J0eN65K0mNMfglqTEGvyQ1xuCXpMYY/NJROH31GpIsi5/TV3ujZCuGvnNXWtZ279rJFdd9YtplLIp3XXXetEvQhHjFL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYMHvxJjkvy90ne3y+vTLI1yY5+evLQNUiSHjWJK/7XAPeNLF8DbKuqdcC2flmSNCGDBn+SM4CfBP58pPliYHM/vxm4ZMgaJEnfaegr/rcAvwY8MtJ2WlXtAeinpw5cgyRpxGDBn+SngH1VdfsC99+QZHuS7fv371/k6iSpXUNe8b8QeGmSB4B3Aucn+Stgb5JVAP1033w7V9XGqpqtqtmZmZkBy5SktgwW/FX161V1RlWtBV4OfKSqfhrYAqzvN1sP3DRUDZKkg03je/zXAhcm2QFc2C9LkiZkxSQOUlW3Arf28w8BF0ziuJKkg3nnriQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDVmIk/gkuY6ffUadu/aOe0ypCYZ/JqK3bt2csV1n5h2GUftXVedN+0SpMfMrh5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaM1jwJ3lCkk8nuSvJvUne2LevTLI1yY5+evJQNUiSDjbkFf83gPOr6jnA2cBFSZ4PXANsq6p1wLZ+WZI0IYMFf3W+1i8e3/8UcDGwuW/fDFwyVA2SpIMN2sef5LgkdwL7gK1VdRtwWlXtAeinpw5ZgyTpOw0a/FX17ao6GzgDODfJWePum2RDku1Jtu/fv3+wGiWpNRP5Vk9V/R/gVuAiYG+SVQD9dN8h9tlYVbNVNTszMzOJMiWpCUN+q2cmyVP6+ROBHwHuB7YA6/vN1gM3DVWDJOlgKwZ87VXA5iTH0f0Hc0NVvT/JJ4EbklwJPAhcPmANkqQ5Bgv+qrobOGee9oeAC4Y6riTp8LxzV5IaY/BLUmMMfklqzFjBn+SF47RJkpa+ca/4/3DMNknSEnfYb/UkeQFwHjCT5HUjq74bOG7IwiRJwzjS1zlPAJ7cb/ddI+1fAS4bqihJ0nAOG/xV9VHgo0k2VdUXJ1STJGlA497A9fgkG4G1o/tU1flDFCVJGs64wf9u4M+APwe+PVw5kqShjRv8D1fVnw5aiSRpIsb9Ouf7kvxiklX9M3NXJlk5aGWSpEGMe8V/YBjl14+0FfC9i1uOJGloYwV/VT1t6EIkSZMxVvAn+ffztVfVXy5uOZKkoY3b1fO8kfkn0I2nfwdg8EvSMWbcrp5Xjy4nOQl42yAVSZIGtdBhmb8OrFvMQiRJkzFuH//76L7FA93gbE8HbhiqKEnScMbt4//dkfmHgS9W1a4B6pEkDWysrp5+sLb76UboPBn45pBFSZKGM+4TuF4GfBq4HHgZcFsSh2WWpGPQuF09bwCeV1X7AJLMAH8L/I+hCpMkDWPcb/U87kDo9x56DPtKkpaQca/4P5TkZuAd/fIVwAeGKUmSNKQjPXP3+4HTqur1Sf4d8CIgwCeBt0+gPknSIjtSd81bgK8CVNWNVfW6qrqa7mr/LcOWJkkawpGCf21V3T23saq20z2GUZJ0jDlS8D/hMOtOXMxCJEmTcaTg/0ySn5/bmORK4PZhSpIkDelI3+p5LfDeJK/k0aCfBU4ALh2wLknSQA4b/FW1FzgvyUuAs/rmv6mqjwxemSRpEOOOx38LcMvAtUiSJsC7byWpMQa/JDVmsOBPsjrJLUnuS3Jvktf07SuTbE2yo5+ePFQNkqSDDXnF/zDwq1X1dOD5wC8leQZwDbCtqtYB2/plSdKEDBb8VbWnqu7o578K3AecDlwMbO432wxcMlQNkqSDTaSPP8la4BzgNrpB3/ZA958DcOokapAkdQYP/iRPBt4DvLaqvvIY9tuQZHuS7fv37x+uQElqzKDBn+R4utB/e1Xd2DfvTbKqX78K2DffvlW1sapmq2p2ZmZmyDIlqSlDfqsnwFuB+6rq90ZWbQHW9/PrgZuGqkGSdLBxn8C1EC8Efgb4bJI7+7bfAK4FbugHenuQ7gHukqQJGSz4q+rv6J7WNZ8LhjquJOnwvHNXkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMGC/4k1yfZl+SekbaVSbYm2dFPTx7q+JKk+Q15xb8JuGhO2zXAtqpaB2zrlyVJEzRY8FfVx4B/nNN8MbC5n98MXDLU8SVJ85t0H/9pVbUHoJ+eOuHjS1LzVky7gENJsgHYALBmzZopV7M0nL56Dbt37Zx2GZKOcZMO/r1JVlXVniSrgH2H2rCqNgIbAWZnZ2tSBS5lu3ft5IrrPjHtMhbFu646b9olSM2adFfPFmB9P78euGnCx5ek5g35dc53AJ8EzkyyK8mVwLXAhUl2ABf2y5KkCRqsq6eqXnGIVRcMdUxJ0pF5564kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMUt2kDZJE/a4FSSZdhWL4nvOWM2Xdj447TKWLINfUueRhx0EsBF29UhSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYx+OXtPz4UJnDMvglLT8+VOaw7OqRpMYY/JLUmGXf1XP66jXs3rVz2mVI0pKx7IN/966d9vVJ0gi7eiSpMQa/JDXG4Jekxkwl+JNclORzST6f5Jpp1CBJrZp48Cc5Dvhj4MeBZwCvSPKMSdchSa2axhX/ucDnq+oLVfVN4J3AxVOoQ5KaNI3gPx0Y/WL9rr5NkjQBqarJHjC5HPixqvq5fvlngHOr6tVzttsAbOgXzwQ+t8BDngJ8eYH7LjWey9KzXM4DPJel6mjO5V9X1czcxmncwLULWD2yfAawe+5GVbUR2Hi0B0uyvapmj/Z1lgLPZelZLucBnstSNcS5TKOr5zPAuiRPS3IC8HJgyxTqkKQmTfyKv6oeTvLLwM3AccD1VXXvpOuQpFZNZayeqvoA8IEJHe6ou4uWEM9l6Vku5wGey1K16Ocy8Q93JUnT5ZANktSYZR38Sa5Ocm+Se5K8I8kTpl3TuJJcn2RfkntG2lYm2ZpkRz89eZo1juMQ5/E7Se5PcneS9yZ5yhRLHNt85zKy7j8kqSSnTKO2x+pQ55Lk1f1wKvcmedO06nssDvFv7Owkn0pyZ5LtSc6dZo3jSLI6yS1J7uv//F/Tty/6+37ZBn+S04FfAWar6iy6D5JfPt2qHpNNwEVz2q4BtlXVOmBbv7zUbeLg89gKnFVVzwb+Afj1SRe1QJs4+FxIshq4EFjcJ2IPaxNzziXJS+juon92VT0T+N0p1LUQmzj47+VNwBur6mzgN/vlpe5h4Fer6unA84Ff6oezWfT3/bIN/t4K4MQkK4AnMs/9AktVVX0M+Mc5zRcDm/v5zcAlk6xpIeY7j6r6cFU93C9+iu5ejiXvEH8nAG8Gfg04Zj4wO8S5/AJwbVV9o99m38QLW4BDnEsB393Pn8Qx8N6vqj1VdUc//1XgPrpRDRb9fb9sg7+qvkR3xfIgsAf4v1X14elWddROq6o90P0jAU6dcj2L4WeBD067iIVK8lLgS1V117RrWQQ/APzbJLcl+WiS5027oKPwWuB3kuyky4Fj5bdKAJKsBc4BbmOA9/2yDf6+H+xi4GnA9wBPSvLT061Ko5K8ge7X27dPu5aFSPJE4A10XQnLwQrgZLpuhtcDNyTJdEtasF8Arq6q1cDVwFunXM/YkjwZeA/w2qr6yhDHWLbBD/wI8L+qan9VfQu4ETjWH1q7N8kqgH56TPwqPp8k64GfAl5Zx+53ir+P7sLiriQP0HVZ3ZHkX021qoXbBdxYnU8Dj9CNE3MsWk/3ngd4N92owEtekuPpQv/tVXWg/kV/3y/n4H8QeH6SJ/ZXLRfQ9Zkdy7bQ/YOmn940xVoWLMlFwH8EXlpVX592PQtVVZ+tqlOram1VraULzh+sqv895dIW6q+B8wGS/ABwAsfuQGe7gR/u588HdkyxlrH0OfVW4L6q+r2RVYv/vq+qZfsDvBG4H7gHeBvw+GnX9BhqfwfdZxPfoguUK4Gn0n2qv6Ofrpx2nQs8j8/TDc19Z//zZ9Ouc6HnMmf9A8Ap067zKP5eTgD+qn+/3AGcP+06j+JcXgTcDtxF10/+3GnXOcZ5vIjuQ+m7R94bPzHE+947dyWpMcu5q0eSNA+DX5IaY/BLUmMMfklqjMEvSY0x+DVV/YiWbxtZXpFkf5L3L/D1XppkaoPXJbk1yeycttkkf9DPPz7J3/ajRl4x5mue2b/unf3IjcvpISOagqk8gUsa8f+As5KcWFX/TDfK5ZcW+mJVtYUl9gznqtoObO8XzwGOr27UyHH9AfDmqroJIMmzFrdCtcYrfi0FHwR+sp9/Bd0NOQAkOTfJJ5L8fT89s29/XZLr+/ln9c9ceGKSVyX5o759U5I/7cc4/0KSH+7Hbr8vyaaRY3xtZP6yA+vG3f9Ikrw4yfuTnEp3g9TZ/dX79yV5bj8g2u1Jbj5wa/4cq+huTAK6O4b7131VkpuSfKgfQ/+3Ro751/1r3ptkw+i5JvntJHf149WfNu55aPkw+LUUvBN4eboH5Tyb7k7LA+4HfqiqzqEbDO2/9O1vAb4/yaXAXwBX1fzDP5xMd8v+1cD76IZQfibwrCRnj1Hb0e7/L6ob5vjngP/ZX/E/CPwhcFlVPRe4HvjteXZ9M/CRJB9M93Chp4ysOxd4JXA2cPlIN9PP9q85C/xKkqf27U8CPlVVzwE+Bvz8YzkHLQ929WjqqurufhjaVwAfmLP6JGBzknV0t7Mf3+/zSJJX0d3efl1VffwQL/++qqoknwX2jlwt3wuspbst/nCOdv/DORM4C9jaD4J5HN3QA9+hqv4iyc10Dxu5GLgqyXP61Vur6qG+phvpbvvfThf2l/bbrAbWAQ8B3wQOfH5yO13Xmhpj8Gup2EI3bvqL6cYmOeA/A7dU1aX9fw63jqxbB3yNbtjtQ/lGP31kZP7A8oF//6Pjlsx9POc4+y9UgHur6gVH2rCqdtP9RnB9ukcMnnVg1dxNk7yYbnTaF1TV15PcyqPn9a16dJyWb2MGNMmuHi0V1wP/6cAV9YiTePTD3lcdaExyEvD7wA8BT01y2VEce2+Spyd5HHDpEbdePJ8DZpK8ALoheZM8c+5GSS7qh+ulH/L5qTz6Z3Jhumeynkj3ZKaP0/2Z/VMf+v+Gbnx96V8Y/FoSqmpXVf3+PKveBPzXJB+n6wo54M3An1TVP9CNxnht/+HpQlxD1/3xEebpalmAv0myq/9596E2qqpvApcB/y3JXXTdRvM9M+JHgXv6bW4GXl+PDv38d3Qjz94JvKf/BtGHgBVJ7qb7jelTi3BOWkYcnVM6RvWfccxW1S9PuxYdW7zil6TGeMUvSY3xil+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ15v8D75PIitk07xwAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<Figure size 432x288 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "needs_background": "light" | |
| }, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "sns.histplot(data=df, x='Maximum Life Span', binwidth = 2)" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3 (ipykernel)", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.8.6" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 5 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment