Created
January 16, 2014 13:17
-
-
Save sdwfrost/8454859 to your computer and use it in GitHub Desktop.
Some examples of mathematical modeling and simple MCMC in R, including some Rcpp examples
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"celltoolbar": "Slideshow", | |
"name": "" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"# Modeling with R" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%load_ext rmagic" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "skip" | |
} | |
}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"source": [ | |
"\\begin{align}\n", | |
"\\label{eq:sir}\n", | |
"\\frac{dS(t)}{dt} & = -\\beta S(t) I(t)\\\\\n", | |
"\\frac{dI(t)}{dt} & = \\beta S(t) I(t)- \\mu I(t)\\\\\n", | |
"\\frac{dR(t)}{dt} & = \\mu I(t)\n", | |
"\\end{align}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"library(deSolve)\n", | |
"sir.ode <- function(times,init,parms){\n", | |
" with(as.list(c(parms,init)), {\n", | |
" # ODEs\n", | |
" dS <- -beta*S*I\n", | |
" dI <- beta*S*I-gamma*I\n", | |
" dR <- gamma*I\n", | |
" list(c(dS,dI,dR))\n", | |
" })\n", | |
"}\n", | |
"parms <- c(beta=0.1,gamma=0.05)\n", | |
"init <- c(S=0.99,I=0.01,R=0) \n", | |
"times <- seq(0,200,by=0.01)\n", | |
"sir.out <- ode(init,times,sir.ode,parms,method=\"rk4\")\n", | |
"print(head(sir.out))" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
" time S I R\n", | |
"[1,] 0.00 0.9900000 0.01000000 0.000000e+00\n", | |
"[2,] 0.01 0.9899901 0.01000490 5.001225e-06\n", | |
"[3,] 0.02 0.9899802 0.01000980 1.000490e-05\n", | |
"[4,] 0.03 0.9899703 0.01001471 1.501103e-05\n", | |
"[5,] 0.04 0.9899604 0.01001962 2.001961e-05\n", | |
"[6,] 0.05 0.9899504 0.01002453 2.503065e-05\n" | |
] | |
} | |
], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"# Plotting" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"library(ggplot2)\n", | |
"p <- ggplot(as.data.frame(sir.out),aes(x=time,y=I))+geom_line()\n", | |
"print(p)" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
"Use suppressPackageStartupMessages to eliminate package startup messages.\n" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC+lBMVEUAAAACAgIDAwMFBQUGBgYH\nBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRka\nGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwt\nLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9A\nQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJT\nU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVm\nZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5\neXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uM\njIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6f\nn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGy\nsrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTF\nxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY\n2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr\n6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+\n/v7///9oTyNgAAAgAElEQVR4nO2deXgUVdaH5/v8gCRNQCAQFuMgKCMOiuAoihuKG+OCOiKICyq4\n4y4qKoIygCuMOOwBZBEIggpEdlEhiCwBJSEEwpa+LElIWAIYIKnn+ZLe0l1V9557urqTqpvz/kFV\n3/w8fcxLN73UvfcvGqE0f6nuBojoQoIVhwQrDglWHBKsOCRYcUiw4pBgxSHBikOCFYcEKw4JVhwS\nrDhowScL9RSVGIaEFOHiR09FtXzxiaiWP3kMlz+Ci/9pkrco+BjTc6DMMCQk7wAqXlCCK1+Aix8r\njmr5U0Wo+P58XPmzh4xjJDgEEkyCrZQnwSAkWAAJBiHBJNhKeRIMQoIFkGAQEkyCrZQnwSAkWAAJ\nBqmpgssWTple7Dn7KUPT1kwe7/+IkwSjsK3gXXO0TcvKj6XJgzO0/ZPLtn1LgsMpb1vBq9K0vOSK\nR3Lp8gztp9+0shMkOJzythWcmqmVjPacrcjQUr+d+tWB8tMfpk6duuFPPSWaYUhISQkqfroUV/40\nLn7mbFTLl56Javky4+/yiJzgleWP4El+wcu/L80dV37KcnJy3AV6CjXDkJAjh1Hxo2dw5Y/i4idO\nRbV8yXFU/PARXPnSIsPQITnBOSna5mV+wdsXawVj6Sk6nPK2fYouS50+88ShsV7BZakTxu0jweGU\nt61gLo4UvHPqC/d0uaf/lJ3GH5Fg5wte+3BsqyeHjh76eKuYXj/rf0iCnS5494uxj6zynf/4ROzj\nWaE/JsEOF7zm4iuDH7W/3dZ0XsjPSbCzBc+t/1pu6M9HuYYF3yTBjhY8zTXeEFje/Bl35S0S7GTB\ns+NnmiQ2tu5TeYMEO1jw0rpTTCPprZ4JnJNg5wre3HQ4J7Oh+SD/KQl2rOC9Vz3CDf1Yb6rvjAQ7\nVnD/y/fyUzPq+t4bk2CnCp4fnyaKvXXhDs+RBDtUcHbSp8KYu2sPz5EEO1Rw35uA3B9NPG+RSbAz\nBS92rYeCM89NZyTYoYJz278HJx/tykiwQwV/epHgFbSf7PO+JMHOFJyd8LVMdHqjTBLsSMGvdJHL\n3v0wCXai4HTXCrnsprqLSLADBff5l2x4UPsjJNhxgtfHrpUN72k9jgQ7TvAjveXT05rmYcujIMEg\naMEbY35FxG+UeMMcUh4XJ8EgaMF9H8DEf6n7O648Kk2CYbCCs+MM1z6LONbjCVR5EgwSZcFvdEPF\nj/0Rh3lGJ8Ew0RWc02ABKn+s+NEeqHZQ1UkwDFLwR1ei4uWCN8WtxrSDK0+CQXCC3ReaX0jJ5Vgx\n63s/ph1ceRIMghM8s4XJ/7KIcsHpcWsQ7eDKk2AQnOCbB4YxP7iv9EebJFiCaAr+NXZrGIIxH42Q\nYJBoCn7+gbBm+D/ysHw7uPIkGAQjeHfDRWEJXhubLt0OrjwJBsEI/u8lYa7Rcd8zUC7QDq48CQbB\nCL56RJiCV7iyoKC/HVx5EgyCEJwWmxXuKjtdBsq2gytPgkEQgl94kIUrOKXJHsl2cOVJMIi84H2N\nv2Vhr5N16SjJdnDlSTCIvOBpLSuWZghT8Oi2ku3gypNgEHnBd77pyeO68QvemzhHrh1ceRIMIi04\ns84GTx7XTeCy2bdukWsHV54Eg0gLHnGdN4/rJiA4I3aNVDu48iQYRFpwR+/LpLAXI+0tde0OCQaJ\nkuC02GxvHtdNpeAfXdtl2sGVJ8EgsoLfuNeXx3UTNHXl2g9k2sGVJ8EgsoJbT/Plcd0ECU5u5RYE\n/e3gyjtQ8H49B8sMQ0LyD6Lih0ukYksb7POeFOC6OVYcOM1tPhvOI8ufKkLFDyDLn80zDFkWnK/n\nsGYYEnK4ABU/ekYq9vzjvpMiXDcnTlaev9MNziPLlxzH5Qtx8VJj/qBVwYanBFs8Rbubf+PP47oJ\nnj66JWYD3A6uvAOfog0FbSH4u0T/qsFW9mzo/jLcDq48CQaRE/xE30Ae102I4HmNwaU9SDBINATn\nNlkYyOO6CZ3hf9EEsB1ceRIMIiV4XvPAOxxLgodeB7aDK0+CQaQEP/5UZR7XTajgrDjhApf48iQY\nREawu0nljDNrG2P1eB5qB1eeBIPICP6uaeVnUNYEL2gEvMwiwSBRENzvyaA8rhv9MkptgJdZJBgk\nCoJbBO2FZFHwhzcC7eDKk2AQCcFLGgXtjWRRcGbMOnE7uPIkGERCcP/gdZOs7j56n/jTLBIMEnnB\nF84IzuO6MQie2yzXNBheeRIMAgv+xRV80bpVwe7zZwjbwZUnwSCw4Le7h+Rx3RgXIx1wp7AdXHkS\nDAIL7jgmJI/rxih4Y52tonZw5UkwCCh4c+2QmYHWt3jvMkTUDq48CQYBBX8c+s7VuuDxolksJBgk\n0oK7huwHHAHBu+svFbSDK0+CQSDBO+tsDM3jujFb8f3xJ41jYZYnwSCQ4MntdHlcN2aCfziXP1mY\nBINEWHCvV3V5XDemeza0mcRvB1eeBIMAgt0JP+jyuG5MBQ+6ld8OrjwJBgEEL2qsm44QCcGb63BX\nCSfBIJEV/LJ+g4ZICGY3D+a2gytPgkEAwe0m6/O4bswFj7uE2w6uPAkGEQveVHunPo/rxlzw7nq8\nrbVIMEhEBX9i2MQuIoLZw7yl70gwSEQF3/6hIY/rhiN4QeN9nHZw5UkwiFDwHuN1zJERzFrO4LSD\nK0+CQYSC57Q25nHd8AS/fi+nHVx5EgwiFPxUP2Me1w1P8NpY8xU7SDBIJAW3mmXM47rhbi975Ujz\ndnDlSTCISPDa2N3GPK4bruAR15q3gytPgkFEgod1NcnjuuEK3lbHdLo/CQaJoGDdd/3ePK4b/g7g\n3d4xbQdXngSDCATvNtsJOmKCk9uYtoMrT4JBBILntDLL47rhC95Tf7n18iQYRCD4ub5meVw3fMGs\n97PWy5NgEIHgv80wy+O6EQj+NtFkEgsJBomY4I11dpnlcd0IBLtbzLVcngSD8AV/dr1pHteNQDDr\n39NyeRIMwhd89/umeVw3IsE/1rX8OQoJBuEK3ld/lWke141IMLvEuJ4DCQaJlOBFieZ5XDdCwe91\ns1qeBINwBb/eyzyP60YoeGMdw453JBgkUoKvHGuex3UjFMyu+dRieRIMwhOcVSvDPI/rRiz4484W\ny9tWcNnCKdOLPWc/ZWhn5k8Z67ab4MmXcfK4bsSCt9XeZK28bQXvmqNtWlZ+LE0enKFlLdLYBLsJ\nfuxFTh7XjVgwu32QtfK2FbwqTctLrngkly7P0Pbna0UT7Sa45Tfm45EVPO5Sa+VtKzg1UysZ7Tlb\nkVH+h3tsdvmfc0aOHLnmrAHNOBRBSstMh3PiTkWzvJ/i+ExL5ctKLf3nEJqx/HE5wSvLH8GT/ILL\nlicf8Dx6CwsL8w/qySszDAk5nIeKF502Hf70Fl4e183xE+Kf93jNUvk/j6Lihwpx5c8WGIYOyAnO\nSdE2L/ML3ppSGviBXZ6i/8lbKSWyT9Fs5gWWytv2KbosdfrME4fGegV/9/mYMTPsJZjzOSWLuOC9\nDVOtlLetYC42EfxDE24e1w0kmPUJvfSaBINERPBbD3DzuG5Awd83CfnanwSDRERw5y+4eVw3oGB3\nUoqF8iQYxFRwTq3N3DyuG1Awe+EhC+VJMIip4K//xs/juoEFr6hnYTFbEgxiKvjZvvw8rhtYMGsz\nNfzyJBjEVPDfp/HzuG4kBL8ZvFwxCQaJgOCttXbw87huJASnxQbdGwkGiYDgcVcJ8rhuJASzy/8b\ndnkSDGImuPerxrFAHteNjOAht4RdngSDmAlO+laQx3UjIzi9dma45UkwiIngX+ME+89FQTDr/HG4\n5UkwiIngT24S5XHdSAn+pPLSLBIMYl3wPaZTGvx5XDdSgjPrpIdZngSDGAW7G5lN3A3kcd1ICWa3\nBv5KkWAQy4JXNHSbBf15XDdygv/bPszyJBjEKHjwXcI8rhs5wTti/SvqkWAQy4K7fmyWC+Rx3cgJ\nZt0HhFeeBIMYBO9zGdanDMnjupEUPNX/9RUJBrEqeEELcR7XjaTgPfErwipPgkEMggc8KM7jupEU\nzB56IazyJBjEILjzaHEe142s4DlJYZUnwSB6wbtqp5sH/XlcN7KC9yUsDKc8CQbRC065EMjjupEV\nzPr2Dac8CQbRC37xMSCP60Za8KKE3DDKk2AQveCOE4E8rhtpwe6k2WGUJ8EgOsHbzzGf2F+Zx3Uj\nLZj17xVGeRIMohM8jbtllT+P60Ze8Mr4PfjyJBhEJ/ipp6A8rht5wazNZHx5EgyiE3wJ/4JZXx7X\nDULwm3fjy5NgkFDBGeeYb4YSlMd1gxC8NnYnCZbAkuDxHcA8rhuEYNbhSxIsgSXBffqDeVw3GMFD\nupJgCSwJbj0bzOO6wQhOr51BgmGsCE6vbbYGeGge1w1GMLv2YxIMY0Xw6E5wHtcNSvCnV5NgGCuC\ne70B53HdoARn1dlIgkGsCBbNWfHncd2gBLM7BpFgEAuC18UI5qz487hucILHXUqCQSwI/vwGiTyu\nG5zgHNc6XHkSDBIs+P63JfK4bnCC2f0D4EwwJBgkWHBiKj8XyOO6QQqe0RpXngSDBAle7donkcd1\ngxS8t+EPqDwJBgkSPOIWQS6Qx3WDFMyeMG4qL4IEgwQJvks0bTSQx3WDFZzaxGRDQz4kGKRSsLuh\naNpoII/rBis4P3RlQwgSDFIpeMW5Mg+eKAsu6G++XRMHEgxSKXiIcR8yszyuG7TglfHGDQ35OFDw\nAT2HygxDQvIPoeKFp/1ntw2TyR9GVT9w/AQuf/hA28mI+KkjqOoHC3DdnM03DO23KjhPT4FmGBJy\nOB8VP3Lad3Kw/hqZfCGum+KTuHxh3nt3IuJ/Gn9fQHkUpca85J4NfMGGp4SqeopenCBauaEyj+sG\n/RTN1hs3NOTjwKdoQ8GqEvzufXJ5XDd4wazT5/JxEgwSENxFuHJDZR7XTRiCP7pOPk6CQfyC98at\nlcvjuglDcCYwgTUYEgziF/x9c8k8rpswBLPbZD5R80KCQfyCgZUbKvO4bsIRPL6ddJwEg/gFdx4l\nmcd1E47gXa6fZOMkGMQneHedjZJ5XDfhCGY9OVvbGiHBID7Bc1vK5nHdhCV4TpLUW3JGgiXwCX75\nYdk8rpuwBOcmwld3eiHBID7BV46TzeO6CUswe+YRyTgJBvEK3nHO77J5XDfhCV5Wfw+Q80GCQbyC\nZ/C3OtPncd2EJ5i1SZaLk2AQr2DBVmf6PK6bMAUP/KdcnASDeAVfNkU6j+smTMEb6myTipNgEI/g\nbedIf0VXNYLZNXJffZBgEI/g5Mvk87huwhX8mWDztSBIMIhH8JMvyOdx3YQrOCtGapYSCQbxCG7z\ntXwe1024gtndUrOUSDBIheAt/5cjn8d1E7bgaa1k4iQYpELwGHjlhso8rpuwBe9ttEgiToJBKgQ/\n9Doij+smbMGsbx+JOAkGqRB8vuxn+6wKBS9pAC83QIJhygX/Fivxqwzkcd2EL5i1kfjwhQSDlAv+\nrAsmj+vGguB37oDjJBikXPB972LyuG4sCN5UJ5Of80GCQcoFN1mCyeO6sSCYXT8MjJNgkIKSVfUx\nc66rUPDoy8E4CQYpKPlQatpoII+qbklwjusXKE6CQQpKboefCYPzqOqWBLNe4OLGJBik4GQ98HES\nkkdVtyZ4blPoHw8SDFKQ1gyXR6WtCXYnzQLiJBikYOi/cHlU2ppg9io0pZUEgxTc9B9cHpW2KHht\nLHClCQkG2R+zCZWvUsGs0yfiOAkG+Vb6glkvVSt45BXiOAkGeeUZXPmqFZztWi2Mk2CQjnNx5atW\nMHtQfLUYCYbIqpWHK1/FguclClfAtZXgFD92EpzcsQQOBVPFgt1/nS6K20pwBz92EtznFXsLZm8K\nJ7HYSrAUVS249bc2F7yxtmjHahIMsDFmv80Fsy4fCOIkGGDk9QV2Fzy+rSBOggHuf8f2gvecu5gf\nJ8Fi3AlLbS+Y9X2UHyfBYlY2dNtf8Ip4/sQaEizm/buY/QWz9vzvu2wruGzhlOnF/uPZuRMmFVaL\n4C6fOEHwR1dz47YVvGuOtmmZ/5g5X9uyoDoE7439zQmCt8et4cVtK3hVmpaX7D/mzCpdt7Q6BM+9\ngDlBMOvB/cbBtoJTM7WS0f5j6YSR/z5afmPSoEGDVnD+g6gw8LmqvLfwWZN4prpbCHAi9CZP8Mry\nR+4k//GXlWV7p/p+UKWP4MsmOeMRzC6cxInb9hGck6JtXuY/Lv1Vyx9TDYIz/y/LIYLfv5kTt63g\nstTpM08cGus9Fk+bMG5vNQgeX3E9jCMEb62zwTxuW8FcqlJw71eZQwSz7q+Zj5NgEed9z5wiOKWZ\n+YUdJFjA6roVE/udIdjdcprpOAkWMNQzg94Zgtm75ptXk2ABt4yo+NMhgn+PMd1TggTz8e2E5RDB\n7G7Tl1kkmM833m04nCLY/GUWCebT/zHPwSmC3ReYrapEgvlc6v2FOUUwe99ssScSzGVLrR2eo2ME\nZ8Sa7J5Jgrl84VuA1DGC2QPPG8dIMJf73/YenSN4YcPdhjESzMPdaJn3xDmCWbvRhiESzGNxgm97\nQAcJ/uQfhiESzGPA/b4TBwneGb9MP0SCeXT60nfiIMGsb2/9CAnmkFVrq+/MSYJXx+kX3SHBHCZ2\n8J85STC7YbBugARz6B346N5Rgqe21O0cTYI5NAtsaeIowblJM0IHSLA5KxsEVvl0lGD2btfQ2yTY\nnIGVa0A6S3BGbFrIbRJszlVfBE6dJZj17BdykwSbklXrj8C5wwQvj98RfJMEmzK+Q+W5wwSzTiHr\n05NgU3oG7ezpNMETWge/UyLBZrgTgpY1cZrgfS2Ct8IlwWb80DhoKwSnCWbvBV+6Q4LNeK1n0A3H\nCd4WvNkOCTaj/YSgG44TzB4NWlaJBJuwuVZ20C3nCV4dV7l6JQk2YeS1wbecJ5jd/HbglASb0C3k\nOzcHCp6TGNjvmAQb2eMK+TjXgYJZ28AnrSTYyKxWITedKHhUO/8ZCTbyZOg2K04UvDcxxXdGgo0k\nzQu56UTBbOBNvhMSbODH+ntDbjtS8DbXj94TEmzgrXtDbztSMOv3oPdIgg10HBd625mC1/t2XCTB\nerbU3h464EzB7L7nPAcSrOfT63QDDhW8rK7nGngSrOfWoboBhwpmN75T8ScJ1rEz5jfdiFMFpzSu\nmC1MgnVMvkQ/4lTBrP3HjAQb6PG6fsSxgie2zCXBevY1MMywdazg3NbjSLCeb84zDDlWMPu8rduJ\ngvP0FGiGISGH8/k/e/opw9CR07jyhbh48cmolWfNZ+X9afx9Rap8BaXG/AGrgg/oOVRmGBKSf4j/\ns6T5hqHC07jyh3Hx4yeiV/7f/zhw6giq+sECXDdn8w1D+60KNjwlRPApellD43qPzn2KZjkJ3zjw\nKdpQMIKCX+5lHHOwYDbwehIcQhuTZdOdLDi7/s8kOIjVLuNScY4WzN64gwQH8fY9JoOOFpwVvwqV\nV1xw+3Emg44WzN6+AxVXW/BvMTtNRp0t+ED8UkxcbcHvdzMbdbbgU6/djomrLfiKL81GHS54T/wS\nRFxpwRvrbDcbdrjgolduRcSVFjzY/DfhdMHb4lPl40oLvvI/psNOF8zeMNusg4PKgjfW0a/U6sXx\ngref+510XGXBnGdo5wtm73SWjqss+ArjhgcenC94Z8Ic2bjCgjfEmL6GVkEw+7CjbFxhwYN4n+kp\nIHh3M7Nd78xQWPBlYzlxBQSzzy7OhYJe1BWcFmv2OXQFKgjed+EXUNCLuoIHdOfFVRDMJibtkYqr\nK7jNVF5cCcGs/QdScWUFr6jH/RuuhuBvGnLeJISirOAXHuLG1RDMur4sE1dVsLvFXG5cEcEr49Il\n4qoKnt+U/zZCEcGsp8klwQZUFfzws/y4KoLTXSvguKKC99Rfzo+rIpi9cgMcV1TwpIsFcWUE72gy\nHYwrKrjbu4K4MoLZ562NM690qCk4s85GQVwdwbl//xCKqyl4+PWiuDqC2Tf1M4G4moI7CD+JV0gw\nu/NJIK6k4J9dvC+SPKgkeJ1/jVIeSgru/6AwrpJg9rLwXyM1Be9rOo8T9KKU4J3NJgnjKgqecb6b\nE/SilGA29rwcUVxFwXcN4OR8qCWYXfOKKK6g4IyYDeK4YoJXutYK4goKHgJN7FBMMHvmZkFcQcEX\nT+DlfKgmOLtpMj+unuBFDfdyg15UE8zGN+O/71dPcO+noLhyglmXp7lx5QRvj/sZiqsn+FeXYUld\nP8oJ/qgTGFdPMBvYnneFknKCL+VMKQxCQcF7Lx7CiasmOLWBydJ2OhQUzBa59DtT+FBNcK9nBDkf\nKgpm/W4yHVZNcFZsmijoRUnBO5LMvwOvOsFlC6dML648nvosGoIHS1xnqKZgNvvczWbDVSd41xxt\n07LKY+qHURDsvkBmXrSaglmvf5qNVp3gVWlaXnLg6J7/hUduYWFh/kE9eWWGISGH83wns5sziXjR\naVz5Ilz8+Imolv/zKOcH2YkTTUYPFeLKny0wDEnu2ZCaqZWM9h9LpxZ7BE8fPnz4T6UGNOOQiDL/\nyZ3DpeLhlpeMY/ORKr8o4aD18ia/m2I5wSvLH7mT/Me1G7QvIv8UnRazVSau6FM0Yz1M1l6tuqfo\nnBRt8zL/cd5X0z6cHnHBT/eUiisrOKuZcfHVKnwVnTp95olDY73H8tuRfwTvqMf9RDYEZQWzWfU2\n6YdUeh88DP4Y2oO6glmf6/WXoykkOPcC8fWFARQWvLOVfi6LQoK/Oh+cieVFYcFssf5CeIUEXwNO\nxPKhsmD25sWh37aoI3hxvWzJuNKCc68Ona2kjuDu/WXjSgtmG+uHbPamjOBfY2TWnPGgtmCW3DD4\nN6GM4Mf562LpUVwwe/zqoFebqgj+I/YX6bjqgnf/PWiJNFUEv2S6BZY5qgtmaXVnBc4VEZxVD7HT\njPKC2dhGgY8sFRH8DjANOgT1BbMnr/RP71BD8O4E/sqURmqA4D0d+vnO1BA85CpMvAYIZhsa+DY0\nUEJwbpOvMfGaIJiluFZ6jkoIHnYFKl4jBLNBf91WcVBB8K7E2ah8zRDM7ulSMV9JBcHvX8Xd4t2U\nGiI4p13FRFoFBO9ImE+CzVifMFIJwQM7c3cAN6emCGYLXfMVEJxVfwEJ5jC6YZrzBfe/lbtBNIea\nI5i92nqb0wWnl7/fI8E83PddjatuP8G9e/C3eOdQgwSz3dfcL17XUY/dBK+K20CCRWxr8zwqbzfB\nt7zASLCI/emN5TY59GEzwXMbZjESLGJ//vJ6vI2UzbCX4Ny2IyoOJJhP+dukeS7EdzH2EvxRG8/l\nZSSYT8X74Cl1F0jnbSV4W4M5niMJ5uP5oGNUPcFGcKHYSnBf35V2JJiP95OsfyfIXnRqJ8ErXL96\nT0gwH99HlW8lSqwvVYGdBHd63XdCgvn4P4t+tdk6qbyNBI9quct3RoL5BL5seOk8zmKHodhHcEaj\nwIt/Esyn8tukl1qI9nbwYx/Bve4NnJJgPkFfF77WbA2ct43glHpbAuckmE/w98FvJKwC83YRvPP8\nkZU3SDCfkC/832+4GMrbRfDTwXNVSDCf0Cs6Po4X7/pnG8EL6ga/6CfBfHSX7Ix1TRXn7SE4p9Xw\n4JskmI/+mqyZ8Z8L8/YQ3LdzyGUKJJiP4aK7RQ2FWzvaQvDseutDbpNgPsarKlef/4hg6zA7CM5M\n1O2sQoL5mFw2+3v7m7Zz83YQ3K27boAE8zG7LnrHHW3XG0e92EDw8KQs3QgJ5mN64Xvuswm8SwCq\nX/AK10L9EAnmw5nZMMplvklL9QvOvuA9wxgJ5sOburIg4WnTl1rREJyv57BmGArQ/fY8Y76Anzfh\n6BlUPL8IFz9xMqrlS47j8oWc8S2XX5dlMlxqzB+0Kni/noNlhiE/Q8/PMg7mH+TmzThcgorvL8DF\njxVHtfypIlT8ALf87p7NFhpHz+YZhqryKXqea6nJKD1F8xHNLvzMZVyBuXr/Dd6QYLq3KAnmI5w+\nuuT8btt0Q9UqeEe7Z03HSTAf8fzgrG4tdO9JqlNwbreu5ov2k2A+0ATw4XEDQvaWrk7Bz7XhfMJG\ngvmAM/x/bNMp+Gq8ahQ8LIH3+RoJ5gMv4bC7X91RlbeqT/CkeLMX0B5IMB+ZNTpSmt8WuMCt2gTP\nd80yDvogwXykFmHJ6tnA//akugQvjR/D748E85FcZWdm864bPCfVJHhVoxGC7kgwH9lllLIfqzu0\n4uV09Qhe03iwqDkSzEd+nawFF162pJoEr0l8W9gaCeaDWAhtz1txfbZVh+CfEt8Ud0aC+aBWult3\nR4Pkqhe8PEH8+CXBIpBLGc4eWeWCvz93uCGggwTzsf1alVNdpl8ghUCC+dhd8Ij4mXBTJJiPvQXn\nPpewRKIpEszH1oKzu13EvX43GBLMx86C1/7tZv4V+MGQYD42Fjyt/su5hh+ZQoL52Fbw3v7xX8k2\nRYL52FXw+n+0k1kTxgsJ5mNTwWPr9dsj3xQJ5mNPwS81kXj3WwkJ5mNPwekZqKZIMB97CsZv8Y6B\nBAsgwSAkmARbKU+CQUiwABIMQoJJsJXyJBiEBAsgwSAkmARbKU+CQUiwABIMQoJJsJXyJBiEBAsg\nwSAkmARbKU+CQUiwABIMQoJJsJXyKgjeuwjXFM4vy4L3/wrhIC6eLjUbI+zya7ZGtfzSHOOYRcFG\niodYryEge2JUy69KjWr5r9OjWv7TQ1CCBJNgCBIsQAXBp6ZZryHAHV0DW9ZFtfzKnVEtn1IEJSIg\nmLAzJFhxSLDiWBdctnDK9OIIdGLGmWFjxqyO3h38lOHtPjr3UF49ev2fmT9lrFumeeuCd83RNi2z\nXMWcvHlRvIPS5MEZ3uLRuAdP9ej1n7VIYxNkmrcueFWalpdsuYo5WeO/nnMkWndQVro8w9t9NO7B\nUz16/e/P14omyjRvXXBqplYy2nIVc/Zt1f6YGb07WJHh7T4691BePZr9u8dmyzRvXfDK8r9BkyxX\n4V38NB0AAAFNSURBVHJ6ZPTuoFyBp3h07qG8uha1/suWJx+Qat664JwUbXO0/g3+5Tdt18zo3UG5\nAk/x6NxDefXo9b81pVSTaj4Cr6JTp888YbmKOSe/Tv7qcPTuoFyBp3h07qG8evT6/+7zMWNmyDRP\n74MVhwQrDglWnJoq+H/PrO9Q3T1UCTVXcMGi6u6hSqihgrv+5bxVHbRtV7/a4Jq0jnEvatrPl8Xc\n6q7urqJBDRXsfYre9j8zDndI2LP2L3kFDb4vfO6G6m4qGtRswc00bcBTmpa0Y8p9mnYq5mx1dxUF\narbgizRt4CBNu2DHB66kpKR6+6u7qyhAggdVCJ54r6adXV9W3V1FgRoruChE8IFGi/Jfu6a6m4oG\nNVXwA65VwYK1JW1jbsyp7qaiQU0VXGMgwYpDghWHBCsOCVYcEqw4JFhxSLDikGDFIcGKQ4IV5/8B\nzLtS9z3RpzIAAAAASUVORK5CYII=\n" | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"# Stochastic simulations" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "fragment" | |
} | |
}, | |
"source": [ | |
"\\begin{align}\n", | |
"{\\rm Transition} & \\quad {\\rm Rate} \\cr\n", | |
"S,I \\rightarrow S-1,I+1 & \\quad \\beta S(t) I(t) \\cr\n", | |
"I \\rightarrow I-1 & \\quad \\gamma I(t)\n", | |
"\\end{align}" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"sir <- function(beta, gamma, N, S0, I0, R0, tf) {\n", | |
" time <- 0\n", | |
" S <- S0\n", | |
" I <- I0\n", | |
" R <- R0\n", | |
" ta <- numeric(0)\n", | |
" Sa <- numeric(0)\n", | |
" Ia <- numeric(0)\n", | |
" Ra <- numeric(0)\n", | |
" while (time < tf) {\n", | |
" ta <- c(ta, time)\n", | |
" Sa <- c(Sa, S)\n", | |
" Ia <- c(Ia, I)\n", | |
" Ra <- c(Ra, R)\n", | |
" pf1 <- beta * S * I\n", | |
" pf2 <- gamma * I\n", | |
" pf <- pf1 + pf2\n", | |
" dt <- rexp(1, rate = pf)\n", | |
" time <- time + dt\n", | |
" if (time > tf) {\n", | |
" break\n", | |
" }\n", | |
" ru <- runif(1)\n", | |
" if (ru < (pf1/pf)) {\n", | |
" S <- S - 1\n", | |
" I <- I + 1\n", | |
" } else {\n", | |
" I <- I - 1\n", | |
" R <- R + 1\n", | |
" }\n", | |
" if (I == 0) {\n", | |
" break\n", | |
" }\n", | |
" }\n", | |
" results <- data.frame(time = ta, S = Sa, I = Ia, R = Ra)\n", | |
" return(results)\n", | |
"}" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"print(system.time(replicate(100,sir(0.1/10000, 0.05, 10000, 9999, 1, 0, 1000))))" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
" user system elapsed \n", | |
" 87.156 0.096 87.484 \n" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"library(Rcpp)\n", | |
"cppFunction('\n", | |
" List csir(double beta, double gamma, double N, double S0, double I0, double R0, double tf){\n", | |
" double t = 0;\n", | |
" double S = S0;\n", | |
" double I = I0;\n", | |
" double R = R0;\n", | |
" std::vector<double> ta;\n", | |
" std::vector<double> Sa;\n", | |
" std::vector<double> Ia;\n", | |
" std::vector<double> Ra;\n", | |
" do{\n", | |
" ta.push_back(t);\n", | |
" Sa.push_back(S);\n", | |
" Ia.push_back(I);\n", | |
" Ra.push_back(R);\n", | |
" double pf1 = beta*S*I;\n", | |
" double pf2 = gamma*I;\n", | |
" double pf = pf1+pf2;\n", | |
" double dt = rexp(1,pf)[0];\n", | |
" t += dt;\n", | |
" double r = runif(1)[0];\n", | |
" if(r<pf1/pf){\n", | |
" S--;\n", | |
" I++;\n", | |
" }else{\n", | |
" I--;\n", | |
" R++;\n", | |
" }\n", | |
" if(I==0){break;}\n", | |
" } while (t<=tf && (I>0));\n", | |
" return List::create(_[\"time\"] = ta, _[\"S\"] = Sa, _[\"I\"] = Ia, _[\"R\"]=Ra);\n", | |
" }'\n", | |
")" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"print(system.time(replicate(100,csir(0.1/10000, 0.05, 10000, 9999, 1, 0, 1000))))" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "subslide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
" user system elapsed \n", | |
" 0.408 0.008 0.417 \n" | |
] | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"# MCMC" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"norm <-function (n, alpha) \n", | |
"{\n", | |
" vec <- vector(\"numeric\", n)\n", | |
" x <- 0\n", | |
" vec[1] <- x\n", | |
" for (i in 2:n) {\n", | |
" innov <- runif(1, -alpha, alpha)\n", | |
" can <- x + innov\n", | |
" aprob <- min(1, dnorm(can)/dnorm(x))\n", | |
" u <- runif(1)\n", | |
" if (u < aprob) x <- can\n", | |
" vec[i] <- x\n", | |
" }\n", | |
" vec\n", | |
"}" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "subslide" | |
} | |
}, | |
"outputs": [], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"print(system.time(norm(1000000,1)))" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "subslide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
" user system elapsed \n", | |
" 16.056 0.008 16.158 \n" | |
] | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"library(Rcpp)\n", | |
"library(inline)\n", | |
"gslnorm <- '\n", | |
" long n = Rcpp::as<long>(c_n);\n", | |
" double alpha = Rcpp::as<double>(c_alpha);\n", | |
" long i;\n", | |
" double x,can,u,aprob;\n", | |
" gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);\n", | |
" x=0.0;\n", | |
" std::vector<double> vec(n);\n", | |
" vec[0]=x;\n", | |
" for (i=1;i<n;i++)\n", | |
" {\n", | |
" can=x+gsl_ran_flat(r,-alpha,alpha);\n", | |
" aprob=min(1.0, gsl_ran_ugaussian_pdf(can)/gsl_ran_ugaussian_pdf(x));\n", | |
" u=gsl_ran_flat(r,0.0,1.0);\n", | |
" if (u < aprob) x=can;\n", | |
" vec[i]=x;\n", | |
" }\n", | |
" return Rcpp::wrap(vec) ;\n", | |
"'\n", | |
"helperfn <- '\n", | |
" double min(double a, double b)\n", | |
" {\n", | |
" if (a < b)\n", | |
" return(a);\n", | |
" else\n", | |
" return(b); \n", | |
" }\n", | |
"'\n", | |
"rcppnorm <- cfunction(signature(c_n=\"numeric\",c_alpha=\"numeric\"), gslnorm,\n", | |
" includes=c(\"#include <gsl/gsl_rng.h>\",\n", | |
" \"#include <gsl/gsl_randist.h>\",\n", | |
" \"#include <cmath>\",\n", | |
" \"using namespace Rcpp;\",\n", | |
" \"using namespace std;\",\n", | |
" helperfn),\n", | |
" Rcpp=TRUE,\n", | |
" cppargs=\"-I/usr/include\",\n", | |
" libargs=\"-lgsl -lgslcblas\")" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
"\n", | |
"Attaching package: \u2018inline\u2019\n", | |
"\n", | |
"The following object is masked from \u2018package:Rcpp\u2019:\n", | |
"\n", | |
" registerPlugin\n", | |
"\n" | |
] | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"print(system.time(rcppnorm(1000000,1)))" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "subslide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
" user system elapsed \n", | |
" 0.084 0.008 0.111 \n" | |
] | |
} | |
], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"source": [ | |
"# epicookbook" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"library(devtools)\n", | |
"install_github(\"epicookbook\",\"sdwfrost\")\n", | |
"library(epicookbook)" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "subslide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
"Installing github repo(s) epicookbook/master from sdwfrost\n", | |
"Installing epicookbook.zip from https://github.com/sdwfrost/epicookbook/archive/master.zip\n", | |
"Installing epicookbook\n", | |
"'/usr/local/lib/R/bin/R' --vanilla CMD INSTALL \\\n", | |
" '/tmp/RtmpT8zicr/epicookbook-master' \\\n", | |
" --library='/home/simon/R/x86_64-unknown-linux-gnu-library/3.0' \\\n", | |
" --with-keep.source \n", | |
"\n", | |
"Loading required package: simecol\n", | |
"Loading required package: lattice\n", | |
"Loading required package: GillespieSSA\n" | |
] | |
} | |
], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"demo(package=\"epicookbook\")" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": [ | |
"R demosDemos in package \u2018epicookbook\u2019:\n", | |
"\n", | |
"acutehiv A model of HIV infection with acute and chronic\n", | |
" infection stages\n", | |
"hivmodel A simple model of HIV infection\n", | |
"hivmodelage The simple HIV model, with age considered\n", | |
" explicitly\n", | |
"hivmodeldiffrisk A model of HIV infection with differential\n", | |
" contact rates and mixing patterns\n", | |
"reedfrost A Reed-Frost chain binomial model\n", | |
"sirabc Fitting an SIR model using approximate Bayesian\n", | |
" computation (rejection method)\n", | |
"sircn An edge-based SIR model on a configuration\n", | |
" network\n", | |
"sirdiscrete A discrete-time SIR model\n", | |
"sirforced An SIR model with seasonal forcing of infection\n", | |
"sirfunction An example of how different functions can be\n", | |
" used for transmission in an SIR model\n", | |
"sirode A susceptible-infected-recovered differential\n", | |
" equation model using simecol\n", | |
"sirpa A pair approximation for an SIR model on a\n", | |
" k-regular network\n", | |
"sirstochastic A stochastic SIR model simulated using the SSA\n", | |
" algorithm\n", | |
"siuniformized Simulation of a stochastic SI model using\n", | |
" uniformization\n", | |
"wnv A model of West Nile Virus in birds and\n", | |
" mosquitoes\n" | |
] | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"library(reshape2)\n", | |
"demo(acutehiv)" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
"\n", | |
"\n", | |
"\tdemo(acutehiv)\n", | |
"\t---- ~~~~~~~~\n", | |
"\n", | |
"> acutehiv <- new(\"odeModel\",\n", | |
"+ main = function(time, init, parms, ...){\n", | |
"+ with(as.list(c(init,parms)),{\n", | |
"+ # ODEs\n", | |
"+ N <- S+I1+I2\n", | |
"+ dS <- lambd-beta1*c*S*I1/N-beta2*c*S*I2/N-mu*S\n", | |
"+ dI1 <- beta1*c*S*I1/N+beta2*c*S*I2/N-alpha*I1-mu*I1\n", | |
"+ dI2 <- alpha*I1-mu*I2-gamma*I2\n", | |
"+ list(c(dS,dI1,dI2))\n", | |
"+ })},\n", | |
"+ parms = c(beta1=1./50,beta2=1./200,c=1,alpha=1./8,gamma=1./520,mu=1./(70*52),lambd=10000./(70*52)),\n", | |
"+ times = c(from=0,to=60*52,by=1),\n", | |
"+ init = c(S=9999,I1=1,I2=0),\n", | |
"+ solver = \"lsoda\"\n", | |
"+ )\n", | |
"\n", | |
"> acutehiv <- sim(acutehiv)\n", | |
"\n", | |
"> acutehiv.out <- out(acutehiv)\n", | |
"\n", | |
"> acutehiv.out.long <- melt(as.data.frame(acutehiv.out),\"time\")\n", | |
"\n", | |
"> # Now plot\n", | |
"> ggplot(acutehiv.out.long,aes(x=time,y=value,colour=variable,group=variable))+\n", | |
"+ # Add line\n", | |
"+ geom_line(lwd=2)+\n", | |
"+ #Add labels\n", | |
"+ xlab(\"Time\")+ylab(\"Number\")\n" | |
] | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOzdeXQc5Z03+ud5autN\nUstaLNmytVryvmGDscE2YCCsttkCCYmT3GTe+97JJDNzMpk5ufNmciacnHPP5dzDJENm7lyyEWBY\nQlhCHCDYEGyQwXgXxrYsy1qtXd3qtfb7R9vdbSFLLau7q7r1/fzBqaddXf1zof669NRTz0NN0yQA\nAGA/zOoCAABgYghoAACbQkADANgUAhoAwKYQ0AAANoWABgCwKQQ0AIBNIaABAGwKAQ0AYFMIaAAA\nm0JAAwDYFAIaAMCmENAAADbFW11ASiKRSDQaTXFnnud5nk99/6yhlNpw7kBJkgzDUFXV6kIuQykl\nhNjwdLnd7nA4bLfC7Hm6OI4TRTESiaT3sMXFxek9oJ3lRkBrmpb6/2an05mJH4uZkyRJlmWrqxjP\n4XDouo7TlSKv1xuNRg3DsLqQywiCoOu63apyOBwOhwMBPRPo4gAAsCkENACATSGgAQBsCgENAGBT\nCGgAAJtCQAMA2BQCGgDAphDQAAA2hYAGALApBDQAgE0hoAEAbAoBDQBgUwhoAACbQkADANhUOqcb\nff/990tLS5cuXWqa5u7du4eGhnie37Fjh8vlSr3pdrvTWBIAQO5KT0AbhvGb3/ymq6vrgQceIISc\nP38+HA7v2rXryJEjzc3N9fX1qTe3bduWhoK6u4TBgem+yRRFwqb4lcIURHPCfSglkpTqzgAAKUhP\nQFNKd+3a9e6778aanZ2dVVVVhJCqqqqjR48KgpB6My31kD+8XHihJz2HSiNKXWJSiAsC4bjYpiGK\nhDJCCOE4UxAIISa7uBHbzSTUlCRCiCmIhDFTFE3KiCSZlJqSw2SMiKLJCybHEclhCrzJ5cZSDAAw\nibQFdEysGQ6Hy8vLCSFFRUXhcHhazfgx33zzzYGBi1fBy5YtW758eYrFMMZMSu21+E+MaTI5aSGu\npO30X2ZTShxOIopEFIkkEclBnC7icFzccLmJKBKXm7hcfEQSnC6Hw5H2EmaIMWa3JUIIIZTSOXPm\n2G1xKXsuecUY4ziupKTE6kJyWEausxwOh8/nI4T4/X6n0zmtZvwgTU1NCxYsiG0XFBQkZ/fkRFHk\nbfaTagHTJJEwiUx90rTY7rxA3G7T7TZdHtPjMT0FpqfALCgyCwrNoiJTsiC+eZ7XNC37nzs5SZIi\nkYjd/uXgOM4wDLsFtCAIDocj9W9uiqTP9SXmsYwEdHV19eHDhwkhvb29CxcunFYzfpDa2tr4diAQ\nCAQCqRfAS5IhOQghVNeo/b7kNkQ1lfh91O+b8E9NXjC8Xt1TaBQWGUVevdCrzykxvMUZ7WG37ZqE\nNgxoe65JaJomFo2doYwEdG1t7enTp5999lnG2Pbt251OZ+rN9FTwjf85Ojw8kwNQWabkytcj5mUd\nFIl3GQZVlcteMU1yKWUEQVAVhSlJoSPLxDQJIZSY9NJuVJGJaRKTMCVKCCGGQRSFEMIUmZgm1TSi\naVTXqaZSVTV1Pfb6TP6yU6Kayg0NckODyS+ajBkFRUbxHK14jl5SqpeW66Vl6PsGSCNqt1+LJjSt\nK2in0+lyuYZnFtCZkMFLQtNkimwaBlUUJkeJYVBFoXKUahpVZCrLVFVoNEoVmckyiUZYNEKj0fQn\nO6X6nBJt7jy9tEwtn6uXV168z3lV7HkFXVlZ2d/fb7drVXteQTscDo/HMzQ0lN7Dzps3L70HtDNc\n7+QFSmNdOqbTNa3vKA2HvIKgBcbk0REaCXPhEA2HWSjIwiEWGKOhIJ3Wd940ueEhbvjSF5IxrbRc\nm79Aq5inVi00XBjhDjA9COhZzXS5SXGx4S1W5pRO9McmDYf4YID5fSwUZL5RNubnxnzMN5pScBsG\nP9DHD/TFWnpJqTp/oVpTp85bYM6m+zwAVw0BDVdGqen2qG4PmVt52euGwQJj/OgINzrMjQ5zw0Ns\nZIhFJ+iUTxa7uHYcP2wyplVWKfWLlPpGo7Aog/UD5DgENEwfY0aRVynykpq6xGvBAN93gR8e4Pr7\n+IE+Fgpe6d3UMISeTqGn0/3+Hq20TF20RF7UpBdjtCzAeAhoSA/DU6A0FCgNjbEmCwb5vh6hp5Pv\n7eGHBsgVukT4oUF+aNDZ/L46t1JZvExevMx0OCfcE2AWQkBDRhgej9LQpDQ0EUKoqgg9XULHOaGr\nkxsZmnDoiNB/Qei/4Nq3V6lvlFeuVecvyHrJALaDgIaMMwVRqalXauoJISwYFM6fldpa+a7zVNfH\n7UkNQ2o9JbWe0ovnaGuvVRqXmqJoRckAtoCAhqwyPB55+Wp5+WqqqmLHOeHMZ2L72c8/7cmNjnB7\n3hT2vysvXxNdux5D9GB2QkCDNUxBkBua5IYmKstC+1nHyeNCd+e43g8my85DBxxHPpaXr46s22AU\nFFpVLYAlENBgMVOSlMXLlMXL2Jhf+vS489Nj9PIRINQwHMcPSy1H5VXXhNdfbzpdVpUKkGUIaLAL\no7Aocv2Nkes2SWdPO44c5Pt6k/+UGobjyEGp5Vh0/fWRtesx6QfMBvgpB5thTG5cIjcucQ728837\nxPNtyf0eVFWcH/5FajkavuEmedFiC8sEyAIsyAQ2ZVQtDNz7gP9LX5cbmsiltSBi2Jjfs/vVwldf\n5PyjVpUHkAUIaLA1rbQ8eNdO/8O71Jr6cX8kdJwr+u0vnIcOXOkpGIBch4CGHKCVV4xtf3Bsx0N6\nyWWTOlFdc+1/r+ilZ7gR280uCzBzCGjIGWp1ne9L3whtvsUQL5sMj+/rLfrvXzlOHLGqMIAMQUBD\nTmEsuma9/6vfkpuWJb9MNc29962CP/6eTbTSDUCOQkBD7jHcnuAX7gncdZ/p9iS/Lp49U/Tcr/jB\nfqsKA0gvBDTkKqWhcfTR/02pW5T8IhvzF774W+mzFquqAkgjBDTkMNPhDNxzf/CWO0w+MaKfaprn\n7Tdc+/Zmei1dgExDQEPOk5ev8n9xl+6dk/yi8/DHBa//jqqqVVUBzBwCGvKBXlrmf+RryuXPForn\n2wpefo6GQ1ZVBTBDCGjIE6YoBu7cEdlwY/Jjh0L/haKXnmFjfgsLA7hqCGjIK+HrNgW/cG9ylzTn\nGy166bd4kgVyEQIa8o3cuGTs/i8nr23IgsGil5/jhgctrArgKiCgIQ9pFZX+B75seBKjpGk4hIyG\nnIOAhvykl5T6H/qq7i2Ov0IjkaLfP88ND1lYFcC0IKAhbxkFhWMPPqoXl8RfoeFQ4e//G/cMIVcg\noCGfGS63/4Ev6XMSGc3CocLfP4+xd5ATENCQ50yX23//l/TixGMsnH+08LWXqKJYWBVAKhDQkP9M\nl3vsvkeSFwXnB/oKdr+Kmf7B5hDQMCsYnoKx+x8xXe74K0LHOfe7b1tYEsCUENAwW+hFxWP3PmCK\nYvwVR8tRx9FPLCwJYHIIaJhFtLmVwTu2E5b4sXfv2yt0nreuIoDJIKBhdlFq6sM33JRoG4bnT68y\nv8+6igCuCAENs05kzXp5+ap4k0WjBbtfpRomJgXbQUDDbBS66XZtXlW8yQ/0uf/yjoX1AEwIAQ2z\nkclY4M4dRtKShlLLMSyUBXaDgIZZynB7AnfuMJNvGL77Njc6YmFJAOMgoGH20uZVRTZuiTepqnje\nfJ3i6RWwDQQ0zGqRtdcmrwvOD/Q5P3zfwnoAkiGgYXajNHjrncmd0c4jH/M9nRZWBBCHgIbZznQ4\ng7ffk1jJ0DA8f96NqZTADhDQAERdUB1dvS7e5Pw+1/53LawHIIafehd7kCQpxT15nmeMpb5/1nAc\nZ8OqGGM8z9uwsCyfLv3m24yOdjZycb0VR8tRc9kKfWHt5/eUJMmw2Y1ExhjHcaZpWl3IZQRBsOc3\nMYfkTEDLspzinowxwzBS3z9rJEmyYVUul0vTNBsWlv3Tpd1+d9ELT1+cg9Q0pT+97nv0m8kLhMfI\nsmy3gBYEQdd1u1VFKbXnz3wOQRcHwEVaeUXkmuviTeb3OZsxogOshIAGSIhctyl5fSzn0U/4wQEL\n64FZDgENkGByfHDbnckjOtx7/0Rs1rcLswcCGuAyWuX86PLV8Sbfd0FqOWZhPTCbIaABxots2pq8\nOJbrw/doJGJhPTBrIaABxjMkKXhjYlJ/Fo26PvyLhfXArIWABpiA0rRMq1oYbzpOHucH+iysB2Yn\nBDTARCgNbb01sXqhYbj37cXdQsgyBDTAxLSSsuiKNfEm390ptp2xsB6YhRDQAFcUuX6z6XDGm679\n7xJdt7AemG0Q0ABXZEhS+LpN8Sbn9+nN+yysB2YbBDTAZOSVa/XiOfGmsfdtJkctrAdmFQQ0wGRM\nxsI3JIbcmeGQdPCAhfXArIKABpiCUrdIm1cVb0pHDrJwyMJ6YPZAQANMLbRpa3ybaqrzow+sqwVm\nEQQ0wNS0eVVKbUO8KbUcZX6fhfXALIGABkhJZNOW+Cx31DBcBz+0th6YDRDQACnRSsrkRYvjTemz\nFs43YmE9MBsgoAFSFbn+xuSHv10f4yIaMgsBDZAq3TuHS1r8Wzx9kvOPWlgP5D0ENMA0sFtuS76I\ndn7cbGk5kOcQ0ADTQEvKlMXL4k3pVAsb81tYD+Q3BDTA9ESv23TZRfQneLAQMgUBDTA9unfOZcM5\nTp7Ag4WQIQhogGmLrr8+MSZa1xyHD1pbD+QrBDTAtGklZckPFjpajjBFtrAeyFcIaICrEVm/Mb5N\nZVk6fsTCYiBfIaABroZWUanNXxBvOo4cpFhsBdINAQ1wlSLrro9vs3BIPH3SwmIgLyGgAa6SUlOn\nl5bFm84jH2PZb0gvBDTA1YusvS6+zQ0NCl3nrasF8hACGuDqKU1LDZc73nQewXg7SCcENMDVMxmT\nV66NN4WOdm502MJ6IM8goAFmJLJitcnxFxum6TjyiaXlQF5BQAPMiOlyK0uSp0/6lMl4aAXSAwEN\nMFPRVdfEt6mqiCePW1gM5BMENMBMaaXlWtXCeNN57BDG20FaIKAB0iD5Ipr5fWJHu4XFQN5AQAOk\ngVy3yCgojDelY7hVCGmAgAZIB8bk5avjLbHzPPP7LCwH8gMCGiA9IstXmUkrrThajlpaDuQDBDRA\nepgut5K00orj5AnMbwczhIAGSJvoikQvBw2HxLOnLSwG8gACGiBttPkL9ZLE/Hbo5YAZ4qfeZfo+\n+OCDEydOxLZHRka+//3vP/74416vlxCyYsWKjRs37t69e2hoiOf5HTt2uFyu5Kbb7Z702AC2Fl2+\n2v2XP8e2+Z4uzjeie+dYWxLkrowE9KZNmzZt2kQIaW1t7e7uHh0dbWpq2rlzZ+xP29vbw+Hwrl27\njhw50tzcXF9fn9zctm1bJkoCyA5lyXLXB+9STSOEENOUThwN33iz1UVBrspIQMfout7c3Pzwww+3\nt7cPDQ09//zzHMfddtttnZ2dVVVVhJCqqqqjR48KgpDcjL/9+PHjY2Njse25c+fOnTs3xc8VBIHj\nOI/Hk+6/0EzxPC8IgtVVjMfzPKWUXlqj2j7seboopW6325zkQUGPx1yygp64uESh8/RJdttdhOMy\nWhXHcYZhTFaVFXiet+c3MYdkMKA/+uijNWvWiKLocrk2bty4bNmylpaW3bt3e73e8vJyQkhRUVE4\nHA6Hw8nN+NsDgcDo6Ghs2+v18nyqpTLGKKWp7581jDF7VmWapj0Ls2FVhBCe5yePQvOaa8mlgCah\noNB2xly6IqMlxX7mM/oRV4HjOHt+E3NIps6daZrHjh37q7/6K0LIggUX19Zsamras2dPRUWFz+cj\nhPj9fqfT6XA4kpvxI8Q6SWICgUBsn1Q4nU6Xy5X6/lkjSZJsv3nOiouLFUUJhUJWFzKePU+X0+n0\n+/2GYUy2U1Gxt7gkPjG0frB5bN6CyfafMUEQdF2foqqsczgcHo8n7d9El8uV3gPaWaZGcVy4cKG0\ntJTjOELI/v37Dx48SAjp7u4uLy+vrq7u6ekhhPT29i5cuHBcM0P1AGSTnDTeTug8zwJjFhYDuStT\nAX3q1KnGxsbY9jXXXNPW1varX/1q//79t99+e21trdvtfvbZZ0+ePLlx48ZxzQzVA5BN0aallz1V\n+NkJS8uBXEXtdmNhQoFAIBAIpLhzrItjeNh2Kw/Z83d2dHFMS2VlZX9/fyqdCQW7XxVbT8W2jSLv\n6K7/QTLWTWznLo6hoaH0HnbevHnpPaCd4UEVgIyQlyyPbzO/T+jtsrAYyFEIaICMUKrrTHdihJnU\ngmVWYNoQ0ACZwVh0ceIiWmw7TVXVwnIgFyGgATIluZeDqirmToLpQkADZIpeUqrNrYw3pZMYywHT\ng4AGyCA56RlCoacTA6JhWhDQABmkNC414xNxmKbj1KeWlgM5BgENkEGGw6HW1sebIp5YgelAQANk\nlpw0loMbHeH7L1hYDOQWBDRAZqm1DYbDEW9Kp09aWAzkFgQ0QGaZjCkNicVkpdMnic2eyQbbQkAD\nZNxlA6LDIaHzvHW1QC5BQANknFY53yjyxpvSaYzlgJQgoAEyj9Jo45J4S2xrpRoe+4apIaABskFp\nWhrfpqoinjtrYTGQKxDQANmgl5RppeXxpoixHJACBDRAliiLl8W3hfNtTI5aWAzkBAQ0QJbIjUvi\ni6pQwxDOnrG2HrA/BDRAlhgFhVrl/HhTOoNeDpgCAhoge+SkW4VCdycNBS0sBuwPAQ2QPXJDE0la\n7VvCFP4wKQQ0QPaYLrdaVR1vSpeW/QaYEAIaIKvkpCdW+N5uFgxYWAzYHAIaIKvU+kYz3sthmriI\nhkkgoAGyynA41IU18aZ45jPragG7Q0ADZJvSmBjLwfdfwEKFcCUIaIBsU+sXJS9UiF4OuBIENEC2\nGaKkLqyNN8VW9HLAxBDQABaQFyXWWOH7+9DLARNCQANYQBvXy4EnVmAiCGgAC4zv5cBYDpgIAhrA\nGsplvRwXWBDzcsB4CGgAa6h1i5KfWBHPYiwHjIeABrCGIUlaUi8HuqHh8xDQAJaRGxrj23xvN2Yf\nhXEQ0ACWUeoaSXIvx7lWS8sB20FAA1jGdDrVqoXxJno5YBwENICVlPpEL4fQ3UmjEQuLAbtBQANY\nSalvjK8kSwwDvRyQDAENYCXD7dEq5sWbIpb6hiQIaACLJT+xInSep4piYTFgKwhoAIvJdYvi21TX\nxPNtFhYDtoKABrCYUeTVysrjTaENvRxwEW91AamSJCnFPXmeZ4ylvn/WcBxnw6oYYzzP27Awe54u\nQogkSYZhpPeYRuNSMjgQ2xY7zkk8T+Jz3aWAMcZxnGma6a1qhgRBsOc3MYfkTEDLspzinowxwzBS\n3z9rJEmyYVUul0vTNBsWZs/TRQiRZTntAa3V1IsfvBfbprJsnj2j1NSl/nZBEHRdT3tVM0Qpte3/\nxFyBLg4A6+mlZbq3ON4U2/DEChCCgAawCaWhKb4tnjtLbNZfAZZAQAPYglKfCGgaDvG93RYWAzaB\ngAawBW1uhen2xJt4pBAIAhrALiiVaxviLRGD7QABDWAfStL00Jzfxw8PWlgM2AECGsAutAU1ZtKo\nYVxEAwIawC5MxpTqxPBn4dxZC4sBO0BAA9iImjQ9ND/QxwJjFhYDlkNAA9iIUl1nYhEsuAQBDWAj\npiRpC2riTbEdvRyzGgIawF6UusRgO76rg2Eui1kMAQ1gL8mLYFHDEDA99CyGgAawF8Pt0cor4k0B\nvRyzGAIawHbUpF4O8Xwb1XULiwELIaABbEeuSwy2o7LM93RaWAxYCAENYDt6aZlR5I03xTYMtsus\nZ555hucnWL3kiSeeqKioSGXPDEFAA9iRkrSSLJaRzbTt27efOnXK6iomgIAGsKPkgGZjfn6w38Ji\nctR99913zz33EEJ+9rOfeb3ekydPrl+/3uFw1NfXv/XWW0899ZTb7f7ud7/7gx/84LXXXlu8eDEh\n5Ny5c8n7EEKi0ei2bdu8Xu+3v/3t5EXFBgYG7rzzzsLCwi1btrS2ZupXHAQ0gB2p86oMhyPeFNDL\nMX2PPvroO++8EwqFdu/e/eCDDx48eHDt2rWtra1lZWVPPvkkISQcDjscjq9+9avxt+zbt2/cPn6/\n/+GHH/7lL3/55JNP/vGPf4zv+dhjj/X29p49e3bBggWPPvpohv4KCGgAW2JMq0kay4Fnvqfvrrvu\ncjqdr7322nvvvfflL395+fLlra2tDz300NDQkKIohBBJkn7yk5/Erp1jPr+PKIpf//rX77vvvrlz\n5544cSK+54kTJzo6OjZv3rx///7Ozk49MyNtcmZVb4DZRqlrEE+1xLb5wX4WDBieAmtLyi2SJD30\n0EM/+MEPSktLN2/evGvXLsMwXnrppTvuuCO2A8/zHMclv+WJJ54Yt4+iKL/+9a+Li4v7+/tXrlzp\n8/lirzc2Nuq6/uqrr77++usdHR3jjpMuuIIGsCllYW1i4iTMy3FVvvKVr3R0dDzyyCOMsUceeaSj\no2Pr1q3FxcWtra3JHcpxn9+noKDgqaee+trXvvY3f/M3d911V3zPf/mXf+F5vqam5umnn77lllsy\nVD81c2Hx4EAgEAgEUtzZ6XS6XK7h4eGMlnQVJEmS7TevQnFxsaIooVDI6kLGs+fpqqys7O/vn/C7\nnQmFr7wgdLbHttWa+rHtD064myAIuq5nraoUORwOj8czNDSU3sPOmzcvvQe0M1xBA9iXUlsf3+a7\nzlNVtbAYyL5UA3rlypWffvppRksBgHGUpPn7qa4LHe0WFgPZl2pAP/TQQ48//rgNf+UEyGNGQaFW\nVh5voht6tkl1FMc777xz9OjR5557bsGCBfEnHe357A1APlHqFvGDA7Ftsb2VGAZh6JlMiWma0x39\nls3HuFORajX//u//ntE6AGBCam0D+eiD2DaNRPi+Xm1elbUl5QrTNCORyLTe4vF46KXJuO0g1YBe\nvnw5IUTX9YGBgYqKClv9HQDymFZeYbg9LBSMNcW2Mwjo2SPV35V6enpuuummwsLCpUuXHjp06MYb\nb2xvx/0KgMyj9LLpodsxcdIskmpAf/3rX1++fPnw8HBRUdHq1as3bNjwrW99K6OVAUCMUpsIaG50\nmPONWlgMZFOqXRz79+9/8cUXHQ4HIYTn+X/8x3+srq7OZGEAcJG6oMbkBapdHAQtnmuNrL3W2pLy\nnmmaP/zhD3fv3i2KYnFx8S9+8YvKysrsl5FqQC9atGj//v133313rPnRRx/V1dVlrCoASDB5Xl1Y\nE58vSTh3FgGdOnbqJDFSGMshSkZDYtR5c3PzX/7yl08++YRS+uKLL/74xz/++c9/nsEqryDVgP7p\nT396//33b926dWRk5P7779+3b98zzzyT0coAIE6pbUgE9IVuJkcNyTH5WyCGe+3FVJ7ANL3Fxre/\nF2+WlZV1dXXt3bt3y5Yt999//+23357JGq8o1T7oLVu2nD59+u677/7+979/5513Hj9+/Lbbbsto\nZQAQp9Y1kPjQKcMQsMZKhi1atOi55577zW9+s3r16i9/+csDAwOWlDGNUdler3fDhg19fX0LFiyY\nO3du5moCgHEMl1strxD6L8SawrmzctMya0vKby0tLRUVFU8//bRpmr///e+/8pWvHDhwIPtlpBrQ\nx48f/+IXvzg4OFhdXd3R0VFbW/vCCy+gGxoga7S6RYmA7jhHDcPEI4UpoE6nyU0ddOblXUYdHR2/\n/e1vn3vuOcbYqlWrVIumqUo1oL/5zW9u3779xz/+sSAIqqr+4Ac/+MY3vvHee+9lsjYASFDqFjmb\n349tM1nme7vUKoykmprynX+8infdfvvtH3/88ebNmxVFcTgcTz31VNoLS0Wq80EXFhaeO3eutLQ0\n1hwcHGxoaPD7/ZmsLQHzQWcO5oOelizPBz1O8a/+g41d/NJF16wPbb44Tzzmg56QYRjT/cG226Pe\nqf6KdMcdd7z66qvx5iuvvJK5RQQAYELJT6xglcLZYOoujtiCtZqmfetb3/qP//iP2tra9vb2o0eP\nfvOb38x8eQCQoNTWO44dim0zv48bGtRLy6wtCTJq6oD+whe+ENvYuXNnhosBgMloVdWmKFJFiTXF\n82cjCOi8luoVNCFkcHAwa53OAPB5Jsep1XVi68V52MVzZyPrrre2JJtjOT7QJdVRHN/97nd/+tOf\nVldXJ09offbsxOs7aJr2+OOPe71eQsiKFSs2bty4e/fuoaEhnud37Njhcrkmabrd7pn/rQDylVzb\nEA9ovq+XhkOmC1+ZiTHGcj1PUg3oX/ziF83NzRs2bEhl59HR0aampniXSHt7ezgc3rVr15EjR5qb\nm+vr6ydpbtu27Sr/KgCzgFpTTxgjsQEbpimeb5OXrrS6KJvKg1EcqQb04sWLUx/dMjIyMjQ09Pzz\nz3Mcd9ttt3V2dlZVVRFCqqqqjh49KgjCJM34QQKBgKZpsW1d1zmOS/HTGWOU0tT3zxqO42xYFaUU\np2taOI6z8jvs8eiV87merlhLOn9OW7EmdqJslSzExt/EHJJqQP/sZz9bv379zp07Kyoq4i/+6Ec/\nmnBnl8u1cePGZcuWtbS07N692+v1lpeXE0KKiorC4XA4HJ6kGT/I66+/3t3dHdu+/vrrb7jhhhRL\njf2YlpXZ7uYJpamOOs8mSqkkSR6Px+pCxrPt6SopKbG2BmPlav1SQAsd7WXFXiqI9jxXlFIbfhNz\nSKoB/b3vfW/BggVerzd+VTuJBQsWxDaampr27NlTUVHh8/kIIX6/3+l0OhyOSZrxg3z5y1+ObwcC\ngb6+vhRLxYMq04IHVaalsrJyYGDA2kdCuNIKb7yhyMOfHCSLmvCgSl5KNaBPnz7d2tpaXFycys77\n9++XJGn9+vXd3d3l5eXV1dWHDx8mhPT29i5cuHDy5tX+RQBmC31OiV5UzPkvrqsinmtVFjVZWxJk\nSKoBvWvXrjfffPORRx5JZedrrrnmtddea2lp4Xn+rrvuKi4uPn369LPPPssY2759u9PpnKQ5g78L\nwGyh1DU4jxyMbYvn2xT79W/Yh18PpdL/ww2lrNkAACAASURBVCgt5BJDPoLB4OrVq+MD1R577LHF\nixc/8MADmaryClIN6AMHDjzxxBP/8A//kNxZeerUqQl3djqdDz/8cPIrd9xxR+pNAJicUr8oHtAs\nMMYNDuglpdaWZFtNhx4JG9Epd6uRKo+v+c3nX9d1/eabb/7ggw+ef/75DFQ3hWkMs8toHQCQOq2y\nynQ6aSQSa/JnTysI6MxgjO3Zs+eHP/yhJZ8+jWF2Ga0DAKaBMbWmXvysJdbi286Q6zZZW1G+opTy\nPG/VE4mpBvSEj6hYssQAABBClLpF8YDmBvpYYMxw226sJMxQqgH9xBNPxDZM0+zu7n7yySe//e1v\nZ6wqAJiCsqDGZIxeeqRQONeqrVhjdVF29Nay/8ckU98kFKmQhWKm6yqvoG+66aabb745+/c0ASDG\nlCStqlrobI81hbbWCAJ6IqvcDVPvZFfTWDQ2WVdX1/nz59NaCQBMj1LXEA9ovruDKoopitaWlDc8\nHk/yZHCPPfaYJWVczRW0pmnHjh3767/+68yUBAApUWob3O/9ObZNdV3oOKcsws38vDLtPugYr9fb\n1ISHlwCsZBQWaaXl/NBArCm2n0VA55kZjeIAAGsp9Y1JAd1GDIPk+BT1kGzqgN66deuV/ui9995L\nYykAMF1qXQP5aH9sm0YjfG+3VoUJbS5ijE13mka7Tdk6dUB/73vfG/fK0aNHf/KTnzQ2NmamJABI\nlVY21/AUsGAg1hTPtSKg40zTjFx62DJFTqfTVhk9dUDffffd8e1gMPijH/3oqaeeeuyxx77zne9k\nsjAASAGlSt0ix/HDsZbYfja8+RZrK7IP0zR1Xbe6ihmZRnfV66+/vnTp0ra2thMnTvz93/998uKE\nAGAVpS4xzpfzjXJDgxYWA+mVUsh2d3d/5zvfOXTo0JNPPnnPPfdkuiYASJ22oMaUJHppcQPxXGuk\nFIuY5Impr6CfeOKJlStXNjQ0nDx5EukMYDcmY1pNfbwpnGu1sBhIr6kD+u/+7u98Pt9Pf/rTkpIS\nx+WyUB8ATElrSNyxFwb6WChoYTH5IRgMNjQ0EEJkWf76179+8803r1279uOPP85yGVN3cVy4cCEL\ndQDAVdPqFiVPnCSea41iXo5L/mu/U9OnHphR6DAevW6Cef3ffvttj8ezd+/eQ4cOffvb325ubs5A\njVc0dUAnL+MNADZkSg69aiHfeT7WREAna+3nlBQCusQ98T5VVVWxmTtLSkqyPwIPDx0B5AOlITH1\nAt/VQRXFwmLyyZo1a5qamg4ePHj//ff/r//1v7L86RgqB5AP1LpF5N23iWkSQqiui+fb5MYlVheV\nD0zT/Od//ud9+/b98pe/XLVqVZY/HQENkA+MgkKtvILvv3jHSGg7g4COuXOFohtT7+YUJp7U/6WX\nXmpra9u7d68lT34goAHyhFrXEA9oseMc1XWT46wtyQ5uapxRb8/bb7994MCBdevWEUIWLFjwhz/8\nIU11pQQBDZAnlPpGZ/O+2DaVZb6rQ62ps7ak3BWfsP+pp56ysAzcJATIE1pJmV5UHG+KeGIl9yGg\nAfKHUr8ovi2da43dM4TchYAGyB9KfeKRQhoK8n29FhYDM4c+aID8oVXON90eeulRb7HtjFY539qS\nLEQplSRpum/JUDFXBwENkEcolWsbHC1HYy3x7JnwDTdZW5GFKKViji9zji4OgLyiJE2cxPlHeUwP\nncsQ0AB5RVtQY0iJmSaFs6ctLAZmCAENkFdMxtSk6aFFBHQuQ0AD5JvkwXb88CDnH7WwGJgJBDRA\nvlFr6s2kiSNwEZ27ENAA+cYUBHVhbbwptCKgcxUCGiAPyYsWx7eFgT4WGLOwGLhqCGiAPKTVNpjs\n0rfbNNHLkaMQ0AB5yJAkdWFNvClh4qTchIAGyE9KUi8H39PFwiELi4Grg4AGyE9K7SKS3MvRdsbS\ncuBqIKAB8pPpdKpVC+NN8cwpC4uBq4OABshbctJS30JvF0UvR65BQAPkLaWhKdHLYRjo5cg5CGiA\nvGU6Xeq8BfGmhF6OXJMz80Ezluq/JbEpt1PfP2sopfasyraF2bAqkms/WmrTEqG7I7Yt9HZx0Yjp\ncmetKmLL05VDciaguZQXkGeMUUpT3z9rbFsVY8yehdmwKkIIx3F2W3cjFoITVqU3LiF737q4OKFh\nSOfOqqvWZq0q2/5PzBU5E9Cqqqa4J8/zpmmmvn/WMMZsWJVhGLqu27Awe54uQoiqqoZhWF3FeLqu\nT1yVKKnzFwjdnbEW/9mJ8NIV2SmJ4zh7fhNzCH77AMhzSuOS+LbQ2x1fsRDsDwENkOfk+sbksRwS\n5uXIHQhogDxnutzqgup4U2rFWI6cgYAGyH/Js4/yvd0sGLCwGEgdAhog/6n1Tcmzj+IiOlcgoAHy\nn+FwXLbGyumTU75F0ehwmO/xi23DUseo2BcQgjJnZrJI+LycGWYHADMhNy0Rz7fFtoWBPs7v04u8\n4/bp9otnh8Run9jtF4LyBOOXRc4scWuVhWp1sVJfInudesbrnt0Q0ACzglrXaPI81TRCCDFN6fSn\n4Ws3xf5oKMR/3Ok+ccEZkKf4lVrR6YUx4cKYcLjbRQiZW6CtqIisnBeZ49IyXP4shYAGmBVMUVRq\nG+K9z+KZU+FrN3WMiu+eLWgbkq6u76I/wPcHCva0FtTMUTZUB5eUR/Fcd3ohoAFmC2XxsnhA9wf5\n/95fcDZQMPPDmoS0j4jtI3OKXfoNtcF1C8IcRWd1eiCgAWYLtbrOECVdNf5Qetee4q1GYILLXZdo\n1M2Ra+YocwvUEpfuFAyBMw2TRFQWkLn+AD8Y5DtGxY5RyfhcCI+GuT98WvSXNs/NDYG188PZ+Cvl\nOwQ0wGxhclxrw43PRq4fFMrG/ZHAmcsrImurwtXFKvvc9S+jxC0abtGoKLg4sYaq09YhqeWC87N+\nh2pcNknTWJR7tcXbfN69Y3V0jSdzf5tZAQENMCuYhHzQ7nlbv8cQLstTiTevrw5trA26hGnMACVw\n5tK50aVzo2GVHe1xHehwjYQvC5P+oPD/7heu6TJurec8EgZ7XCUENED+U3T68vHiT/scyS9S09zA\nndmyucgjXf3kfC7B2FgTvL462NLnfK+toD9wWaQc6mAtPWV3LhlbWxW21wytOQIBDZDnxqLc05/M\n6QsIyS+WqYNf73umWu/1bfsbc8Y5QClZURlZXhE52uvc01roiyTGUMsae+WE98QF547lPoybni4M\nigHIZwNB/j+bS8el80Z/8//Z8X/VRtqZIovnzqbrsygla+ZHvnvjwM0NAZ5d1pF9dkj62f7yoz3O\ndH3WLIGABshbvWPCUwdKx6KJ61memQ+s8n1Je0cylNgr4mct6f1QgTNvXhT4zo2DjeWXTdUva/R3\nx4tfOlYsa+jtSBUCGiA/dfuEX31cElYT33GPZHxrw/DqeWF5ybL4i0LHORoOpf3T57i0v9oU+Nom\nzcFf1sF9rNf55AflPX7hSm+EZAhogDzU4xd+fbAkkpTOpW7tf2wYnF+kEELkpmXk0gKG1DAcKcyd\ndHU21BnfuXGwvkROfnEkzP1/B0o/6sjS2rU5DQENkG8Gg/xvDpZEtcS3u7JQ/eZ1Q8Wui/foDE9B\n8uR2ae/lSFbo0L927fDdS/1cUq+0ZtA/nCx6+XjxuDHUMA4CGiCv+KPcrw9e1rMxv0j9xrXD48bS\nRRcnejn4wX5+eDBzJVFCNlSH/vfrh0rdl82pdKTH+Z8flo4bQA3JENAA+SOqsac/KfEn3RWsLFS/\ntn7Y+bmHUNT6RlOS4k3x5IlM11ZZqP4fmwZXzoskv9gfEP7zw9L2ETHTn56jENAAecIw6XOHi5Mf\nFSl1axOmMyHEFASlIbEOlnTqU2pc/eMqKRI586FVo/cs8yfPpqTqVMRKAFeAgAbIE3/4tPDccOKi\nuNChf239sFu8YuxGl66Ib7NwSEjfgOjJXbcw9K3rhwslnRBCCdm5wje/SJ3yXbMTAhogHzSfdx3s\nSoyLkHjzq+tGJn9yT5tXpXvnJN7yWcZ7OeKqipT/uWmwuljZXB8c1+kByRDQADmvfVjY/VlhvMko\n+eLqkfjMc5OQky6ixfNtmRgQfSUFkvGN64a3LRrL2ifmIgQ0QG4bi3LPfFKoJ/VkfGGxv7FMvvI7\nEuQlK0h8ERTDcGT+VmEyjpoUo+wmhYAGyGGGQV44WhxMWktwbVV4Y02qF8KGx6MsrIk3pU+PExP3\n62wEAQ2Qw94+U9gxmhijVuVV713mn9YR5BVr4tucb0To7UpbcTBjCGiAXHVmUPrgfGLNErdoPLx6\nZNw0clNSa+pNV9LdxZZjaasPZgwBDZCTAjL38vHieIcEJeT+laNXMeGyyVh06cp4U2w9TaMYVmEX\nCGiA3GMS8rtj3pCS+P5urg+leGPw8+TlKxNzJ+malMmpOWBaENAAuefD8562pGdSauao2xoDV300\nvahYrVoYbzpOHMGtQptAQAPkmL6A8PbpgnhT4o2HrwlwM/sqX3arcHRE6Omc0eEgTRDQALlEN+hL\nx7x60iydO5b7i2e81p9S33jZrcJjh2d4QEgLBDRALtlztqA/aYHBVfMiKyrTcE/PZCy6LHGrUDrX\nyrL4VCFcCQIaIGd0+cT97YlxdV6nPt1Rz5OILl992VOFJ46k68hw1RDQALlB1enLx73xOUEpIfev\n9El82uYINQqLlJr6eFM6fiQLE5DC5BDQALnhndaCoVBirufrqkO1c65yXN2VRFeujW+zcEg8ezq9\nx4fpQkAD5IAun/hh0kODJS7t9qb0zwOnLqzRi0viTcexQ2n/CJgWBDSA3ekGfeWEN/HQICU7V/iE\nTKxCQml0VeIimu/t5gf60v8pkDIENIDdvdvmGQgmOjc2LAzVzFEy9FnykhXJaxU6j36SoQ+CVCCg\nAWytPyi835bo3Jjj0m/NQOdGnCmKyVNzCKdPslAwcx8Hk8vIgueapr3xxht+vz8ajd59991z5859\n/PHHvV4vIWTFihUbN27cvXv30NAQz/M7duxwuVzJTbfbPeXxAWYJ0ySvnPAa5qWJMgjZucKX6SVW\no6uucR79JPa0NzUMx7FD4Y1bMvqJcCUZCei2tjZRFHft2tXb27t79+7t27c3NTXt3Lkz9qft7e3h\ncHjXrl1Hjhxpbm6ur69Pbm7bti0TJQHkouYOd7cv8VjK2qpw2kdufJ5R5FXqFoltZ2JN6cSRyPqN\npiBM/i7IhIx0cRQWFl577bWEEJfLRSkdGRkZGhp6/vnnX3rpJb/f39nZWVVVRQipqqrq6uoa18xE\nPQC5yB/l9rQmVhoskIw7lmRpBb/I2mvj2ywalT49np3PhXEycgVdWVlJCOnp6XnjjTduvvlmh8Ox\ncePGZcuWtbS07N692+v1lpeXE0KKiorC4XA4HE5uxg/y+uuv9/VdvIO8atWqtWvXTvRRE2CMMcbK\nysrS/LeaMUqpab9JwjiOE0XR5XJZXch49jxdlNKSkpKp90uHF/dyspaYc+ORDeaCyok/Ov3nqqzM\nPLDP7OqItdzHDxXcclviOcPUUEo5jrPhNzGHZCSgTdPcu3dvZ2fn9u3bKyoq4q83NTXt2bOnoqLC\n5/MRQvx+v9PpdDgcyc34zuvWrYtGo7FtSZLGxlK9dhBF0eFwpL5/1giCoKpTL7ScZR6PR9O0+Km2\nD3uerjlz5gSDQSPzj9gd7xGPdyemrFtaoSwqDlzph5rneV3X05vR/Jr1jksBTUZHIp98pC5eNq0j\niKLodDrT/k3M2j+QdpCRgD558uTo6OiuXbsYY4SQ/fv3S5K0fv367u7u8vLy6urqw4cPE0J6e3sX\nLlw4rhk/yLx58+LbgUAgEEh1ulvGmGEYspzxrrqrYMOqXC6Xpmk2LIzY8nQRQmRZznRARzX62nFv\nvCnx5p2LR2X5ilPWGYah63p6q5Kr64SiYs4/GmtyzfuCNfVkOqtwU0olSbLn/8RckambhN3d3f/1\nX/9FCCksLNy5c+drr73W0tLC8/xdd91VXFx8+vTpZ599ljG2fft2p9OZ3MxEPQC5Zc+ZwjGZizdv\nWTR2FWtZzRRj0Wuude99K9biB/uFjna1pi7bZcxuGQnoe++9d9wrDz/8cHLzjjvumKQJMJt1+4SP\nOhODTecXqRuqrZn5U16ywtW8j0Yu3hlyfdLsR0BnFx5UAbAR0ySvf+o1LnUmM0ruXeZj0+hXSGsx\nPB9Zsz7e5Hu6+N5ua0qZrRDQADbS3OHuHUuMOL6uOjS/yMo7pfKqtUbSk9+uj/ZbWMwshIAGsIuA\nzO1pTYzc8Ej6LYssHoxkiJK86pp4U+g8j4vobEJAA9jFH08WylriK3nPUr+Dt34keGT1elMU403X\nxx9aWMxsg4AGsIWzQ1JLX+I5gEVl8rIKWwxON53OaNKa30LHOf5Cj4X1zCoIaADraQZ9/dPEwGeB\nmfcs9VlYzziRa64zhaSL6APoic4SBDSA9d496xkJJwY+b20IznFlfeDzlZlOV/JE/kJnu9DTaWE9\nswcCGsBiQyE+ea3uUrd2Q63tpmCOrL3usp7oD/5C7DdTSv5BQANY7A+fFulGYqjzPcv8HLNd9plO\n52Vjoi/0iO1nLaxnlkBAA1jpxAVn23BioPHq+ZH6EptOXiGvvdZMms7M9eH7JPOTRs1yCGgAy0Q1\ntvuzonjTwRtfaPJbWM/kDFGKrLs+3uSGB6XPWiysZzZAQANY5s9nCgJy4jt4++KAR7L1NWl01Vqj\nILGGgKv5fWq/KWHzCQIawBrdPuHjpEmRqrzquiprJkVKncnx4Q03xpssFHQc+sjCevIeAhrAAoZJ\n/nDSGx8HwRi5d5lvOpMtW0ZeslwrT6zC4Tz8EQvYbnGMvIGABrDAgQ53jz8xKdKGhaF5hTnSV0Bp\n+MabEy1Vde1/18Jy8hsCGiDbxuRxq8HqN1s9KdK0qFULlfrGeFNqPcXjuZXMQEADZNsfTxYlrwZ7\n19IxO0yKNC3hG282uUuPPpqm+y97MOQuExDQAFl1asDxaZ8j3mwsiy6viFhYz9XRi7zRtdfGm/xg\nv+P4YQvryVcIaIDsUXT6xsnEwGeBM+9dZt+Bz5OLrLve8CRmr3Yd2MdCtntCPdchoAGy550zhb5I\nYlKkmxoCFqwGmyamKIa2bIs3qSy7//KOhfXkJQQ0QJb0+IUDHYmBzxUF6g21dh/4PDmloUmtqY83\nxdZTYtsZC+vJPwhogGwwDPJqy2Wrwe5Y4Wc0x+4Nfl5w662mkBgv6N77FovaYp2B/ICABsiG/e2e\nC0mrwV67MFRVpFhYT7oYRd7I9ZvjTRYOud5HR0faIKABMm4kzO89m7ifVujQb23MpYHPk4usukab\nWxlvSp+1YCbSdEFAA2SWScgrJ4q0pBmf713ml3Jt4PNkGAttu9NkiTDx7HmThnO7e90mENAAmfVJ\np6t9JDHj8/KKyOLyfOul1UrLItfdEG/SUNCz500suTJzCGiADPJHuTdPJ83PKRp3L83Vgc+Ti6zb\noFUkOjrEc638sUMW1pMfENAAmWIS8lpLkawlvmV3Lhmz+YzPV4+x4O33Jo/oEPe8SfovWFhRHkBA\nA2TK0R7XmcHkp7rl1fPCFtaTabq3OLTl1niTapr54jOY0X8mENAAGTEmc388mejccPDmvct8FtaT\nHfKylXJDU6I90O/+8x+tKyfnIaABMuKVE95oUufGbU3+3H2qe1rC2+7Ui4rjTan1lPPIQQvryWkI\naID0O9jlah1MjNyoL5HXL8znzo1khiQF79yemIyUENf+d4XO89ZVlMMQ0ABpNhrh3jyVmLJO4o2d\nK3y5sJpV2mjlFaGttyXahuH506ucb8S6inIVAhognUyTvHy8+LL5+JeMzZLOjWTy8lXaqrXxJotG\nC177HabpmC4ENEA67Wv3nB8R483GsujaqtnSuTGOfOtdtLo23uR8IwVvvEz1Wfdv1UwgoAHSpi8g\n7DmTNIe9YOxckf8jN66I48gju4zCRG8P39PlfvN1LI6VOgQ0QHqoBn3haLFuJjo3ti/3F+TrYykp\ncnvG7nnAkBKDwaWzp93vvo2nwFOEgAZIj90nCweDfLy5Zn54WQ4uNph2emlZ4O77kgd1OFqOuvbt\ntbCkHIKABkiDT/scB7sSq6XMcWl35emcG1dBq1oYuu1uQhO/WziPHHTt24vr6CkhoAFmyhfhXm3x\nxpuMkgdX+Rz5NKHojMmNS0Jbb01+xXn4Y9f+d62qJ1cgoAFmxDDIi8eKI2riq3TzosACbz6slpJe\n0ZVrw5u2Jr/iPPyxe+9buGc4CQQ0wIz8ubWwczQxrq52jry5LmBhPXYWWbchcv2Nya84ThzxvP0G\nxt5dCQIa4OqdGnDsP+eJN92i8dBqH5tVTw1OU/jaTeGNW5JfkU6flI4ftqoem0NAA1yl4TD/0jFv\nvKeZEnL/ytECCReDU4isvz605db4PUO1uja66hprS7Itfupd7EGSpKl3IoQQwvM8Yyz1/bOG4zgb\nVsUY43nehoXZ83QRQiRJMgxD0enzRy6bjP/WxZEVVYQQC2pmjHEcZ9psUIQgCFf6JprXbYwWeBx/\net3wFis7HpKSBkpDspwJaFmWU9yTMWYYRur7Z40kSTasyuVyaZpmw8LseboIIbIs64bx0rHiC2OJ\nsb11JfINNaNW1SsIgq7rhs3utlFKJ/mfKNc3Kfc+oBcVG4QSW/6PtoOcCWgA+9h/znO81xlvFjn0\nh1aNout5utSFtVPvNLuhDxpges4MSn8+k1gqhWPmI2tH83alQbAUAhpgGnpGyfOHvUZSZ++9y/xV\nRRj1DBmBLg6AVAVl9tQ+GtUSr1xfE7pmts4mClmAK2iAlKgGffbwnKFg4pXaOfIdTZhwAzIIAQ0w\nNcMkLx0t7vIlnhgscWmPrB1l+AJBJuHnC2Bquz8rOtmfGKvrFIyvrBtxCbgxCJmFgAaYwntnCw50\nJKYS5Zn5lWtGSt3aJG8BSAsENMBkPupwv9OaWMWKUvLgav/CYgzbgGzAKA6AKzrU7Xrjs6LkV754\nrbmiNGqzR/Ygb+EKGmBix3udr7V4k+e32FwXvHWZdQXB7IOABphAS5/zdyeKkx9IWb8gfFvTmHUV\nwWyELg6A8Y71Ol8+flk6r54fuWeZz7qKYJZCQANc5pMu1+ufXvYw9/KKyH3LMRcSWAABDZCwv93z\n1qnC5GmVl1VEsUgKWAUBDUAIISYhb58u3Je0fhUhZNW8yP0rcO0MlkFAAxDdoK+0eI/2OJNfXFsV\n3rHMh4e5wUIIaJjtwgp77sic8yNi8ovX14TuXOLHpTNYCwENs9pgkP/toZKRcGLxKkrILY2BLfUB\npDNYDgENs9fJfsfLx73JC78yRnYs863FFM9gDwhomI0Mg7zTWriv3ZP8oKBTML64erShFAuYgl0g\noGHWGYtyLx0rbr+803mOS/vqOsxRB/aCgIbZ5WS/47UWb0i5bHBGY5n80OpRB485kMBeENAwW8ga\nfeNk0ZEeV/KLlJDN9cFbFo1hsDPYEAIaZoUzg9JrLV5/lEt+0SUY9630LS6PWlUVwOQQ0JDnQgp7\n81Th0R6XefnrNXOUB1eNFjl0a8oCSAECGvKWaZJPut1/Pl0QVi/rcWbUvGVR8MbaAJ4SBJtDQEN+\nah+R3jxV2OMXxr1e5tEeWDk6v0i1pCqAaUFAQ77pD/B7WguTF+GO4Zi5pT54Y11QYOaEbwSwGwQ0\n5I+RMP/uWc/RXpf5uQSunaPsWOErcWGYM+QSBDTkg/6g8H6b50Sf8/PLuRZI+u1NY6vnR6yoC2BG\nENCQ284NSx+cd58ZcHy+24Jn5qba4Ja6oMijTwNyEgIacpKs0WO9ro87XX2B8bcBCSGMkTXzwrcs\nChRiFB3kMgQ05Jhuv3ioy3n8gkvWJnj4jzGyqjKypT6AWTUgDyCgITeMhLljva6jPc7h8MQ/tBwz\n184Pb64PFjtx1Qx5AgENtjYY5Fv6nC19jv6JujJiPJKxrip8XXWwQMJsR5BXENBgO6pO20ek1mHX\nqX7vaJibZM/5RcqG6vCKygiPoc2QjxDQYAu6SbtGhXMj0rlhqcsn6MZkk8t5JGNFRWTdwvBcDx4I\nhHyGgAbL+CJcj1/o8ondfrHbJ2iThjIhRODMxjJ5zfzwolKZwyUzzAIIaMgSw6RDIa4vIAwEhN4x\nvndMDMopTVYk8WZDaXRlZaSxTBY45DLMIghoyIiQwkYj/FCQGwrxQyF+ICgMhTjDnMas+CVufXFZ\npLFcrpmjcBS5DLMRAhqunmGQoMKNydxYlPki3GiEH4tyI2FuJMxPOEh5Sl6nXlMsV89RFpXKc728\nLM/e9Vt10wgaFx9PDxoRzUwM644aimxe1vnOq7xhGIZhEEI8nJMjiV9NHExy0IurL3qYk6OYYjWX\nIKBhYqZJwioLKyyisrDKIioLyCwks5DCQio3FmEhlQvJM+0JZtSsKNAWeJUqr1JdrBa7knM9Z344\nNVMPGdGwEVWI5teCsqlGTSWkRzWi+/Vg2JAVUw0aEd00/EZINbSQEZFNNWooYSOqEj0WuKqphYwI\nIcSvhzJdcCFzUUoFyruZkxDiZg6eck4miYR3MYdAOQeTHEzkCXMzp0h5J5MEyruo5OAkBxWdTBSp\nIFHBQUWRCU4q8pT3MCejtIC5pvx0SF3OfAdgukyTRDVGCImolBAS1ZiiUd2kUZVpBlE0GtWYZlDC\nC2GZC0ZEWWNRjSoaDatM1qisZeRSS2BmmUerLFTnFqjzCtUFXjXLt/sihqyYmmKqYSNKKPVrQUJI\n0IjoxIj9UUAP66YeMRXFVANGWDeNMSOsmVpQjyimZlwgA5ER1dDCphwx5IghB4xwNutPi7FLNQ8R\nfyaOX8C5GKEeziUyQTA5BxMJIW7q4CnHU87NHIQQBxUdnEQIub9o87WuJZkoIw9YH9Cmae7evXto\naIjn+R07drjd7pkf87TP1+cfnWQHPz6bSQAACcRJREFU3aCqfpUBRCmRtckG5xJCDJ2pxvjjC7yu\napqijn+vojMzqXNWM5ieVFv8s0yTqpdCU9U5w6CEEFVnJqGmeXE3TWeGyQyDqPoUFWaHwKuiM+B0\nBJzOoNMVcLn9khSi1CSE9BnqOSNKfJftH4vF2DbP86qmjumJ+FNNLWxe7PQwTGPs0pWmauphI0oI\nMYkZjx6/FiSUEkLG9JBBDMXUIsbs7TDJsoAeJin/KnCtczEC+kqsD+jz58+Hw+Fdu3YdOXKkubl5\n27ZtMz/m//02JyjLZn4cSJFO1QDfE+YGg3xvgL8Q5C4EhO4xvkdmSRdoYUJy71oTMs7JJKtLsC/r\nA7qzs7OqqooQUlVVdfTo0fjrn3zyic938fqqqqoqtk8qeJ432HDa65zNTGKEuSGZ+SP8SJT6otxo\nmBuMcKNRbiTEDYT4AZVmvNs05xRxboHxHuYq4F0i5Qs5t8gEF5OcTCriPbE+XxdzuJjkYKLILvbn\nSlQQGO9gokgFRihHORcn8ZSjhIpUoIQ4JoozxphpmmbSOgV+PWiSi03ZUMN6lBBiEDP2a4dqaCEj\nSggJ6hHN1KKGEjUVzdQDWtggRuy3Fp8WIIT4tKBOjIAeNonpU4MGMcb0kGmaaewoL/EUFxYWputo\necb6gA6Hw+Xl5YSQoqKicDg9l1gajeIf5SswFRbUqaqxiEIDKo3qLKrQkMICKgurNKSykEJDMjem\nsIBMAzLnl9mYTvO/c8DJJJHyHt4lEJ6nXBHv5innYg6B8W7miN00K+BcBZJbMngHFWNNjnJe3uNi\nDpHysdgt5NwezsnTrHYxfT6gvbwnC5/r04LkUidSQAtrph40IpqpRwxZNlSVagrRVFUd00MGMVVD\nC+oRQkjIiKimTi79G1AllmWh1BxlfUA7HI7YlbLf73c6nfHX161bF98OBAJjY2MpHtDpdKokmt4i\np6RT2SA6IaZJTULG3/VSWIiZnEE0kxrJbzGJaVCdEIMQYlLTILpJdJ0qhBCT6qZp6kw2iWFQnRCi\n0YhJDJMaBtF0KhtEM6mp0WjsLQbVdCprVDaIpjNZJ6rOogYxdCrrVNFoVKeKykImyex0QgLlRcoz\nygghjIwfaSdRkaOMEspRxpKGgrmoZFKTJxy7NAjMySSDGA4ixg9LCXUy8eI2pQ4qMsqYSTnKHExk\nhHGUSVQQKM9TTqSCQDhGmYs5eMo5qCgxgaccR5iDigLjnVSK3a3iKOekokBT/SJUVlb29/cb4xZu\nif0/V2INI0yy/fuEIAi6ro+vKvNi/7e8xEkImUMu3T2ihHCEcMThcHg8nqGhoSmOopHUv92EEI8n\nG//22IT1AV1dXX348GFCSG9v78KFC9NyzH/ZVjw8eoJQk13tAw6MJW7bUUoYNejVjOu9jCRJqQ3s\n5ZL+O/FvAowwgfGyoRBCRCroxNBNnRHGU04xVZ7ylBDV1BxMEimfHIWf5/V6FUW50u8uIuUppbpp\n8JQzTEOiAsvWQNqUTxdA3rI+oGtra0+fPv3ss88yxrZv356WYy4uKhm233TtkijJpu0Sx8t7FEMR\nuEn//aFJ/wWAbLE+oCmld9xxh9VVAADYDp77BACwKQQ0AIBNIaABAGwKAQ0AYFMIaAAAm0JAAwDY\nFAIaAMCmENAAADaFgAYAsCkENACATSGgAQBsCgENAGBTCGgAAJtCQAMA2FQeBnRfX98nn3xidRUT\n0DT7zVFNyNGjR7u6uqyuYjxKqT1P15tvvqkoitVVjKfrevJ6VzYxODjY3NxsdRW5zfr5oFNRUFBQ\nUFCQ4s4jIyPt7e2bNm3KaEl548MPP6ypqZk3b57VheSGX/7ylzfeeOOsWnXpqp05c6atrW3Lli1W\nF5LD8vAKGgAgPyCgAQBsKg8D2uPxVFRUWF1FzigvLy8sLLS6ipxRW1vLcZzVVeQGl8uFrrMZoja8\ntwAAACQvr6ABAPIDAhoAwKZyY5hd6kzT3L1799DQEM/zO3bscLvdVldkI++//35paenSpUvHnSWX\nyzVJcxaeQ03T3njjDb/fH41G77777nnz5uF0XYmiKC+//HI0GjUM47777vN6vThXacT96Ec/srqG\ndDp//nxHR8eXvvQlXdfPnDlTV1dndUW2YBjGr3/96+PHjy9durSsrGzcWWKMTdKcheewtbV1bGzs\nwQcfnDdv3p/+9Kc5c+bgdF3J4cOHHQ7Hjh07KKWnTp3ieR7nKo3yrYujs7OzqqqKEFJVVWXDB+Ss\nQindtWtX/OGdcWdp8qaFZVulsLDw2muvJYS4XC5KKU7XJKqrq9euXUsIoZRKkoRzlV75FtDhcNjr\n9RJCioqKwuGw1eXYBaWUMUYpjTXHnaXJmxaWbZXKysrS0tKenp4XXnhh8+bNOF2TKC8vLygoeOGF\nF9566601a9bgXKVXvvVBOxwOn89HCPH7/U6n0+pybGrcWZq8aXGtVjBNc+/evZ2dndu3b6+oqOju\n7sbpuhJZlgVB+OIXv9je3v7GG29UVVXhXKVRvl1BV1dX9/T0EEJ6e3sXLlxodTk2Ne4sTd60uFYr\nnDx5cnR0dNeuXbEnnnC6JvH+++8fO3aMEMLzvK7rOFfplW8Pqpim+eabb46MjDDGtm/f7nK5rK7I\nRvbu3VtRUREbxZF8lpxO5yTNWXgOX3/99XPnzjkcDkJIYWHhI488gtN1JYFA4JVXXlFV1TCMu+++\nu6KiAucqjfItoAEA8ka+dXEAAOQNBDQAgE0hoMF6W7dupZ/z6quvrlu3zurSAKyEPmiwXjAYjC1w\ntXLlyp///Oc33HADIURV1YMHD955551WVwdgGVxBg/U8Ho/X6/V6vYyx+HZHR8cPf/hDQsipU6c2\nbdr0ve99r7S09IYbbmhubl6/fn1BQcHf/u3fxt6+b9++NWvWuN3uL3zhC7FRXAD5AQENOeDAgQNr\n1649c+ZMNBrdsWPH7373uz//+c//9m//Njg4ODw8vHPnzn/913/t7u5uaGh49NFHrS4WIG3y7UlC\nyEuVlZVf+tKXCCHbtm3z+XzVl/j9/g8++GDr1q333HMPIeTxxx8vKSnRdR2LnkB+QEBDDoivos3z\nfHw9M57nCSFdXV1vv/12TU1N7EVRFAcGBiorK60oEyDNENCQ2yorK2+99daXX36ZEKLr+pEjR7Ai\nJeQN9EFDbrvrrrv27dsXmwb+n/7pn/72b/82PmkfQK5DQENuq6ioeOaZZ77//e9XV1cfOnTo6aef\ntroigLTBOGgAAJvCFTQAgE0hoAEAbAoBDQBgUwhoAACbQkADANgUAhoAwKYQ0AAANoWABvj/26lj\nAQAAAIBB/tbT2FEQwZSgAaYEDTAVhn5Ex8SrKz4AAAAASUVORK5CYII=\n" | |
} | |
], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"demo(siuniformized)" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "slide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"text": [ | |
"\n", | |
"\n", | |
"\tdemo(siuniformized)\n", | |
"\t---- ~~~~~~~~~~~~~\n", | |
"\n", | |
"> # Set population size\n", | |
"> N <- 100\n", | |
"\n", | |
"> # Initial number of infecteds\n", | |
"> Iinit <- 1\n", | |
"\n", | |
"> # Set infectivity parameter\n", | |
"> beta <- 1\n", | |
"\n", | |
"> # Set maximum time (approximately)\n", | |
"> maxt <- 20\n", | |
"\n", | |
"> # Set the number of runs\n", | |
"> numruns <- 10\n", | |
"\n", | |
"> # Calculate the maximum rate and number of timepoints\n", | |
"> maxrate <- beta*N/2*N/2*(1/N)\n", | |
"\n", | |
"> numt <- floor(maxt*maxrate)\n", | |
"\n", | |
"> # Main loop\n", | |
"> results <- list()\n", | |
"\n", | |
"> for(r in 1:numruns){\n", | |
"+ # Generate vector of times\n", | |
"+ tvec <- cumsum(c(0,rexp(numt-1,maxrate)))\n", | |
"+ ivec <- c(Iinit,rep(NA,numt-1))\n", | |
"+ for(i in 2:numt){\n", | |
"+ p <- (beta*ivec[i-1]*(N-ivec[i-1])/N)/maxrate\n", | |
"+ u <- runif(1,0,1)\n", | |
"+ if(u<p){\n", | |
"+ ivec[i] <- ivec[i-1]+1\n", | |
"+ }\n", | |
"+ else{\n", | |
"+ ivec[i] <- ivec[i-1]\n", | |
"+ }\n", | |
"+ }\n", | |
"+ results[[r]] <- data.frame(time=tvec,I=ivec)\n", | |
"+ }\n", | |
"\n", | |
"> # Plot simulation runs\n", | |
"> mycols <- rainbow(numruns)\n", | |
"\n", | |
"> siplot <- ggplot(results[[1]],aes(x=time,y=I))+geom_line(lwd=1,col=mycols[1])+xlab(\"Time\")+ylab(\"Number\")\n", | |
"\n", | |
"> for(i in 2:numruns){\n", | |
"+ siplot <- siplot + geom_line(lwd=1,col=mycols[i],data=results[[i]])\n", | |
"+ }\n" | |
] | |
} | |
], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"%%R\n", | |
"siplot" | |
], | |
"language": "python", | |
"metadata": { | |
"slideshow": { | |
"slide_type": "subslide" | |
} | |
}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAIAAADytinCAAAgAElEQVR4nOydd3gcx3n/PzO7e3sV\nh85exd5EkZJVaDVSvVhusuWiyIliR5ZL/IuLnDiusVxiJXHkkrg7lqvkJstqVi8UJauxir2AIgEQ\nHbjDtS3z++NAAAQBAjgeyQM5n+fRo7vd2dnh7eB7773zzvsKpRQajUajKT3kiR6ARqPRaAZHC7RG\no9GUKFqgNRqNpkTRAq3RaDQlihZojUajKVG0QGs0Gk2JogVao9FoShQt0BqNRlOiaIHWaDSaEkUL\ntEaj0ZQoWqA1Go2mRNECrdFoNCWKFmiNRqMpUcwTPYAe0ul0JpMp4MJIJJJKpU54Tj4ppe/7J3YM\ngGmapmkW9kkWFyHECX8oQCgUyuVynued2GEIIYAT/oEYhhEIBNLp9IkdBiUzPYLBoOu6ruse5/tW\nVFSMsGWpCLTruoXNm/Ly8mw2e8L/Ai3Lcl33hM+5cDhsmmYp/AXatp3NZk/0KIjFYslkMpfLndhh\nGIYBnPBZatt2KBTS06OXUChUsPIcDSMXaO3i0Gg0mhJFC7RGo9GUKFqgNRqNpkTRAq3RaDQlihZo\njUajKVG0QGs0Gk2JogVao9FoShQt0BqNRlOiaIHWaDSaEkULtEaj0ZQoWqA1Go2mRNECrdFoNCWK\nFmiNRqMpUbRAazQaTYlSzHSjTz/9dHV19YIFC5RSDzzwQEtLi2mab37zm8PhcP+3kUikiDfVaDSa\nk5XiWNC+7//kJz958skn82/37NmTSqVuuummBQsWrFmzZsDbotxRo9FoTnqKY0ELIW666aYnnngi\n/3bv3r2TJ08GJk+evHbtWsuy+r8tyh01pYO1rkN29dWkUIpdbWbOt0ZeqEI4jrG/HlXMkjRKKDfc\nsrc7Rqvp+wMLKbhSNdletzlk6Zm0DGeTMdVlF2UwIj+kovR1eOfKh5F9dEKIEijskh8Jx2YYUgnL\nN/KvTaUinip3kkM2tqyO2rKu8OAyKNVE3ywfcFBA2xwXWLQgt3TRMS8EUTSBzpN/m0qlamtrgXg8\nnkqlBrztveqhhx5qamrKv164cOGiRYsKu3VFRcUJn3MlUsLHMAwpZVVV1fG7439tMv/5pQEHq4/b\n7Yen4LId3dBczIFoSpLXObeJxSNv78MHAdj4bn/Vj50C7jiqinTHpORVMBjs6OgAOjs7Q6HQgLe9\nzebOnTtlypT861gs1l+7R06+xtoJrwdoGMYJL2gE2LZtmmZhn2QheCr+7dcAf3yQYM9cau0WiayQ\nAilG2o1wXVAHDc0ioAQYKpiT8ZShBL44/LtzuHv5iGNm82pKhw5hNQ8yPfIMMkkUeGUAkTK3sD+0\nUZVAPCYCPW3atFdeeQWor6+fOnXqgLe9zWbMmNH7OpFIJBKJAu5VXl6eyWROuDiWSE3C/O+Y41Zj\nLfhAg9yf8sutA6svVsGe35X/fH/8Zy9FPnJB+tMXt4+wn/Hz58uurua//MVZuLAoA+ss/0Qq/Cvz\nv771+j99OHRprvwnLQMazJrwb2nhr3Jf+VnTvYdf/t5/re36iRmYpH722IFwrAjf/ceuJmHFyx8I\nNdzfNfe25OyPDtvYtu2ysrLm5hP/y6BEahJWVlZOTqer0g2juur+gy+Ow9/ZMRHoGTNmbN269Re/\n+IWU8rrrrguFQv3fHos7ao4z1oZOsy4V+dFuYPMF01bvivaeqms3GcJAFcmkvXq1cPp+GHYFu9dN\n2Ba6Ji0cuiY864V2j3wM+43Ubmunkrno3ir58rk5en+cKU9eqsQli/960RJ4saL5nqqBTpisWCq7\nLecv197ZGR9wqrtBdP3UBM78Wqoo6lwAZmqP1blxJC3zzbzozGM8Is2JoZgCvXLlyvwLIcSVV17Z\n/9SAt5oxjbWuo+aqZ3vf3hBYuvGegVWKxWAKXXnLLfbBleQ8t65j+xK4NP/uSyMfQ47oRm5QSDtt\nPbL8i+GENVTLrRWT7rcnHX585t/RfTePDnFV27tZcWWmcA/2USAzTTVPrhT+KO7tRk87duPRnECO\niQWtObkxmrKAChpNk8vusSfWTShfUnXIaokUXD5vkAVuc9MmwJ09W4VCQCrs71i8EZizJSQMy5s2\nbXBdH4x2EdlgSoE/vckLJywl2LLMFQz0ISjBk29vNxjkt6hdNxFsNUMx8MsFVcGUO3LLcsd8jX5Q\ngs2PCz+rrJgbnjF8a/BCk5zonGM9Ks0JQQu0ZvT4CnBnRr74qSv/57nouxemvnFtx4Amtm0P8DGK\ndNpobgZaf/Urb8IEYEvgJSWuK/Mr7yjbADDQUXwk1ln1f6n5QZzc/Xuu74B0FPlw50WHuTVra2uv\n6DBz9YNEy32k06iDz36+/Q2XDraqfuJWE4IHHgW6p97YNf8zJ2wQmtJAC7RmaDwVfOSAbBmoetam\nLgDBjhYTmFnVsyqtUK/aTzUZ+wDLshzjELPaSDbF3q+UaXbOfDRvKT8SWtvCfJPqH5d/d0TDwdhi\nzAu8Xj3z0Zo08q3y72y8F187fTYk4ywfpcGbSQkgGD6uSiyUazc+LHNHWj4NtDwLZGsvOk5j0pQw\nWqA1QxL+zevln1w/1FlXyid32sDs6h6BXms//YWq9wzZXTl8D3Dh00CSCVu5Fs6vk7wQHmFcwTVw\n7R+uZMqOgSeyFSo2yhCabEoAdui4CnR4z0/jmz4/bDNlRnOVbzgO49GUOFqgNUNiNGYAb5ztzokd\nfnbLBdOcZlEW9M+b3mNiJ2Q7EPZjs52lUsoBwemyudnassWPxZylS4FNZhiDIOl5vhPEGHYwCuMV\neb6rmFCnQGx8YyoX9C0lbRUE7OtGF/HkZEVnqwSqxh/XAM287ezZ49zYkbzGmXGXKTHksqfm1EEL\ntGZIRLcLZK6c0Hn7IJs8n1wb5l7m1rjhQI8RqlDAVHfuv7X++vBA1/Cvf1n+yU9m33h6629+DeqT\n4z70ArzF9e9o+o+RDOZPodALFeVTOn3TkcCq73XJ8sJj4Jr3G0phmKpy3PGNoFc+kB23qmPJN47r\nfTVjEy3QmsExDmSt9Z2ACg9i3jYljYe2BIFpFT3+jUaj7pXgE4e3zNnPuoknrO3bkxV7M7fhzmla\nV/bfTwba/mpYwOzMhSMcz13h8PQtfOanLgQQiEIjlNevtrevtQ7UAdRUd5Tt/k5h/YwKKSXg+36g\nPR+RXbQ9k5qTGy3QmsGJ//MG+7lWwI8NMkk+8af4Y9uDwGkHHdBfq/zALmsjYPabVJ6xr7XqBqoU\n03uPbbuZfQeIQiUwKzei+LBWKdfY9u+vZcqOACDjvhjeKTIIrz5lf+E9Vb3O6inlr5Zt+UohHR0d\nSui/O82I0BNFMzgi6QC5ZeWZ6wbZ5bG+IQCsnJ196+I04Al3r7kVOCtzyWWpd/c2c8xtoIwOYs8E\n/YoKIDVrVtP4KHCx54zPLVuRHVGo7x7TVFBbD2BfnA1eMop0M72kEuLbnyxXillLnMnxV81U3dWr\nHk5PuKaArkZLPo/YwUwAIjX1huNwU81JgBZozZFIvWeaOy084GBTUjYnJfCtt7SXh3xgv7HLFY6l\nAv/S9iOj36SS2x+gisgLIi5/m5t5BtAmOhT/LRE/bfqSqUaajnyfYQSy2CmA8js6ZEEre9/713jz\nfqNmkvflu1sm7fhqaP8fE/Nua581iu2LBXPscnFoTm60QGsGR3YfoiYv7ws8si2Yj8vYnGoByuKd\n9477MuDLlobAK8A4FU2V/Xu+fVopsXnd5sptf+BMc261Wd0KjwJNMglU+uFh1dnZaO17ILxDWgoS\nhvGRg0HVI/Q+5zLiobsi2W6ZzUY8L5jpFk/+Lgx88Kud4ZgSThfgm4NEp2g0pYMWaM0gBF5ut9Z2\nAMrsWc66+TeVeasZgCggpqz+XfSQFbYJsi3Z/8gb+QxvWsd4pgOr+7ec6A1MUXQ47bdUBHebA8JH\nhK3EyLaWPHRX5IdfKAPoS6LEqnekzlyVAaSXApQZHfxijaY00AKtGQRjTzfgTQ1nLx2XP9KVEcC1\nC9PdkV3r7dW2Cl165s5Jqfe6xp6c/SwqYHrTVrlzwn5PYgv7+eeNHTuS74oQY2V22kTvkCT+V6Tn\nDTsGv1UCj72deNyzlQIWOE7lkuwIIyDWPhMATl+hJp2WzUdkB4Lq3Z84mNLWd9GLdZqSR09QzSAY\n+9NA7vS4H+/ZLuF4AvjnVYlfzbytM3T/W5MffF/Xv9JBS/W1DkSTH4wlPtW/h9qPX22uJfuuSnBu\nTVx0bm766EagUHk399e4O9Y6bTQ5zgHPZdMLNnDr7f60hcnc4bvAlQdQWCyIRnO80AKtGQSjPgN0\nVEe++HBZypH05EdCmM5a+2ngzOwq32hMRr/rBF4RGOF+kRtk0r9ed+fWj1Tgnt8a9oEQgdEOwO+Q\n+TJ7qRgVoy+Xs2ujlU4KO6QWnKW6D6t6YaT3G9kDAKI4RZM1mmOEFmjNIJi7u4F72qu+/3yfl1YI\nnor/JCUTUb98fvasRPyzqcjPADtzieFN7m32x52/+PhbMjAbAA8o80ddejX5HzHAM0mXE2sZtUBv\neTkAzF6aswIGhwl0bNt/Gul6QBnB0fas0RxPtEBrBiIcFXi5HfilmAD8/TndtqGA2Phdvx/3ReCG\nxP8zMF1zO2BnLi3r7ItUa5Hdn11RD1z3aMv06oXurFkTvfhMd3RFbJ21ge7/iwDfuJOI6Rew627H\nugAw/0yHwbJ8GKm9QHrSW7I1F42+b43m+KEFWjMQa12HSHuZoPlyVfX5M7NfvLwTSMqOj9Zc6Qn3\n7Mzlb+r+e8CzdgKR5D/0N5//JX5/W0id8WrLL+4Kd371FrpGf3tHdP5TOT5db8799oOB2W4hW7q3\nr7OA0xbnYBAb2czsB1KTr9eLhJoSR09QTR+OJ/766f1Ln62rhtU141wpyy6+4+sVzwMHzL0tRn2F\nX/uhjq8DrrHXk02A5c38v8iLzwX2ADnh/SW4VSq+9ZHn5OlvHckds0J8NRZrMPrs3PO+aV621czF\nuP0/BYzaAe25/Pzfy+p3m8DMRc4gLZQvU/WAFxpkh6RGU1Jogdb08epGrv/lK/nXj4+faNfsbDjz\n842yZ8eKRH6s/Zvlfg2QjvwckH5lA8HPxB9U/QqQfOC+rhWrG1Orqg/rfhBW2/YPoocEI990F8B3\nvsBjMyxg3Ch332183v7dd6JAebU/buog18pcm1AO4AUnjKpnjeb4owVa04eX6FG0B29cuuHanaed\n96VF7plnZlblD051556R7Uk+5xn1QDj13t8HtynUdLfy3allQNBRn3jfzYBzzjkjuWM+Iek4z7u5\nuzt/ZFwiCnL5/O5pXR5w7ShL29fvMoEps91bv94xaIFDI9cCKCOszMioetZojj9aoDV9+Dkf8IU4\n/WuTF8e/VR/ZMD/54bclP3R4S89oAEx3+sOhrcDb00s+lFwB2E89FWpP+hUV7vLljCB4OW941/r+\nh5LJ/JEDuYgPb3XTVrKQmq37dxnAkhXZhWcPfrnMtgC+PSIDX6M5sWiBPnXZ0mR+7bGyjNtnZ5bV\nJa4Hx5CAI7KApQ4PYfa3xL98e6AiydVW5MCLZhewMjNbOE7ZZz9rr14NZFeswDCGFeg6w/h+NArk\no5HT9wfTv4r47RJQxqgrUe3dZv7sq2Xb1waACdOHdIzIXCvgBSpH279Gc/zRAn3q8rXHyh7ZdkiQ\nw7KWBOBYBvC6tR2I+AOTZnjm3p9FXn2cpQBWOzDRK1viTAj94Z7IXXfl22Quu2zYu7vwwcrKdZYF\nxHwf6Pps3D/Qs1polI9aoH/+9bK//qXnnzNlzmDLgwCEGu4HvNDkoRpoNKWDFuhTlLaUfGKHDdy2\nsqsy3BMpMeOVFn6PWRvYYa3fbq01MFdkBqZLViK1nSrgTbmaFamzgTOdKQIR+elPgfSb35xZtSr9\n5jcPuzXl27HYOsuKKvUvXV0XZbPuDtM/YAiTsi93GhM8Y/ro9nZ3NMsXH7WBGz/dNX6qt/SCgZXI\n8wQbHwo23I8wkrMG8dtoNKWGFuhTlN+vD7m+mFfrfvT8ZO/B8O4uQI4LPBz+BbA8s7LKGz/gQiVy\nW6gG3pu4sjfdfuCll6x161Qg0PmlL/lVw29LWWtZ/xWLAV/q7HxnKgWkVkcAc0kufGN3Af+cR34d\n9lwxc5Fz/UeSQ7URbjK+6bNA9/SbnPiSAu6i0RxntECfoty7KQRctyhtbkvE/2Wj7HYB2ZoDslXq\nmdC9wKWpQwp/uObOzvinHzJVG4uBeU5t76m8+Zy5/PIjq/NXy8qesW0F9YbhwoXZ7DtSKSD7WDD5\nrShgn1vIwuC6Z+17vx8FLn77odu6lSef/UB50yv5UibC6TLS9b5dk5j7yQLuotEcf7RAn4oks+LV\n/QHgukXpsk9stde09j+7Z3ZjSiZqvEm9AXZ5MqE/5+znfsGbgKkqW+UfDFPzvOD99wPdN910hJt2\nSvntfiHPMd+/o6Mjv0DZ/eOI12AA9kWDuyaOzH0/jHS1STukLnrrITF5Zmqv3PaTAfmQOhd+yTfL\nCriLRnP80QJ9KrK7zVSKmO3P7E4EHzkAdH5lsV8VABA8cN2PgeWZlcah00ORAZKqAsFtXVf0Hjf3\n7RO5HKbpnHnmEW660zSBMt//RmcnMNdxJh7chOK3SSB2WyJwXiECvW+nCdz6tc541aHbDpULIAPt\nZ3yr50aBimzVigJuodGcELRAn4rsaTOBGVVe5Kd78FTu3Krum6b1nt1dthWY5J428DLhAkkCwASn\nr725cyfgTp2qLOsIN91umsAc173msL0n+dC6wFmF+DdcRxzYawLzD79c+YAS5vGpDKvRFB0t0Kcc\nWVd8//kIMCuWDd/5OtD93qm9Z/8S/uVGew0wyZs54MJthvtJ3toiBDDt5g+PW9fjGBHJJODOGKY+\nd96CPu3Q4Oiuz8Uzj9p+vQHI8kLyIjXWGZ6LFVC1kw/pObbl6+H9vwOQOiu/ZqyiBfqUY3uL+cq+\nAHBJtlm25VTMylw9sffsvdHvZ0TKUOYMZ+GACx8znK1UA3bOn/rca0ZLpv9Z5/TTj3zf3aYJzOwn\n0KpbdP84kt9NKGxlTCyk6PWB1w2gZpLXX4el2xXb+Z182RQ/OK6AbjWaUkAL9CmH5wOUBf3ra9oB\nb1JIWT2bCR2RrTd3A19o+8XhAXZpmQNrZVv6W+f/uVJFWn/5Y+TBFTghcsMl39hjGMCMfsmP3D0m\nChlV5T9sM8Z7Il6IBd3WaACV4w+5NtD8DMrzwlO44AedQidF0oxVtECfcigFYBlYBzKAN75vT0md\nudXDDanI4ux5h1+YEQ4wc8vrC15r7/zCF7IXXjiq+9aZJtC/uqC30wSMma59fiFrg3naDhhA5bhD\nrO9g85NApmalPXGV39HB4TUJNZqxgBboU47OjAQCyg/9fh/gjevb7b3X2gpMdmdLBinWlxY5INyW\n8mprU+9976hu2ipltxDAVM9TnbL1hiq3ziAngNFuGuzP9nXWfT+KABW1fQIdaF0T2v9HIFtz/qhr\nbWk0pYQW6FOOzQcs4Lx0a+CVDsBZ1BcU3CIbgPHutMOvSod/k5RdUBvf76ZuvFGFQqO66fO2DUz0\nvDLfz663nfV98R6BZYWbt3/9S7CrTQIzF/Yl3wjV3yu8lG/GctVvLLhnjaYU0AJ9ypGvz31Bohlw\nFse7/7Yv+iKfwc5WA8U3Z6/piH+qg8uAiWsz3txRZxq6NxQCrspkAJUWgDHDrfhuOxJr4ZCJjYYl\n0S6By96duvjtfaF7ZqoOSMy7zTdjBfes0ZQCWqBPOfKLhLP2tQK5M8rpl9XeETkOSzHqGnXtFe9H\nuF1+LZLqlox/7uhydXYL8bhtA/kIaJUSgCz3rSWFS3OevPk8ccYhThKzezfgRmcfZecazQlHC/Sp\nhWzKfOojT3y1uSchkbOwx7+RkO0fr7660awDAhziue2s+EdftpvuzC5RDV1VrRm/cnQC/c1YLC1E\nrectz+VwRff/RgERGnVC0TwHXjf++a3VLfV9UXWxir4QDjOxzUjXA2546iAXazRjikHWgjQnMfbq\n1oqD6qwCMndeT2GROmtLXp2BKc6c3vZKZHKBF4FU53/sMxJCMWtX0p06Ou27PxgE3plOS8i+aDkb\nLMCaX+Da4O++HeuvztJg+oI+SzzQ9leU5wXH64zPmpMAbUGfWsgtSeD3M2bYX5+7fK7nV/cYyzmy\nwHhv2r+1/GacN6W3vZJd+Rd/CnQr1BtXN9bOWNZaPYp6UT7UGwbw9lQKyD1rA/bKTOxznQWMv+2A\n8djdIeCfvtU+b3kOsEOHhHAIPws48cUIbXxoxjxaoE8JklnhKSEynv9SMg7rJ1T/7TmWb/Q9fVc4\ngO2H+qsz4ItOABW4N7gFeNevdqSuH12q+wbD8HwR72Jim1JKZp+2geCqrBj91FOKP/xP1MmJGQuc\nC9+SHrQmbF6glQwOck6jGWtogT7J8RXvv7vyoS3Bm7Zt+8mTT+Y1zVwYtQ4t+ueKHId5nwElE8Be\nNWmz1WR46q0PNWX+3/DlrHpZY9u3epUPTqaqkU7G9drMgTeOemdKJiU+eklNY50JvO1DycErdqf2\nRnd8B1CGDoDWnAzon4EnOf/1VOyhLUHgtrVr85rWZtvzro0MaNYl24CwPzBRsi/bgU1qCnDWi80V\nUxepcHjkd382EFi4WlQ1HnLQWuyYs0btgH7x0WBenWcuct547cB8eHkidXdJpwNwypeOtn+NpgQp\nIQvaNAscjGEYYlCD6jhiGAaQr9xxYochpez9JJ/YHvjm0zHg+zPr5nd0KFPWPbJKTQpdEB/4xdxs\n7QfG+1MHPIWs1Qq8TjUwf3O7sAIjfEz5YTSb5qwNAMErslX/3ePOlhEY/bNe80AYuOZv0x/4t6Rp\nDXa57+bT1yWW3pGdfmNvC8MwCp5axUJKCZTILD3hnwYHp8eJHgVSyuM/PXx/FDlnTvxn1Muoxt0f\npVTB1xaL/BhOuEDnx+C4fmPCaO2Wt/62zFf8zeT297y6GchdVBOcF2Kwj/qAfB2o9SYPOOVyAKgj\nBsze3qmoGfajzgnRIKUlhKNEZ4N55osAgUUOZQfT8/f8NyJSCdHVJl1HvPhoALjgzWlpeIcPQTiJ\nYONDMnNAmdHUpLeofi1KYXrkpfmEDyM/gBM+DErjofQO4ziPZFQqcTII9PH/iIcawwkXaKWUUuqW\ne+J/fq1nN+C/7t34b99/Lv869Y6B+ttLk9wHVLsTBzTwZDNQJ2xg9vauYQXaFeKCmpo6wwA+8wG+\n8IOe48bcXAHPqGGP+Y+X1mRSPYZn5ThvzrLM4d0Yqb21T18i3G4gPfFaTwTp16gUpkeJCHR+fp7w\nYVBKAl0iIxkK7YM+2WhLiQe39KhzRcj/kPF6/rU7N5a5dMjMyB1GM1DlDczM6ctWIIEEqlsyGMMk\nv2+Vsu5gm8XPHzxa6wfOKSThxp7NZq86A9f8XbccbMIGOl7Nq7MyI90zbi7gRhpNaVJCFrSmKPx5\ng/R8Zla5z3y4Cai4MQt0fnVx998MkgKpl07ZAsS9gTW5fdkGgAG+UEoN561LCAFYSjW0tb3eWu5h\nVP62pbBa3UCmWwIL3pD72h9ajtDM6K4D0hOuaV/+vcJupNGUJlqgTx72dRipNuN3rxrAqtk9cWyy\nLQf4FYEjXJgV6bToBuL+EALt+uQ7GEKglYe33VI5sqY5v4IyX+USpuqSgIwV7vZJJQUQig7Tg5ne\nB3h6b7fmpEML9EnCX/cG3v5/1d5BZ9rl83rqUYn2vEAfqZxrQrYDAhFTFQNO5QVatncyLgoMZUF3\nfSaeuisCVMJdALKeeM8AYoU7+NqbJBCKDNOD0SPQem+35mRDC/RJwkNbgp6PbaqQxZwa56wpPRa0\n0ZoD/KojbdxIyk4gqMKGOnQ+CNeXB3IYDdVhoDZlZS+66PDL3V1m+lcRQMR9R4iUECZElVJKmTNd\nc1KBAt3ZKh/4aQRY8IZhPCTC6QJ8a+C3i0Yz1tECfZLwfJ0NfPXa9C0Xivb29vxBkfVF0gX8qiO5\nONIiCQT9gbtXPGO/Et5Ov8Y1ZEQFYn98Ls0gkbyJr8eUi31JpvL/2r5eVnZnNPrOVOo76XQ2W3gh\nK+DHXypLdsoZC5yrbuo+ckvh5wAlj/Rv1GjGIlqgTwaSWbGp0QLOm+n1f6ayNQsg8CuPLNDdQEhF\n+x9UeN7u/6WWne1VVDHPqZWHqnNaiLWWJTdZU+8PIdjxmWzWtl+xLGC6W3gVqzwb1wSe/F1YCG75\nSqccJnIEoRwALdCakw4t0CcDa+sDrk95yJ9dM0Cgc4BfZinzSHvYumUnED5UoDPNH+44+0/ALn88\nMN8ZGKJ3W3n570Khz/+UqYqn38Q/XRTvPTXT8zg67r4zphTnvyk9/6wRRIB4+QRJR/KzazRjES3Q\nJwNr9gSAc6bl5KE6nPdvqOgwT3l94DlgqjO3/0HH2gCYrTJrLQSn+jAHyOuGAczaAvDyO/xpXk+s\nRdz3z8tmsY5KLhvrDODSd6WGbSn8nJHeD3jBgUHcGs1YRwv0ycDq3TZw3vSBPl+R8QAVPJKPQKH+\nGvwLcHbm8v7H3UgrUHvfteIdi+DVwS4EmNnog/yy1R44cFQe5wFk0xIIhocP0TMTW4RylRlxIzOL\nOACNphTQOwnHPAcSxrp6Czhn2kBvgNGYAVTwSE95R2Bdu9Fkq9Cy7EU9hzzPfvxxtzIJvDxpxl6j\nJwiv95INlvXnUKhNSsBqEYCsLvJm2WwawB5BWSyr6zXAic7RGfo1Jx/agh7zvOcXlTlPlIf8+eMc\n6HMsyPZc/DMbARU+0lN+3n4YWJQ7t7eYd+THPw5//wvee1nH+JsvTcEeoHeFcLdpXlVTk9fjQBaZ\nFICsKKZAp5Mik5KAPRILumsL4JYtKOIANJoSQQv02GZ3m7n5gGVIPnZBcoAD2tyRFFlfBWTqhilD\nXI2H+1j4N8CK9DW9B436+qYPAzQ3VjOeiJq4YaEAACAASURBVArMcWouz/R4qOsNw4eAUvNcd/J+\nwEIgq4op0C0Nhu9h2WrclOGjQczunYATmztsS41mzKEFemzzyLYgsGxS7v3nJAecMvamAGdh2REE\nek3owTbjQMyvuDD95t6DSiaaPwTglt0Ae5fnJv+q9cbesykhgBme92Bzs7PNaqFGxn3MYqbx62yV\nQLyqf02uITG7dwPaAa05KdECPbZ5fLsNrJw9yAKd+Xoa8KYeqQDKg+GfAatS77BU31bDruWvemVY\nLfFk4DTYG1Z98cWvBAKPBoNVjVx6H6n2sLvDhCKbz0BXmwTKKofvVijXTL8OeFEt0JqTEC3QYxjX\n5697A8BFp2UOP2vUpwFv8pAC3WYc2GivEYhLU+/qPWivXn3gDVuAshfO/O6Va4Co3yPQTYbxlqoq\nV4j/eifn/9nspDx/XNYUWaAbdptAfAS6L1P78V2k6YUmFXcMGk0poAV6DLO/08i6wpAsGD+Ir7Zn\nk3dsyEe8JfCSQk1xZ09xZ/celO3t2VkAqSnv7pIvADekl+VPbTJNV4ioUrN3AcJa7MhyHwj/zTBb\nsUeF7/HQzyPAsosH+dYZgPS6AV+GVAFFwjWakkdP6zHM3nYTmFDmmXIQF7DI+gBDB0FvsV4G5uaW\n9T/o2Uk/DNA+YQG8YCp5TrYnjedWywLOyWYnNgV8RPxrndbSAhM9H4HVfw4d2GvEKvwr3juiXSqg\nN3lrTlq0QI9h9rYbwJT4IeazfK4p+sRelDJ3JAFlDx4d7ONtsl8AZjmn9z+enrIRkCnZKUygXIXy\nEdApIZ6wbeDMLb7qkBQ7tK6XP/xvFLj8PamRBEGj0yRpTmq0QI9h1jUEgGmVfYkvRNqzr33MTvdJ\ntgoPbkE/F3pgu7UWmJM7o/egLzuaL/4/wDpgt8STQLnfExz9w0jkWdsGLv/7gHJBIKqONuHG4bzw\ncHDHesswuXJkbhPhZdACrTl50QI9VmlKyt+uCwFXzOvz1cpNHaRdFTQyl9QCKmRkLhm8DuEeczOw\nKHvuTGdR70Elkkr4QM3dCzfc2gDMdWvzp/L7Bhc7TmyLCUQ/nJTDFToZLe1N8tufLAeufl93zaQR\nqb/MNgG+XVPckWg0JYIW6LHK/z4Xzbpi8QTn0jl9Am2u7wCcpeXt31t+5Mv3mTuAM3IXyH7b/RV+\n/n/h+vPWWw3A4tz4/KmcEMBldTm6LSD6kURR/zX4Pt/4YGVnq5yx0LnpM10jvMrIHAD84JDFcDWa\nMY0W6DFJW0re9XIEuHXFIftTjI0dgLOgbNge9ps7gUnuaf0PCuEDwsWbPn29tR9Y4kzMn8oKAUx4\nSQKy2heRIpjP9bvNJ34bch0BtDYYG58PWAH1sW92WIGRdm5kmwBPC7TmJEUL9JjkiR12KiemlHtX\nzU/3Py7zAr1weIFuMvcB491DS32nOgHh0jJ3SqOxBVjo9FjQSSGAZV+0AXPm0ebjz/ODz8ZffuKQ\nWlw3fjoxY4Ez8h5kthnt4tCcvGiBHpMksxKYXe2Y/WI0hKuM9e1Abml8qAvzeLj5Mlcx/5A6fsGH\nfs8tyIxsPGMWPGIiq/yefS6bLSuYomy7BKIfK45/Y88WEzjnikx5tQ9UTfDe9P6BG9aPjHTz1QiH\n+fdqNGMULdBjkpwHYB0aoGFu6RJZn6jlzo4d+fK07NHBsOprKRzHfvj33AJGrNNygDI/mI+x6xZi\nt2nOexU8ZEzZFxQh9XMqIVobDOCWr3RWjiswIKSnXKw5zL9XoxmjaIEek7i+ACyjx1dr1qUiP9xt\nbk8A/uIKjCMVuAK6RQIQiFC/OinB++5zQ20AoaoOJw3E/WD+1LZW+2P/ztyNCoQxyxmscuyo2b/L\nBMIxVZg6Cy8d3X6n2b0LUFqgNScpWqDHJB1pCYSsHoGO3b45dH9D/rV/VvWwl2dkNxBUYUmfER66\n/74d3wIQKn7ASAC9Za6y3428+38AAVgLR+EjPgKNdSYwYXqB7uxI3V2xHXfmX/t2VVGGpNGUGlqg\nxyTP7QkAyyb3aKX9YjuQfvtkMbOMDy2E9JEuhoRo5zAHdHrC2uwshBuId97+YqQOON3pyUDk7jKB\nfZd48xalIjcOvwN7JDTvN4DayQU6N4INfwYytSuztStz5WcM216jGYtogR57JLJyfX0AWDEjC5h1\nKdmUwRAdty8K1ZbZtk37cAItO4CI37e2JjKZlvc0A5HWayzv9BcDzwBn5XoSSUd2SSD99+nY+UUL\nf26pN4ARbkgZgJHeF2h/BUTnoq944SGzXWs0Yx0t0GOPx7fbrs+4mHdalQtYL7UBzuzosNW7e0nK\nDiDml/ceUQ1Pda1UQIhb6o2uXWYbsNY6/b5g9Mwfm5fXCWD65GKmRsoLdPXEQgQ61PggKCe+RKuz\n5uRG19kce/x+Qwg4f0ZPKIW1oxtwFo8i1Cwh24FoP4FOR3+DIPJS2PQW/jL8ikJN8mb+T7TG/EXo\nmg9bVg7HZsqkotXtVoqdGyygdgRFrQ4n0PwskBl/+bAtNZoxjRbosUd3VgDnzThoz2Y9YOTmM9Bi\nNADV/oSe9yKXmPMMUPHIDGBtYD9waWbZ8if59K0A+69zkr/qFCPe4Dcsm18MNO83AkF1RkERe1Zy\nG5CLLynWeDSa0kS7OMYeWU8AwYNlAIWrAGWOIvatzWgEKr2eXYKZ4CNeKGW2Edm6qBP1qrUfWLBh\n5t9eh+kQvCxz5rfbivtV/syfQsCZqzKh0WdcEl7aSO8D3OjsYRtrNGMaLdBjj6wrALu3TqvjA1ij\nUNBW2QhM+cH9Vfc+BdR9fRPnUvEbVMWEvWZHh0yHU8Ezb5oe6aJhnjrjzo7iqrPv8dz9IeCC64ZZ\nzBwUs3s3yldGSJe50pz0aIEeezQnDSAe7MmXbzRkABWzRnh5RqT2WtuAGb971V6DHyJ5JkD1j8m9\nZ9pWsxmWn/XU28q2Gck4v/xdblmsyIn59+0025ukFVDLVxbi3zATWwA3ehpCO+g0JzlaoMcYO1vN\npqS0DLV0kgOInG+vbgGy51aOsIfnQvenRbK2o2zRC125pUvbPnmOsv5XZkLJm//jl9e/4/byAFxU\nXQfQtsz7ZFUHxc7Ln9/hXTXBG1HNlMMItL8MOOVLizwsjab00AI9xnh+TwBYPMHJbyMM/LVNpDy/\n3Motqxju0h4eD90DXPbiXOm/6M6fn7imNkn8N9Y37/nA37TIvE2aWlLXBePnjcvGveKXTWk7YABV\n4ws0zAMdrwJ6c4rmVED/SBxj/HVvAHjD1J4QDvvpFiB3btWw+TfyNBv7N9rPA5c+MxXwwuHbIhe8\nhe3/Y7yvRcoy3z/NfQE+u2R3DpAFBSkPS2ujBApNwZExOzcBufJlwzbWaMY62oIeSyjFM7tt4Jxp\nPQJtresAsiuGz7+RZ6O9xseb7syf9Uwr8NrChX8wVgFVKv3+hHN9qv3i2l/W7gtNun8SYM4qTt7n\nATTuMYGqCYUItNW1UShXmVE3etrwrTWaMY4W6LHExkbrQMIIGGrF9J7lNXNPN+DOio6wBxcHiPtV\nZLPAzlmzgMnsfKjz6YrU5d+PvtwlM1//0D/IpGEtzYWuLSTKYli2r7OA0xYXknTJbnkWyFaejRi8\nGK5GczKhXRxjiSd22MBZU3PhgAKEo/IhHO7U0Ah78PAAiSFyOWBXZSUwg80h33PxfxR54YI/nX7W\nnxYIg/hXOo/F7MimxevbLWD26YUIdKB1DZCrOrfIw9JoShIt0GOJp3fawIWn9ZjPxuspPKVM4U0a\nqUDni3ZLDOE4wO6KCmAyO0E+EtxaT9fHP349EHpHyipIQIdlz2bL94iU+RNmjNp/IpSTD+HIVZ1z\nDIam0ZQcWqDHEjtaLeCsKT0O6Lx/w5sUwhzpc9wYWAOUe9UinQYa4hFgAnXSr3w1sH/yzppJO2ow\nVexfRlpXe7TU7zKAKbNdMfqs/zLdILw0iFzZ4uKPTKMpPY6JD3r16tUbNmzIv25ra/vUpz51xx13\nlJeXA4sXL16xYsWxuOmpQMYBiNoHC6nsHJ0Dut7cvTr0Z4F4U/f7Zed7gKZyF6j0RCB3lht8pLw1\nAhiVSlYWeXNKL4l2A4hXF9K/QAEIidRrJ5pTgmMy0VesWJFX4e3bt+/bt6+9vX3u3LlvectbjsW9\nTikGbPI2diUBd2bkSNf044+R7/n4p2fPn+EsEO3tQFtIALXZxSB8ocraIoCIHyt1BjrbBFBW2BeA\n8gFVlIpbGs1Y4BhaIp7nrVmz5oYbbti9e3dLS8uvf/1rwzAuu+yyeLwnMebWrVuTyZ7qpZWVlRUV\nI91qMYBQKOT7x1BTRoJhGL7vK1W0fG+H4yscXwDxaDAc9gF7bwYw5laGwz21twOBgGmavW97+Y/w\nR5+zHkiIDuCd7kciQgjHaTi34oCsAaaoC8PhsDBlWXsYMCs4vIfRYlmWYQwMtGhtlE/cEwEqa43R\n3kJ4mehzHwWEkCO/VggRDAZN8wRb3FJK4ITPUtM0pRzFp3fsGHR6HH8Mw7BtWxTgbjsKXHcUqy/H\ncOK+8MILZ5xxRiAQCIfD55133sKFCzdu3PjAAw+8613vyjeor69vaWnJvzYMY/z48QXcRQgRCASO\nqTKOBCmlUuqYDuP+jYZSBC0mVli2DSCbs4AxrczOvz/4F9j7Ns/Txp8eDNyVfz3bP/2N8mpj5yvA\n5758e4pYkOwCY4ItlWdQu68CsCaIAT0UgGEYUg70jG963mhpkMCsRaO+hbH/caPtFUBFp438WiFE\nKWhBXgJKYZYKUYSHe/QMOj2OP1JK0zSPs0CPimMl0EqpdevWfeADHwCmTOkpezF37tzHHnust83F\nF1/c+zqRSLS3txdwo2Aw2NnZ6R2DHcmjwrIs13WP3V+gUnzhzzXAjcu7c6nOXAqgNuNKSORS2YMf\nXTgctm27/yeZFen/rv0EcEnqnVd1v2+yO6tDdcTuu2/L6af/5OIPALc7XzPb3t8OHRXJxVvmAGpq\nur39aBcJbdvOZgfmQtq9NQqBsy/PnH1V22ifdtmeRwKQGX9Fx9Jv+iO+uLa2NpFI5HLFrAVTAPlv\niBM+S23bLisrK+wPregjOXx6HH8qKyvT6XQ6fUzi/Y9AfkFuJByrL7GGhobq6ur8vHz22WdffPFF\nYN++fbW1tcfojic3j+8Ibmq0gqa6dUVfVUAxgkSjv4r9Z5Oxr9Ib9/7OL81ylgRVGLCeffbvf/hD\nTxgreOAK78V8y5Rwpm0dB5inHZMNhEDzPhOYVFD/dutqIDP+ct+MFXlYGk2pcqws6C1btsyZMyf/\nevny5ffee+/GjRtN07z66quP0R1Pbr67Ogq8dUm6NtrPj5nzAWUN+QOt1Wi8L/JD4L2J20KqJ9hD\ndnT8adq0l84801Tex8QnhFqYP54SuWnbxgHmzGMm0PsLLBQrnISV2AzkKs8u/rA0mlLlWAn0ypUr\ne1+HQqEbbrjhGN3oVKApabywNwDcuiLZ/7jIC7Q9pAW9y9roiNw4b+qq1Dt6D8Y/97lfvfe9wDvd\nx2dYm4V3PqBQXXu8srYIhjLmHJMtKr11CCeP3oI203vxXWXF3PC0YzA0jaZEOfF+es2wPLHDVoq5\nte6MykOkTaQ9QIWGXAFLiQRQ4dWKg6FpwYcfVg8++PDllwNXcjdgurOA16wDsx6bDhhLczJ2TDzp\nezZbHS3SCqh5Z47aIyxzbYAfGGnOa43m5EAH/I8BntppAxfMzBxyVCEywwh0WiaBiOpx2srm5vJP\nfOKhiy5Kh0JVvj/PuI+DAv2kvfOsx+YBoTcWeT1NKbq7JPDqkzYwe6lTQJ5+mWsHfKvAQEyNZoyi\nBXoMsHq3DVxw2iHSKTJefmOdCg4p0Pnag0G/ZydL7I47ZFvbb26+Gbg4myB0ADDcmf9Qcc8D9uZH\nnroKsFcUU6CzafGhi2qb9vWNcPF5hazdS6cD8ANaoDWnFtrFUeqkHdHSLYFF4w8V6HTPUttQFnSj\nUfen6A+Bmc6i/JHA+vWeYdx79dXAVc5WQPjxRhF4ILR5fF1VvDWiJNbyYgr09rWB/uocDKvzrs4c\nof1QyGwz4AeqijYyjWYsoC3oUifj9riPw9YhngGROijQ4UEE2hPuv1fekhbJ2c7StyY/2HNJNvvq\nGWd02nZUqRX+mgRY7uy7w+t91CUbFwHWFE8Ei+mA3vqKBSy/OPv5n7ceTT9GphHwgoVsZdJoxi7a\ngi51ktmD63sDBDq/QmhL5MAwO1c4d0fv3GGtN5X14Y5vGL1fw9nskxddBCzP5ZS5HTDdWX8MbQQu\neW0hYBQ7wC6fm3/W6Udllctcm5HaC3i2DqLXnFpoC7rUef/dlYBlqAEpRXsEOjzwCSrUrbUXNhp1\nwHsSn5zhLOi7JJt98MorgbNzOdfaCTwkJm01m0zkom1TfTBHn6P5yOzaWHjxlDzBxocrX7oZFOAH\nxxVtZBrNWEBb0CVNc1JuaLCAi2cNXFuT3S6gIgP9GzkyeXU+K3PJW5K39B4XicQ9F130+MqVllJX\npdO+6AK2iQBwcWZWoCEIGJOLvBe5tcGg0K2DeczkdlBKWF5osq7krTnV0AJd0qyrDwCT4t5Pbmgb\ncEp0OYAfG/I30Ec67pD0yXfrtm0f/O53gY8mk7NdN2+TJoQPzHKr/VYJyKpiplvLpISTE0CsovBu\nBT6QmXjNgVUveKFJRRucRjMW0C6OkmZ9gwUsmTiIi0AmXECVWSPpJyfE56ZN6ygvn19X9+FAAMgn\n8EoKH4gqOy/QorKYFnSyQ+ZvFCs/Ct1XPqBLxGpOTbQFXdLk/RuLxg8i0ENZ0PmysAP4QEXFH5Ys\nMTzvO/feG1AKUCh6BdoPeC0SKG4hlY4WCQQjyjgaM0B5gNITVXNKoud96eL6Ys0eGzh76iCbO4ym\nLODXBgcc32g8D8T8ijK/Z2P064bxWDAolPri5z+/NNRTXlbhAO3CByZvGKc6JaYyZxVzkfC5+0PA\nnKVHF8KRbQV8K16cMWk0Ywot0KXL83WBRFaUh/w3TB1E44yGDOBNGCjQT8l7gbMzl/U6oH8VDvtw\nwerVn7n9dvdgbm6EC7RJF5j44CTAPjcno0ULgnZy4uFfhIEr/6b7aPoxso2AH5pQnGFpNGMKLdCl\ny+Pb8yk4ssZgT0nuTwPexFD/gwq12rgfeEPmsvyRRsP4bTgMvO9HPwK8gwKdt6DbhBfrCFc8VAPY\nFxczgfpz9wcS7bJynHf25YVsHexFb1HRnMroRcLS5dndNnDRYQF2eYwDGcAbf4gFvdPY0CoaLWWf\nnj0fyApxYW1tUoio615/zz0qGvV7Cz8Kx0EmhPf9N91qvhIB7FVHpaQDeOQ3NnDR29JH5YAGI9OA\nFmjNqYq2oEuX5qQBzK4e3C/cE8URPySKY4O5BpiXWx5SEaDeMJJCSLjthRci3d3ujBm9LZXseJ24\nQk3dUQsEr0kX0QGtFJtfNIE3XHp05nPqdZlpQhhu2fwiDU2jGUtogS5dunMCCAcGj6wQGZ/DUtlt\nNJ8HFuTekH97QEqg1vP+8Z57APdgjRvwfdm2h3Ig3hoFYh9PUDwa68xkp5AGMxcdVe5/u+UZwIkv\n9s2yIg1NoxlLaBdHieIrUo7gsBxJfaRdDiunkg/hmJdbnn/bZBjAON+3tm8HnFmzejqXHQpvFxXB\nVMDMGYAsP9rlQScr1j5j5zIC2LHeAiZMd4Pho+rWbn0OyFavOMqxaTRjFC3QJUoiK/MlwqP2IBon\nXCVcBahgn0C3GPWtslEg5jrL8kd2myYwzvPMnTsBt0+g24HdVMY6wj0dxo82Avo334zdfWe0/5FZ\nS462dFag/SUgV3nOUfaj0YxRtECXKPkVwklxrzI8iHTK/SkAQ/SPg94ceBGYruZF/XJAwT2hEPDG\nbNbYuxfwZs7saSocYCPjTKfHQyICR2tB799lABNnuvmasIYhjzLADpDZFsDVO7w1pypaoEuUh7YE\ngSvmDb7IZu7LAN64oDL7co1uCbwMLPR76l4/bdu7TTOs1Dvr60U6DbiTepVOHSC6n8hkdfDyISuD\nj5T2JgN4x0eTK69PAbZtZ7NHl/tf+cLLAMqMHO3gNJqxiV4kLEVcn8e22cClcwYXaOP1FOBNDfc/\n2CPQXs8K4c8jEeC6dLpi717ALytTsVhv47WMB2Y4VVAEdQbamyRQUVu0bB7CS+czOikjPGxjjeak\nRAt0KfJCnd2ZkTFbnTNtcCPUqE8D3qS+XSo+3m5zE7BAnQW4Qjxi28ANqZSxfz/gTZzY29g19m6g\nFjg9PYkiZSLqbDWA8uqiZfMQXir/QhmhI7fUaE5WtECXIn/YEAIumZOxjMFdw7LdAbzKviDohOxw\nhQNM8KcDaXCEAGa5rtHUBPjjDma7F7lE2Ze3UA0sbJsAECmCqjo5AGuwJc3CEF46/39lDNzOrtGc\nImiBLjnSjrjvtRDw9iWpodrILodDc412yTbAUnaICOCKHreFpZRsbQX86ur8kUT0TsfctZ0qYFbb\neMCIF0FV82lBZfEmVF6glREsjgtGoxmDaIEuOR7dFkxmRW3UP3/mkMkxRKcD+P0EOik7gDLVs5N7\nk9VzyoS8QHtVVYBr7kpGv1NPWTeWRExqqwBEWREsaKUEIIop0Bm0f0NzaqMFuuT448YQcNX89KA5\nkgCR9a3NXYBf0SfQddYWoFzV5N/+v/JywMxb0HkXR1UVkIr8GJHb5S0DpruVVodFMQRaKXwPQMoi\nujhSaIHWnNpogS4tmpLy0W1B4IYzhvRvRP97u7Ev7VcGsiv7qly3ykZglrf44FsJfKqrS4K1bRsH\nd6lk7aeAzc4bgaXOJG+/ARgTjzb0IpcR+W01dqhoAq3TJGk0WqBLi3s3hlyf+eOcxRMG34ZnbeqK\nfWcn0PmlhX5FoPd43gcdV1WAI0RWCOBt6bTI5czduwF33jzX2Ouau0CulRawLHdQoI+6Vmy6u8dN\nHIwUT6DT9YAXnDhsS43mZEULdGlxz7ow8PYl6cFPK+Kf34TrZ8+tSr/5kP11CdkOlKlKIHlwhTDq\n++auXbiuCoXcqVNz9mpAOAvWWweA5bnJ3j4DMCYdrUBnugUgZVEt6LxA622EmlMYLdAlREu33NRo\nAdctGlygA692BNa0qoDs/NriAaEN3bILiPpxICEEICGslLl9O+DOnOmbXcnot4F6540Z4drKXOCO\n9+pMwJhytAKdTQvADilRvIALI3sA8EPaxaE5ddECXUJ05yRgSCaUDa6YgZfagNzZle6s6IBTLg5g\nEgDapQTKfF9CPk2SM2dmR8UtnrnH8Ca0Zq8ApnoV7LG8ekMYBJYebVYj1xGAMVTivYIQfg5QMjBs\nS43mZEXn4ighsi6ANXQghPVSO5BbXnH4KSV8wMDgoEBX+D5g7NkD7L9tZ9Z+TahIZdvPGgIpYKJX\n5jxvA+YCR8SONorDcwVgFnc2KRdQQk9RzamLtqBLiNZuCQTMIQU68GoH4CwbRKB9fEAggQ4pgUrf\nB8w9e1pupuvs10DEO75hOgvqjS5gkhfPrgkAgXOOLqURAJ4LYAw98kLwXQAt0JpTGD37S4jfrg8D\nZcHBZU4k3XwKDmdx/PCzWZEGLBVAsNc0gZq8QO/c2fA7gGjyw6H0dUCD7ATGe7HcSwHAOqsItWJT\nCQkEhhh5YQjlAaooiUI0mrGJtqBLiPX1FvDB85KDnhXZHkeEHx3ka7XB2AOM96cCD9s2sCKbNRoa\nfNpyUwAi3X+Xb9khM8C4+gpvt4nAPrsIFvTu10xgyuyiVTUE8HMA0hqunUZz0qIFulTIuGJbswVc\neNrgJq1wDnqKAwOfWpdsS8kEMNGfuV+IdYGAgMszGeu119KnA0i/Wno9u1o6ZRqY9Px4wJzhymLk\nn9uz2QKmLzjaxcb+iB4ftBZozamLFuhSYfMBy/WJ2f70iiHs0JwPIOifpD9Po1kHRP3ymCp/yDAU\nLHCcSZ5nvvZaehGA6cztbdwpM0DN8zVA4A1FMJ85KNAzFhTXgnZAW9CaUxot0KXCnjYDOK3KHSqU\nOO/iUIeZz0CzsR+o9SYDz0sJXJzNAubevV2XAVjOkt7GrTIFxB+rAqyziiDQ2bTYv9MAZhwTC1ov\nk2hOXbRAlwqeEkBwaHtRdjqAig8SF5wUnUDMLwfqhABOc13AjbV2XgUQTr8t3zIhs62ye/b6yeb2\nkDAJXj54xZZRseWlgOeK8hp/woxjYUFrgdacuujZXyp4+XzKYshACNmTYnSQR5Z3QEdUGbBPCGCC\n5wEdF+5AEtw32ZTz8y33GG3AFb87Cwicm5UVRXBAb1gTABa8IVvEbYT0RXHoKao5ddEWdKmwr8MA\nhkoxSm8O6PggNna36ALCfsyHeiGAiZ6n8Dou2QeUbTy7t+Uesw1Y9fszgOAVRTCfgU3P28DCYkSD\nHILScdCaUx0t0KXCI9uCQGV4SJNWJl0OraLSS6dsBaJ+eZsQeZkc53metc2pycoM0R1n9rbca3RM\n3zJ+8sZxSIJXFkegd22ygHnLiyzQeR+0XiTUnMpogS4VXB/gTQuHyGMHIu0BKjTIxo395k5gojsj\nnwY6qFRUKcfcAgRfQ3h9Oe9fN9rf9JPzAPv8rBxXhArcHS0ynRTApNOK6oDuq6iiCxJqTl1K6Pej\nbduFXRgIBHy/aMWkC8MwDHm09fgkELIte4i6q6YDICLW4R9UvbULmCHnd5gmUKWUbdvp4G4g+Bqm\n1XdJo9H97p+fDZS9yyn4A+9PW4MJlFWqiupDVi8NwzjK/oWfAaxQmTyKfoQQlmWJ4nrHCxqGEOKE\nz9L8R1GU536UHP30KApSSsuyjvNz8bxRGEYlJNDZbIF7jnO53Kj+zccCy7Jc11Wq8L3Onq8Az3OG\n+hzsbgfwAgM/qLTobpdNQHV68jrDB8o9L5vNZiKbgdBmnPFe7yXRl8pr6su9iGesTGSzRdiZvW+n\nBMZNcQeMyrbtgh8ogO/mc3FkXeEd4I64lgAAIABJREFURT9KKcdxcrli+8dHiWEYjPIv8xihlDqq\n51Ik/j977x1n11Xee3/X2uXUOdOkUZlRl6zeLEuWezc2NtjGBMzFuQY+hhQIJBdeSLi5CQmQ+yaB\nfByDA+Q1JKGFXmxjMC4YW7bkIlvd6qMyvc+cfnZZ7x9nJEujM9bozD6WNVrfv2b2Xnvtdc4+85vn\nPOsp4/14BEQsFnOcUf/i3gpoF8dbheEoDkaP4ujMUWqTcK/9qkJV+bV13pQ9hgE0eh7gmDuByPaT\nqswtfWg+4Nw8IAJqfdLXaQCTx13yfwTSHSz+4BsjC6tqNOcPWqDfKhR90ObopYGKjWKdhVUjjr8Q\nfgy4KH+dQDxhmsDl+bxvdHnmYRSxjahotDjSR616agFgXjuqp/tMGeqTQFVdwAJtZFoA30woa+Tr\n1WjOH7RAv1XwleANwuw8Ze5JAu7ixImHFaoo0OtyNySlfNk0gavz+YL1MhA6ZJo9qFisODjV5c3e\nPRWIXRrYhl5RoKvrAi00Cka2Fd3vSnPeowX6rULRgjZGSVQxD2dE3seUI3qpHDH3dButhjJX56/a\naNsuNCk1z3UL9itA7CUDXregUy8awJEFXYnJge09JPslUBVEwsuJGLliQ0LdMVZzXqMF+q1CuiCA\nyChdo4r+DXduTIVOemRbw88CSwrron7VVssCLvd9wLV2A7FNDuDV1xcHO3tN4LX1h8zgnntvhwQS\n9QG7OEI9zwFu1QXBTqvRnFtogX5LkCmIoZwEpozSfcraMQQ4K0aW6t9mPw8sL1wKNJsmMN/3Ad9o\nA+xDvl9T4zU1DY/uNoG+6UMBrrzjsAlMmx2kQBvZ1nDXE0Cm8d0BTqvRnHNogX5L0JUyAFMyKVZa\n6awdg4Cz5CQHtI+/y34BWFZYDxw2TWCeUoAr2wGrBWfpUo5FAYsuE+hvSAa17ExSFH3QU2cGmaUS\nbfkJyndqVrqJRQFOq9Gcc2iBfkvQmZRAfcyTo2RUmLuGOEWgj1p7U3LQUOb8wkoPDhkGMEcpJbJK\nDgF2G87Spa9f0G0AQ1PSQS27q8UEQhFVHUTV/+NEWn6MNp81Gi3QbxG2tdvA3LrSdqjsKxgdOcBZ\nfFLM2cuhJ4GFzoVhFf1xNDogZUSpxb7vmYcAWZBmB96sWcfHi0M24DQGU4ID6GkbDoIOMFPPyHWY\n6WYQ2cbbA5tUozk30QL9luDpAyHgylGaXVmvJQG/IexPOik79vnIr4BLc29PCvF/EwngE/l8FTjm\nLiB0OCY8MIYjq/1Ow+y1lVANC0tUlC6Pvk4J1DYE6YC2BrcDbnSmb9cFOK1Gcy6iBfrsk3PFxkM2\no3cjNHcXU1ROCrDrNlr3W9sEYn325m/E4z1STve8T+TzHAvhCB2IAuqYceu8ZgJdTQNrwtOCWnl/\nlwHUTQnSv2EN7QCc6mUBzqnRnKNogT77vHzUzruiJuIvm1q6ZZS1NwW4J+cQvhx+UqFmO4tDaua/\nx+PAx5PJsFLAcB275ijAsRJO/Xt94MCy1ovzswiI/q4KWNBDrwFuYulpR2o0Ex4t0GefX78WBq6a\nly+dRqgIPd0FFFbXnHi43TgELC6s3WxZaSGmeN77MhnAJ1MIvQBEt8fhdYEe2q2A9hXdDX5g1S1S\ng8Fnqch8D+DqHEKNRgv0Wcf1eWhnBLhtWen6GParA0ZLVoVk7vopJx53RAEIqcgOywJWOU4xOzBl\nPKpE2vAao9uqgOMxdnJ7BBhYMRDg4vNZAdjhgPO8NRpNES3QZ5lNh0N9GVkV8q+ZX9oBHf5VG5C/\narKKn5Sf7Yg8YKnQLssCljjD7pEh42dAOPd2fAXDAq3yIro3DhSWBRZjBxRyAghFtEBrNBVBC/RZ\n5je7w8B1C/K2UVrmwo91Armbpo44XhRom9BuywIWF9t4y9aU8TgQzt4sTihD7u43hSty0UJ4VpBi\nmssIIKQtaI2mMmiBPssc6jOBdTNLV5Q3m9NmcxpD5N42UqC7ZRsg/cb9pgmsKhQQhc7YB3zSlrsw\n3DrbevVVwJ0/Hyh0AnTM7Fvuj5ynbDJJuX+bBTQtCDKNUDoDgDJ1lVGNRgv02WYwJ4BEuPQ+W+iJ\nTqBwUa1fM7JOf4u1H+gVFyuY6XmNnjdQ86mc8bJUiZq+B2Pf+Z4oFJyVKwsXXgi8km8H8onCTbnA\nkqc3PBx28mLmBe6ClaWDT8rDyLYAXrTptCM1mgmPFuizTDIvgcQoXoLw77qB3DUNI46n5OCA7Aaa\nzfnA+nw+E/1uNvJTEI3Og1ZuZvQ73wHS99xTHL853wbEY6alRu8IcIY8/bMIcMVtgdX+B6QzINw0\nuhK0RgNogT7rDOUEELdLWNDCUfYLfUD+qskjTrWZB4Eqv3arlQAucruGqv8WqM5/pMq7Nfzoo0ZX\nl19dnX3nO4FDZl9HNg00RGJBLXugR+56MUTQAm3k2gFlRH2r5rSDNZoJjxbos8lQThbr2M0q1TJK\nDBZEzgPcBSMjlwdkD1DrNxwoVrCzvqVEznJW1Gc/D8T/7d+AzF13qUgE+Gp8Q1V/BKg+xU9SNh2H\nTN+jtsGbPidIB7QoDAC+XRvgnBrNuYsW6LPJljZLKaZUeVOrSgn08WPWyMeUFxlA+NPTQgB14a8B\niaG/FljG449b27cry0p/5CNAs9n3o+jWmp44IOsCyygZ6JFATaBF7ADh5QBlhIOdVqM5R9ECfTbZ\n0moBq6aPssnmDMufMkYWi8uJDOAyB6hSmSrREypcYucvA8x/+Rcge+ed3tSpwL/Fn/Pw53ZOIVCB\nHuwtNlIJWqD9PKCkFmiNBsYu0CtWrNi5c2dFl3IesqPDBlaMItDCUwCG4JRinlmRBrJiHjBVHABi\nyU8A8sAB+fvfI0Tqwx8GkiL/k8hW4ILuqQQr0D0GUB24QHsZtAWt0RxjrAL9nve850tf+lI+Xzrb\nTVMee7tNYFHDKAKddAA/ViLuYsDoBg7JtwEreE6oaCh/BSBbWgBvxgx30SKg20gVhGciEx0xQAan\np3tftYAZgUZAA2bmCOCFAwvW1mjOacba3fmJJ57YsmXL97///RkzZpjm8FW7d++u2MImPq4vmnsN\n4ILJo9TpH3QBVRs69VS30eow/YCxGriNbwk13LdbpNOAf6yNd1Y4QMS3vG4JyMnBlJ3zPXZssoGl\n6wP+h20m9wBu1cJgp9VozlHGKtBf/epXK7qO85BDfYbrC9tQM2tHEeiBAuBXl3hGPUZbL3f7yEXe\n4BLjJaFmFI8XBVrFhsPpigKdyEXUkASMycFY0IdeszJJaYXUwguDTFEBzORedDNvjeYYYxXoZcuW\nAZ7ndXV1TZ06VQTY4+h8ZX+PCcyp98xR/EyytwD4NSUaoHQZLf28B7g9v48o8pgFTSrFKQI9raMO\nQCADCrrYvdkGFqx0LDvQKhzKN9PNgBtfEOS0Gs05y1h90K2trddcc00ikViyZMnmzZuvuOKK5ubm\niq5swrO1zQaWjlKkH7A293NKnX4gJQe7jd4sK4Ar+S1gOPOLp4Z90NOnF38dEjlg0dYZgDHLxQxG\nT9sPGcCsRQGbz0ahpxjF4UZnBjuzRnOOMlaB/uAHP7hs2bLe3t7q6upVq1atX7/+wx/+cEVXNuF5\n6YgFXNRUukwSEHqmG8hfVj/i+CFzV4ZlCiuu1DTz50CocFnxlHHwIODOnl38NSnzwMJXZgDWssD0\ntNgrdtL0IBupADLbDvhmlTKipx2s0ZwPjNXFsWHDhh/96EfhcBgwTfMzn/nMrFmBdU46D3F9trbb\nwIWjCLTZnDa68hiisH6kQB+0dmZYBSx2cr69BbDzlxRPyYMHAW/OnOKvQzIPzN46nXNBoI1cB+Dr\nEA6N5hhjtaAXLFiwYcOG47++8MILc+fOrcySzgv295iZggiZavGU0juE9sv9gLM44Ved9E/UE+6G\nyMMZLgQW+S0KV/r1prsAwPOKAu0eE+ikyAHTdkwGzKXBCLSTF23NJjC5MWgLOt8NeOEppx2p0Zwn\njNWCvv/++++8886rr766r6/vzjvvfPbZZ7/73e9WdGUTmyP9JjCz1jNlab+wcSRDKQf0g4m/3W2/\nnObbwHKeB0L5y0EA9tatIpUiFnMvGI6CyAkXiHVHAHNqMDuEv/5ONNkvaxu8C1YF7IMWfg5QZmAV\nnTSac52xCvRVV121Z8+ehx9+eNWqVdOmTXvggQemTtVfRcunfcgASpbgKGK05wBv6kk5db+OfftX\nsf90aMqwGFhjfBuw85cXz4aefhrwrrxSWcNFkQrCE0qYGRMgFoBAZ1PiR/9aBbz3z1OBtyIUygWU\nGOtnUqOZ8JzBH0NNTc369es7OjpmzJgxZYr+HjouOpIGMC3xBgKdBbypr2ep7LFfeTDxt8Ci3N9v\nCzPPLVRbT3OiQD/zDOBfd93xS/I4kbQtfAHIeAB6+uh/xYb65JSZ3tvenxn/bCPxHQAZWMk9jeZc\nZ6wCvW3btve+973d3d2zZs06fPjwnDlzfvjDH2o3dNl0JiUwtWpUq1Z2jrSgv5X4e0cULsxfnfTf\nA6z194BveE2mNxMQhYK1ZQvgX3318Utywo0khyVexAIQ6Me+FwPu+OOUEVDE3okIvwAooQVaoxlm\nrJuE995772233dbe3r558+b29varr776Qx/6UEVXNrHpz0qgLjqqBS2Hinner2epdBiHgTuTf/ZU\nOAKsN+4Hopn3Fs8aR48Kx8G2/YWv50n3GplYMgwIEzFuj4STF11HDWDt9blxTlUS4SQBZY4sfq3R\nnLeM1YLevXv3o48+alkWYFnWpz/96fnz51dyYROcoZwEqkcXzeFKSfHhB+ThDho9QLdc0CVlSLlr\njP+Wfn0s9UfFAcbhw4Df1ITxenGlLpkMp0MAkQAc0O2HDd/HslX9tIDjN4pINwn4VqISk2s05yJj\ntaBvvvnmX/ziF8d//fnPf37dCb5OzZkykBVA9Wi6qZBpD1BVw9/3B4weHx/YbDUBa9gQIR1L3SvU\ncMyD2dIC+CcHp3fJVDQVAkQ0AI9E5xETaJjhycpUEZfuEKC0QGs0xzi9BX333XcDrut++MMf/trX\nvjZnzpzm5uYtW7bce++9lV/ehCVVeKNesSLr4SnAjw+bwwes7UDCr9sYigGXiF8IvyqW+eDwBa4b\n+dnPOCFFBXCE12dkVrRXA7I6AIHuajGAKTMqYj4DstAP+KYWaI1mmNML9E033VT84Y477qjwYs4j\nPB/AEKMIdGY4e0VFhx/QL+JfB9bm3nFfxALW8LTpzhP+cJR01Ze/bL/0kopECh/5yPEnusfsdvFv\n+PkawA6iLmh/pwHUTa2UQA+XsovPq9D8Gs05x1gtaKC7u3twcLDC6zlfGBboUXwFIuMBCFRYAjvt\nF3bYmwzMpblPFqIipgrzxQ6phutvhB9/vOorXwEG/uVfxMKFx5/oDqs9lLUue3g5ELklgG29/m4J\n1DUE3EWliCz0ykIv4MZ1rVGNZpixbhJ+4hOfuP/++2fNmnW8Wj+wf//+yqxq4qMQgBylaGvRglZh\nozjip/EHgEuzb282ZgLLvRZpekXzWfb0VH/60yiVve227DvfeWKRoR1Wx8WPLwmnbDnJty4JwIIe\n6JZA9aSKWNBmaj/ghybplt4azXHGKtDf/OY3N27cuH79+oqu5vwh5whgtDxvmfMBFTWAIdn3Svh3\nwO2pP7o/bgMr1C5A+nVA1Ve/anR1ubNmDfzjP46Y5IDZs/rZ1UD46rwo0TbrjBnoNoCagKr+jyDc\n8RvAieteKhrN64xVoBctWjT9WJXh0+K67pe+9KWamhpg+fLll1566aOPPtrT02Oa5u233x6Lne/F\nFjqSRjIvhGBO3Sg9/XIeRQsatoSe8fEb3XkLnFWbLQtYbPwYCBUulQMD0e9/H0j+1V+pqpFVOxw8\nq2ACojYYm7f1oAFMmx1wH0LATB2INf8HkJ59T+CTazTnLmMV6K985Str16694447TizB8bnPfa7k\n4P7+/oULFx7fVGxubs5kMvfcc8+rr766cePG66+/fnxrPufZ3WkCjdVePDTKJmHRgg5JYEvoGWBV\n/ooeKQ+bJrBU/kaoUCh3XezBr4l02l2wIHvLLaXnUQLGHkv5Rgz2ykxSAtPnBC/Q1Ts+K5STb7gm\nN630C9Fozk/GKtCf+tSnZsyYUVNT47qn//vs6+vr6en5wQ9+YBjGjTfeeOTIkaamJqCpqWnLli3H\nhyWTyeOzeZ5nGGV+Dy/7wgAxDEMppdSYotn29drAogZ3tJUbjgIIG4ZhbAs9B6x0rtgWDgPTVV+d\n6AoVrrUKduzb3wYy995rHKuOJKUUQgxPK8RwFQ5Djv8t6jxsATWT/KqaMem9YRhjvGmo88lQzwaE\nkVr6fyrxKKUM4OWPk7O+gCJSSt4aixn7x6OiCCHe/I/HGFWiyFgFes+ePfv27autHdMGTjQavfTS\nS5cuXbpjx45HH320pqamoaEBqK6uzmReL7Lz0EMPtbS0FH++5JJLLr/88rGv+zhCiLq6ujIuDBYh\nxNjf986sAJbNsCdPnlx6tlASMOPhI5N3dskWA/O6xO1fFtXAcrEdmGTfNvm110RvL5MmxT/60Xgk\ncnwZQHFaIYej+CLRyOTJ4ZI3GjvPtQlg9iI52ppHvoQxvyFix68AdcEHauddNZ4VlkRKWXS1aQAh\nhBBijE+w0is5I52q3DJs2646xT1YUbLZ7NgHj1Wg77nnnt/85jfve9/7xjJ4xozhJtMLFy588skn\np06dOjAwAAwODkaOSQnw/ve///jPyWSyo6NjrKs+gWnTpnV3d3tepYJzx4hlWa7rjvEz195bC5GQ\nSnV0JEsOiB7proF8yP9X9zPYXJd5T3og91R9gVBopfciBumB8NDmzdWQX7asd3CQY+GP0Wg0FAr1\n9/cD7Q39hieBTC7d0TE0zhf44lM1EJ25ODXGqUKhUD4/ptCRunRfGIaMGemyPgBvTENDw8DAQKEw\nal+xN4eijXbWP6WhUCiRSHR3d5/dZXAmH4+KUldXl81mz0gxA2Hs+3BjdU9u2rTp7rvvbmpqWnQC\now3esGHDSy+9BLS0tDQ0NMyaNau1tRVoa2ubOVP3A2UoX0wjHL2UXdIF+msGd9svm8p6T/ITLrxq\n28BKXgCEihSLb7ijv589Mi09CTBKrMgZsfdVG1h4YcBF+gF8F0DqMtAazUjOIMxu7JOuWbPml7/8\n5Y4dO0zTvOWWW2pra/fs2fO9731PSnnbbbeVtc4JxWBWAFWhUQVaDDnAvrrXgCuztzd4TdstKyNE\nRKmFvAoIFTGPHAG8UTpDOsJLycKwQI/bw5Yekkf3mcAFq4M3RXWdfo1mNM4gzG7sk0YikbvuuuvE\nIzfffPMZLGqiM5iTQE1kVMPWaMsBB6btB96V+lPgFdsGljmOYSY9ECosu7oAb9q0kjM8GdqnUPFU\nGBCjxIqMnV0v2kpRM9mvRCGOYgKhrjKq0ZzKWAW6ZIrKpk2bAl3M+UJXSgKTY6OKnf1SH7Br7SGg\nzp8CPG/bwCWFgm8NAcKPi6K/u9QGtCv8LyaeAFbumwUYM8erqhseigAXvy14V51wU9bQLsCpXR34\n5BrNuc5YBfq+++4r/qCUamlpeeCBBz72sY9VbFUTmYInisWgG0ZppyK78+bhDLDtkoOARCrYFAoB\nFxcyKp4HhHoje/MHkVcPmr01fmTSgVoF5vhSS5y82PRYGLj8HcHX6bcHtqA8P9zgRmcHPrlGc65T\npgV9zTXXXHvtte9+97srsKQJTk9aAkJQHy0t0ParA4DTFOqZNgigOGCaPVKasMbpTQEg1aiBQXnc\n+6ueBT56+EqVlIA5Z1wW9NYNoWxKVNX6y9YH74C2+14ECtWrAp9Zo5kAlJlkdvTo0UOHDgW6kvOF\n7e0W0BD3LKO0a9jcmwRyy4cDcSTGQdME5rquiPwXIPyE8GP4PqDEyHpLz8kDrcZgwg/fve1SQNb6\nIjGu6hmvvWQDF12bD7wPYah3Y3z/V4HCpEuDnVmjmRiUY0G7rrt169aPfvSjlVnSBOcnW6PALYtH\ndRcYrVkgO9sEBMJWw+F4JplU4stAYuhvQVJMwjRHPsENxgHg8sIcY0cEMBePNzCur1MCk5sCzvC2\nBrbUvfQB4efz9ZelZ/3PYCfXaCYGZ+yDLlJTU7NwoS48dsYMZOXje0PA7ctH3XAbFuhGAEuF5LEw\nZt84qnDD2VujmbsAUcx6OFWg5QHg4vxMd5cFWEvHK6wDPQZQG2gRO2twe/2mu4SbKtSv71v3bSVD\nAU6u0UwYxhXFoTlTHtsTdjzRVONd2DiqP7co0OkmBYRUBCgKtBA56dcnBj8/PM51AXVyFEcBd7M8\nAqwrzHR2mYC1ZLwWdLEMdIBVRmW+p+7Fe6SbdBOL+tY8qIzxpqFrNBOV0wv01VdfPdqpp59+OsCl\nnA9sOmwDb1+UPcV1/DpGRw7oaRoC4n410G4YQJzBxODnDL+hOEz29QEjqozuNDqyODFlL8lN7dlr\nEYSLo7vVAOqD63QV6tlg5Du90JTei7+vy/NrNG/A6QX6U5/61IgjW7Zs+Yd/+IcLLtCtic6YPV0W\nsGL6qKIpCr4ccIA9jXuAOe5S4NmQCVzI70OF4TxMo6VF9vcjpbN48YmXv2IeBVY409kXUhkhwspa\nPC4XR3+XMdQnhWDWosCSvI1sK+DUXeSFpgQ1p0YzITm9QN96663Hf06lUp/73OcefPDBL3zhCx//\n+McrubAJiK/Y220CCxtGFU3ZnQcQ7Jq+A5jjLHGFeD4UBtap56T3keIwa8cOwJ0zR0VP7HLFK0YL\nsLIw3dlqAeYih/GFXhzebQKTG71IPLAQDiPXBniRsfZ/0GjOW86gAMJDDz30sY99bM2aNdu3bz9e\nr04zdloHjawjDMnc+tMItF9t7Y9uB+Y4S3ZYVloYEdIrvU4Y9oxYu3YBzpIlIy7fYrQAK5xpzg4L\nsJaP1+w9vMcEZlwQZAiHkWsHvLAWaI3mNIxJoFtaWj7+8Y9v3rz5gQceeMc73lHpNU1UOpIGMCnm\nhUe3aq29KSAzW7abhyTGBYXVT4RNYAFbw27T8WHmgQOAe3KBFIXab/QAi50p+WdCgHXReFNLDm63\ngTnj3mk8EZnvBbzQpADn1GgmJKdPVLnvvvtWrFgxf/78Xbt2aXUeD3lXAOE3/J9ob+wBXrliL7A+\ne1ONPzktBBBn0HRed/obbW2Ad3KXyCGZL+ACDXvq3P2mMAlfP96Su6+9bBN0ETvhptDVkTSaMXB6\ngf6Lv/iLgYGB+++/v76+Pnwyb8L6JhIFTwChN3QK2y/0AY9e/Vvg1swHgaJAR0mZ7vzjw4yODsA7\noT8k0C1TQAjT/HU1YK3Ly5pxxcb1d8mOwwawaNyW+IlILwMo83zvHazRnJbTuzja29vfhHWcD+Qd\nAHuUDG/AaMmahzMI9cple2e4C5bm1wMZIYAI6dcFWinZ2Ql4U06KguiRaWCSiuefDAPhG8ZrPu/b\nagOTG72aSUFmqQg3DShDC7RGcxpOL9BTTzbTNGVzqN8EGuKjBhQnvvgasPfC9r4pQ3cNflYggEHp\nAnEGDe+i4jCzuVnk85jmiGr9B81eYJaqc/eZgLVuvAK96ddhYNklQbYmEm5aOv2AZ9cHOK1GMyEp\ns1iSpgxePGIDa2eW3nAL/7Yz8lCbMvjC1/6rzptyXea9xeM9hgJq6RZ+onjEfuEFoLBsmTrZy7TF\nbgPWuDP9QQnIunGZvbmM2PBwBLj6XUGWgbaGdqF836r2ojoQSKM5DVqg3ySU4uWjNnDRjBL+XJF2\nq/96B/Cbe1/dtfbQrekPWcounuqVAHVqUBz7umO//DLgrF07YpKtViuwpm82PoBRO67I5Rd/G85l\nRP1Ub+UVQVrQ1tBOwEmMDBDUaDSnogX6TWJ7u9WXkaZk5fQSAh3/+kGjNVuoF//8D98Jq+hNmbuL\nxz1oMWygVqWPDy4KdGHNmhNnKAhvj9kNLO+bAQgTER+XBV00ny+9JScD/YwU+6e4WqA1mjGgBfrN\nIJUXH/9FLXDF3HzMHmnYyq5c/BsHgce/eHSoLn1J7u1xv6Z46p8TicNG3KKw1B0WaKO11dy/HyEK\n69adOMlRY8ARXghzxuHJgKj3GL3cx2nxPbY9ZwOX3RpsmysV6n4aKNSNNP81Gs2paIGuOErxsZ/V\n7us2Z9R4X31X/6kDEl/eJ9Kus6L64XueA+YWlhWP/zga/Uo8Dvwf7l2Qvq54MPzUU4CzdOmIEI4W\nYwBo9GucAxKw5o6rttHBnVYmKSNxtfDCIAPs7P7NRrZVGdFcw/UBTqvRTFS0QFecB56LP743bBvq\n63/QXxMZ6XYw96Wi/30EGPrLRQetncAcdwmw3bL+sroaeA8P3Or9Npy7qTg+9LvfAflrrhkxT6sx\nCDT5NYWDAjDG14dw56YQsPDCgnEGtQBOT7jtESDfcLUyIkHOq9FMULRAV5aDveY//64K+Oz1yVWl\nvM9V/7oPTxUuqe+9xuozOoFZziLgz2tqckKs8Hf9OZ+MZN+FMgF8P/T880D+qqtGzNNmDAGNfrXT\nLABjZvkCrRQv/DYELF4bcBPCSNdvgeyUm4KdVqOZqGiBrix7ukzXF/MnufdenDr1rHE0E3m4HRj6\nzMJ+2Q3YKlzt1yeF2G1ZwBfVn9jkQ/lhOZbJpEgmAWfp0hFTHTH7gRl+rdMuAKOpfBfHT75StWNj\nyDBZf1PAbbyNTAvg1K057UiNRoMW6EqTdiRQH/NLVuiPf+Mgrl+4pL6wti4n0kBExYBW0wTiSjXR\nDBwPsBPZ4S27EVVGgQNGDzDPn+R2CMBoKDOE4/lfhb/7T1XAH31hMNgaSSgf5QFKWEFOq9FMXLRA\nV5ZUXgAxq4Rcyr5C9AdHgdQfzwNyMgOEVRRoMQxguudRDGlWw+ouMsUqFqY6pRXhIbMfmOvXe10C\nEJPLsaCP7DX/9X/VKsVNd2fNnsrgAAAgAElEQVRu+sP06S84EwTHliS1QGs0Y0ILdGVJFwQQC5XI\nGYn8rFVkPXduLHftZCAr0kC4aEEbBtDoeWpY1IYbDxYtaBUZucM2KHMDMgvM6p/kZwGMsqpnfP2v\narIpsWBV4cN/P1jG5W+McDPFH5QIdOdRo5m4aIGuLN0pA6iPlpBLoy0L5K+cjBRAh3kImOROBzql\nBBo8T4ksINRwSvewBX2Kf2Of2Q3U+pHEoSpARFV5ed4tB0zgQ38zZJX6jzJOwp2PA154mm/VBD65\nRjMh0QJdWdqHJDC1qoTDQRQl1Bp+BAesHcA8dxnQJyVQ5/vINCDVcOnkYQv6FIHeY3YBi9wpxSBo\nY7ZbXpZKPiOAeHXw6gxEj3wXyMz8Hwj9qdNoxoT+U6ksxS4q06pL2bOOD6hh7wWHzF3AbGcJ0GcY\nQJ1fULgA/jGBLlrQp7g49lo9wAXOZPegAZhzyomxU4p8VgChU4K1x4+Z2m/3vQwi03hn4JNrNBMV\nLdCVpStlAFNKlhh1fQBTAj5ei7mfY0HQfUIAdcfqb0g1XDrZ6OqilAW92+wEFriT8nskYM4uZ4cw\nnxW+DxCKBG9B12z5BKh8/aVebNbpR2s0GkALdKXpSUtgcqm6RXLQAfwqE3CF44gCUOXXAoNSAgky\ngMAQKgLgebFvfhMYUYVjSOZesI8Aa5OzM49ZgLW+nPpzR/eaQDiqqusDt6CVldwNpOd9JOiZNZqJ\njBboCpJzRaYggLpSm4SytwD49TbgMzygWKQ/JSUQV2lAqGixmXf0pz819+9X8XjqT//0xHl+Hd7t\nCG+BO3neL2f5g8JqVOGryxHo/dtsYO4yRxqnHXtmGPlu4eWAfN0lAU+t0UxotEBXkL6MBIQoLdBG\nnwP49SFAMexVkEggKQQQYwjAjwHCdeP33QekP/Qhv7b2xHkeCe8Ebskuzv40CiTe45X3VA9st4B5\nywNNTgHAyLYAvl2n+xBqNGeEFugKcqTfAKpCvilLeHVFXx7way3AF8NeY4F0jwl0XAxwLITD3rDB\nPHxYxWKpe+89cZK8cDeEmoFbepYVng0B1e8tM8l7/zYLmLusAgKdaQG8SFPgM2s0Exst0BXk2y/H\ngCvmli45JAo+oEIG0C+7AEuFYn5ip2W5QkSUmiJfAIq9YmVfH+AsWeLXn9TKr1MmC8IzkPN7GpQL\nEFpajge5v8to3mkRdAfCIka2FdA9rjSaM0ULdKU41Gc+sisCfPSyZOkRvgIwBNBltACTvekCsSkU\nAi4qFHx7E2AX1gLC8wBOyfDuNTJAtR+WeQMQNqIsD/ILj4WUYs4SZ8qMcRWSLomRawe8yPTAZ9Zo\nJjZaoCvFgy/EPJ9LZhdWTi/tNBDFChvyRIFuAl6wbWBdIefYmwGrcBGA5wHqlPZTvTINTPJj5AUg\nys0AfPnJMHDR9QGXrytiZNsALzytEpNrNBMYLdAVwfXFT7ZGgZJVRgGR98m5HEtU6TSPAA1eU1aI\nTbYNrOQ5XyRRluUsB3BdAGOkedwnM0CdH3X3m4AoK4TZ99j+fAi46Nrg/Rscd3FogdZozhAt0BVh\nZ4eZzIuIpa6/oLTkhZ7sFI7ya21vbhw4YG0HZrgLfhKJDErZ4DsLY/cC0ex7hAoBwzkkpwh0WhSA\nmlRs6IsJIHZrOVt87YfMbFqYlrpgdfA7hCjfTO0D3Pj84CfXaCY0WqArwktHbGDV9ELJ+A0g+tNW\nIHvbdGUKhdpvbQXmFVZ9Ix4H3u9/y5Dtpjs3Mfi54Qt8n1IujpxwgZu+cLl31JBTvPrPleOjOLzb\nBBrnuYYZfA6hmT0ivCzS1AKt0ZwpWqArwuYWG7hoZmmDVA44oSc7gewdjUCHeTglByXGYePiZtOM\nKucd5l+BrB74Z6GOZXUXNwlLCLSzYFvTpV9ZDST+z5CsKkdhD++2gFmLxtXGcDTMod2AG52jpF2J\n+TWaCYwW6Iqwq9MCSjYhBOxNvcJR3vRIYU0tcNjcDUxzZ/88UgfczHcT9MdSf2QX1h+/RBR90NbI\nUvc54d72zcukK+2LC5Hbs+WttvWgCcxYUBmBTh0A3KoFlZhco5nYaIGuCMUcwpJVRgGZdAFvZrRY\nFHRQ9gJ13swNoRDwNvGfhjsrkfz0iZcY7e2AN3XqiKlc/JqeOBC6Ol9eiVEglxZALBF8ETtAFnoB\nz55Uick1monNW6i3RSgUKu9C27Z9vyLiMnYMw5An+B9SBQlMSlihUIl/gZYvARExiy85Z6eArFyX\nEiJKajmb6rJfD9lVJ13S2gqI2bNHvEvClOGMDZhxGQqFTNM0DONM30nXMYBo3Cz7EZzK8WVYfgqQ\nkfoAJx87QgjLskTJjpBv7jKEEGf9U1p8K87KgxhBGZ/SSiCltCzrTX4unncGqQZvIYHO58uM8SoU\nCmf0miuBZVmu6yqlgJwrCsWkPpHL50s8ezOdBzxz+CUPhHqBdrUWWM0z0cIyM3ljnpPejcThw0B+\n6tQR71I+XCgKtGc5+XzeMAzDMM70ncxnFSCkU/YjOJVQKFScLZbrAxwZD3DysaOUchynUCjta3rT\nMAyDM/zLrBBKqbPyIEZw/ONxdonFYo4T5Mc+cLSLI3iGcsPvaiJcestO5IpJ3sPDUmIQOGysAi7i\nd1XJTzLCW6GUeeQI4DY2jpjKwQtlLUCOLOJ/BvR2SCAcq4gdIZxBwDerKzG5RjOx0QIdPG1DBlAX\n9UOjRK0VfdCqanjHryBzeRYcNuYJ1A3ql6H8lSPGm83NIpnENN2FC0ecSsq89CXAKPF8p2XfFrvj\nsGlaavklFTEzZaEP8O26Skyu0UxstEAHT+ugATRWj/p9Vgw5gJ8Y9i/lRbaP9wEreL7J49SHYm3f\nDrjz5p3a7GpI5IRfTBkvc7XP/CICrL4qH6+p0CahFmiNpkzeQj7oCcNpBVoOOYBKDFvQrxhv6+YP\ngLfxA9Odc+r4okA7y5efeiop86JoOpe1DfbK06GnfxYBLn9HmSF6p0MNC3So/rRDNRrNCLQFHTxH\n+08n0P2vW9BthvGc9WcOUw3cG/ihUVKgd+8GnGXLTj2VHHJn7Z0CiFH83W/M//c31YO9MhRR62+q\nSJkk4WaEcgHf0j5ojeaM0QIdPK91WcAFk0eta2EcTAHe7Biw3QKwaP/f3p/W0j1cGmnE+MOHAXfe\nvBHHD5l9t//NNYm+mJzvhK8rZyc6kxTARz4/GIkHn+QNCI79l5IjU2w0Gs1p0QIdPK91msDiKaUT\n84SjzJYs4M6NA8+H+oFqXrpV/gdQQqB932hpAdymkR1Jtuzrfde/XwHUfGGIsspo5LMSmL+yAjWS\niqhhv7ZSZzkSWaM5F9ECHTCdSWMgK4Vg4SgWtHEkjaeUKdymMLDVdoBGv10KV6q46c4dOb67WxQK\nCOGdItCTPjdberLtuvbQFWUGcuazAgiVVaR0TBwTaALvRKvRnAdogQ6YPd0mMD3hxUepnW/uPebf\nMCXQYkSA+V4nYDpLTn0i9qZNgDdtmopGTzzudxjznpilhMp8vqW8pfZ3Sc8FqKpM/AYg/GP/ObSL\nQ6M5c7RAB8y+bhNYMHnUwkP21gHAWZoo/poUUWCGaAFOrI50nNi3vgVk3v3uEccLWy3g6PzueLll\niF55OgzMWOBW1VZKoGWuC/CtaiW0QGs0Z4wW6IA50GsC8+pHFWhr6yDgrKwp/poTcaBR7gTs/KUj\nB2/fbr/8MoaR+cM/HHHK2WEBuy88EvPLLOP5ytMhYPXVFYnfKGLkuwA/PKVyt9BoJjBaoANmf88b\nCrTC2joAFFZUA6+ENrpUATNkC8q2i+0HTyD6/e8DuWuu8aa/3nH1Fbvl3fX/uWFPO7Bn9ZGYKkeg\nfZ9tG0LA6isrWKdC5joBL9RQuVtoNBMYLdABc3TABOaOItDG0YwcdJDCWZYAHon9ophhMp1+y10s\n1MhEwdDGjUD2D/7gxIPfjL2wMXR48mt1QPPy9jo/ypmz60V7sFfaYbXskgpWijmWpaJrjWo05aAF\nOkh8RdugBJpqSmep2NsGAXd+vFiIIyUkIFARUtIrkWsnMhnAm3SSwO22umJD4enNk4DPzrgiospx\n7z75wyhw2S25CoZwgPQygDLjlbuFRjOB0QIdJD1pw/WFEExPlBZoa/sg4KwYTqvLChMIkRUoqUrk\n2olsFlDh8PEjBeHtN3vm7pouFLLWX15fjnGaTYvnHokA17w7U8blY0d4GcAfT6k9jeY8Rgt0kPzg\n1QhQGxm1jl1RoAvLhkM4MsIGwioDCD9x6niRy3GCQGeF8+HaH7n4i7bPAMyFZTapeunxcC4jahu8\nFZdVthKucNOAMstxwmg0Gi3QgdGXkfc9UwUsbBh9h7BoQS+vBrIifdh0gVr6AOmPtKBDGzeKTAbD\n8CdPLh7ZaXU8Ed4LrN05HzDnl5kB+PyjEeDK27OVTh+xkq+hozg0mnLRAh0YP3g1knfF/Enuv93Z\nV3KA2ZyWfQVM6ayoAR6Pfb9HrAHW+TsBw59+0mjfT/zN3wCZ973Prx92Tw+JHNDoVV+3Zwlgzimn\nQ4fnild/HwIuvrGy5rOZPmgNbEUYuak3V/RGGs1ERQt0MHg+//FiDPjQunRDvHTeh/1KP+AsjKuo\n4eE+FHswxWXAKp4FDG/aiYMjDz1k7dqlotHkJz95/GBS5oHJXsw8FAaMWeW4OF572cqmRLRKLV5b\n2UZQkbaHgULdWh1mp9GUhxboYNjQbLcOGlFb3bG8dGFl67Vk1T/tAZzVtcBL4SfajWSWpcBS+Rgg\nTxRo36/68peB9Ac+4DW8rm4pkQeq/JB7xACMmeVY0FueCQFLL84bZdVXGiNGujl66D+B7NRbKncX\njWZiowU6GLa2msBV8/KJcGnzOfRMt9GaBfJXTAJ225szrAY52femi12A9CYfH2x0dJgHDwKpj33s\nxEm2We3AosONKiMQZVrQB7bZwMrLK2w+v/YlI9+lZCg77daK3kijmcBogQ4G1weIWqPbpAUfyN0w\nJXvrNMAR+SzLgIVuunjeULXHx4piF2rT9Ktf3zl0hPdwZCdw8+bVgDHLlWUVcW4/ZACN88qMABkL\nRrYldPRnQP9FD/ph7d/QaMpEC3QweL4AjNE7twpXAap6OKnEoZBjMbDAGwKEinBivkmhACjrpAyU\n5+zmQZmr8SOLt8wErCXlKKzv09ViAA0zKijQ8f1fxXcKdWtzDddW7i4azYRHC3QweD6A8QZV6V0f\nUObwCFcMC/Rcr5dTgqBFKYF+KLITuD5/gbfbAsxF5cTY9XcZriOEoKGpHP/1WJD5nmjLT4DU3D+u\n0C00mvMELdDBMJQTQGyUGtCA8BRQrAENZEQ6y0pgodcBSFV10uCT81OAPWbXT6PbgDszK4p17Kyl\n5Qh0x2EDqJnsVy7DO37om8LLeomFuSk3VugWGs15ghboYEgXBBCzRi+s7AOoY+93qxlyqZOoJaoN\nEOqkXDuRSgEqPlzCQqE+U/OIi3997oLLO+Z7h0zAvrAcgW47aAKNcyvl35DOYKz5W0B20f9C6E+X\nRjMu9J9QMAwL9OgW9LATRA67OI7KaUCjNxRmCJAqduJYmU4DKjZ88JeRnS/ZR0PK/Puhm5ytFgpj\nmicbyvFRtDWbwPSKCXTs8H8JN+VGZ+ebbq/QLTSa8wct0MFQFOi4/QYuDuB1L3WnnA0sdNNKZAD8\nk8oJiaJAx+OAj/rHxFPAB9PrZrm1hc02YJXb5rW92QSmza6MQCsvdug/gPTcexG6CaFGM160QAdD\nc68BTB2liB1gP9sNeDOiQL/RNSCWAmsL0hfFKI6TCnIWi9j5kQjQY6SPGP3AJ1JX+F1G+sEYELqy\nnCxtz2Xb8zYwd1lF2nib6WaZ61LCzMy4qxLzazTnG1qgA6AvI5v7DGB1Y2nhs1/qs3YnlS0z724E\ndlkvpbkYWJ83fTnIKZWShquMRiJAr0wDcRVK+OGBT1arIWktdyJ3p8tY57bnQqkBGa/2V1xWkSwV\nM7kX8OJzlaHri2o0AWCe7QVMBLa0WkoxLeE1xEtb0NH/Pgrkbpzi19rAxvARj1qJt9xxctGiD7pa\nZDKyu7s4XnZ0AAwLdAao96O5X4fzT4WFQfU/DpTnP9j46zBw0XWVSvK20vsBt+wuthqN5mS0QAfA\ntnYbWDm9tPkscl7kV+1A9r0zikc22TbQ6PWGlErLDsDo9aeuXl0M3jhOMcyuX2aAOic29HfVQOTu\ndHkOaKV46YkwsO7GSnWJNVMHACc2r0LzazTnG9rFEQBHBwxg0ShloM1DGZFyVdjIXTUZyArvVfP9\nwJX5NOCbLUDooBihzgiRX78eaDUGgdXb5npHDRFSib9KlrfIPZvt3nbDDqs111ZKoGWuA/CiMys0\nv0ZzvqEt6ADoTUtg0ihVRo0jGcCbESmGcPxTIpdjgUXXXw9agC/SgJG0gcLq1T2PPDLi8oNmH7D6\n+fmAtcIRVaOHWr8hv/9FBFh3Qy4Sq1SKiiz0A75dU6H5NZrzDW1BB0BvRgJ10VEE+mhRoKNAs2l+\nNzoTWOF9J6EkUAyzM4/0ApyQOnicg0YPMOfFRsC6sMzNPd/j+V9FgMvfUboaaiBIZxDwLS3QGk0w\naAs6AHrTBm8g0C1ZwG2MbLbtOyZN8iDM3ptzu4tniwKd+Nq3OTm3+zhFC7pucz1gry4zPG7PK3Z/\nlwxH1YXXVKqLSvToD41sC6Ds2tMO1mg0Y0Fb0OOlK2UcGTCEYOHk0j5oa9cQ4C6s+lE06oFNdiZ/\nMt1rHD4tXEAUUPF47tqRtd+2Wm2dRjKkzFBbCDDLrRG65xUbWLq+EI5WyL+h4ge/DriJRW50dmVu\nodGcd2gLerw8uS+kFMumuVOqPHWq+nnK3jIAZFfX/CocBq50/q7feirs31Q8r4pFOnx6fvxjZ8WK\nEVf/JLoVuCm5WKUkIKrLdEAf3GEB85ZXqkh/qPtZM7lXGdGeS3+ujBLfAzQaTRloC3q8PL0/BFy7\noLT2mQfTIuUqWz67enK/lFVK1anfAdHh1EFVrKIkPPy6uhHXusL/ZWQn8O7OVcUjIjEugZ67tIIl\nOIBs4+2+mTjtYI1GM0a0QI8LX7GhOQRcNa+0QNub+wF3SeJXiShwTS7nyAEgouIcN58Bv4RAb7QP\n9cp0tR++5Oh8QBiU10LFdUTrQROYvaQyGd6ZQ+GuJ4D0zLsrMb9Gc96iBXpcHOw1B7LSlGrdKO0B\nzeY04CxOPBYOAzfncmkxBET8OAw7oAG/tkFFoyOufSK8D7ghv9D5bhVgrS7wBg0BRiefFZ4LUF1f\npgH+xiR2fR7fLdSvd2pWVmJ+jea8RQv0uHi11QaWTHVDoyRPy84c0NIY7TCMkFLX5XIZmQKiqgpQ\nDNvd3pJVp177RGgvcNORpZnvR4HYR1OnjjnrhLp+F+74DcIYXPr5s70WjWaioQV6XGxts4CV00bd\nfDO688CW6VXA5fl8RHk5kQaiwxb0sM/BXTRye/CQ2XfI7DORa7+xQuWFeYEbvqFSGYBlI5Rbvevv\ngMyMu5zEkrO9HI1moqEFelxsa7OAFaNU4QBkVx7Y1FQF3JDPD8oehQJiKgEghpXdWbp6xIXP2geB\n5YVp3vcSQPRDqfL8G8Dx2BJR7gyjEep80kztU2YsufCTAU+t0WgqFGbnuu4jjzwyODiYy+VuvfXW\nKVOmfOlLX6qpqQGWL19+2WWXVeKmbz5KsbvLApZOHV2gBx3gQH0YWO44T0V/DMxyF8X9GsAzWgGz\nG1XTMOLCQ2Y/cPGReX6XgSB6W/nmcyYpACEIj5JKUzbFzJR83SVeaEqwM2s0Giok0AcOHLBt+557\n7mlra3v00Udvu+22hQsX3nHHHZW411mkZdBIF4QUXDDZHe2dFCkXaK8OAzV+4eHYN4F3pu4tnnWM\nZiC8r8SFHcYQMH9bI2A0emUH2AGpAQlEq3wZdJMT6aYAZVWddqRGoymDigh0IpFYt24dEI1GhRB9\nfX09PT0/+MEPDMO48cYbq6urTzvDOcG+HgtoqvEi1qjRbzLtAQMJC9hn/6bP6Ez4dVdlh/9XeeYh\nILQfpo+8sNNIATO2TwHMReMKj0sOSKCqNmDzOdz1hN3/MuAbsdMO1mg0ZVARgZ42bRrQ2tr6yCOP\nXHvtteFw+NJLL126dOmOHTseffTR973vfcVhP/7xj9va2oo/r1279uKLLy7jXkKISZMmBbXyM2Lf\nyxJY0SSnTBnlC/5QAdcHhhJ2CF6t/hnwTvHBGQ2ziuezHAVC+6lf1aBOnqTPyALTDk0Bai4MjXqL\nkxFCCCFGDE73CqCuwRjjJGO6UdtT8sV7ij9Ha6aFg5s5WKSUdXV1qkSK5/lIyY/H+YyU0rbtROJN\nza7KZs+gYFlFBFop9dRTTx05cuS2226bOnXq8eMLFy588sknj/96zTXXFArDu2RSyr6+vjLuNWnS\npIGBAd+vSITvG/PSwQSEVk7N9PVlTNP0PG+EENhPd1VDblKoqyFygevulq8iWDp0SV9h+JWmok8R\nI7w/1ldXp05++cn6HBI5BJC3M319mbEsKRwO27Y9NDR0/Ijr8J//WAesvX6sk4yFUO+RBCiryqm9\nKD35VveUZ2fb9vGHexapra1NpVKOU5EMnbFjGAbgeeU0Yg8Q27ZjsVh/f//ZXQZvmY9HdXV1LpfL\n5ytVQawkvu/H4/HTjwMqJNC7du3q7++/5557pJTAhg0bQqHQ2rVrW1paGhpe3w070fJNJpPJZJml\n6F3XPSsf/T1dBjC/Pl/8+3ddd4RAR57pBHZfMUUJFriZ9nAbMD03z/EcwDOOurE+fMy627JScrKI\n5HCgmAeO53tjlBjLsnzfP3Hww9+MdRw26qd677h3yHECMyRNzwPc2Lyedd8FOGV5UsqzLotFXNc9\n6yspGhBnXaCllEqps/5u8Jb5ePi+73lj/eM6K1Rqk7ClpeXf//3fgUQicccdd/zyl7/csWOHaZq3\n3HJLJe745lPwxOF+E4o7hKWxN/YCz105FZjqtbdD3K+u9RqUyGejP3K854HwXnJvf/+p1+aFCxhK\nAmUE2L3wWLhlvwk8/M0YcMefpOyw/pqv0ZxjVESg3/nOd444ctddd1XiRmeRI/2G52MZqqmmtECL\ngm9tGwB+dnUTEOZVoMldAKTjDySrvlwcFt1a5VwxMo2wILxcUaALBiDOMFq99YD5xQ+9XtljcqN3\n8x8G5twoMlz6WcfRazSVRJcbLZNUQQKJsDJH0Shr15BwlJOwfrdyUlypI6H/F7gkd7PCTUe/B0SO\nzA1vPFj/66WpK0Ze+4J92MOf5MesAxEPjKYz+2qcSUrACql1N+SAm/4wY4WCNJ+lOxTf/wCQm3Zz\ngNNqNJoRaIEuk7wDEDJGFT5r2yCwf2WdEqzLH2oNbY2o2I2Z/5GPPOYbHdKvmf6jD9T8P3+TvzZ6\naomN34cOAFem5nkHDcBYcGY+suKOabxafeYbFdkOqtrzJVnoc2Nz0nM/XIn5NRpNEf0VtUzyngBG\nq5HEMYF+as1kICK+AVyVeVfMT2Si3wEimT8wetJAyeufDR0Ebti9DFcIE2vuGVjQzzxkPPpfxcDk\nijidzeTeYvXnoUWfVcKqxC00Gk0RbUGXSd49jUCbrw0BL66eVO+7nfZ9wM2Z/+mLVD70HBDN3hX7\n2h0A1kiN22y37LA6gLX75gFyhsvoiTAjeO1l86/fZxdjSezQmb6mMRE9+kN8t1B7kfZvaDSVRgt0\nmQzlBBAf3bdrtmaB5jmJxe7hrJ2f6s2a4yzxjLZi6JzVWSeHhoDUxz424sKvx58Hbsotqk3H+sGo\nHqs6K8XXPhtWivkrnPkrnFVXVaT6nZV8DchOf0c5wSUajeZM0AJdJsn88CZhybPCUbK3ALQ2Rhfx\nuywszV/MsR7eKNs60gb4NTWFCy888cJ9Zvevw7uBP0te7hcFdsz7e7//eWTXS2Y4yv/+Vl/9tEqF\n3JrJPYBbtbBC82s0muNogS6TogVdFSqdwSi7cvhKCdqmx6aY/w0sLqwFlEgDUkXDDz0EeI2NIy58\nMP6CQl1cmLXKacwUBCDs0wt05xHjoQfjz/8qDNz+Ybdy6izdISPXAbhVF1ToFhqN5jhaoMukbdAA\naiOlBbpYp7+/NuSG3TyPCVhWuARQMgXInBX/xjcAd/bsERc+HtoLfCi9DlBpATCGBJMf3lf1xA+j\nQHW9uucvXadiee9W38uAb9fq+qIazZuAjuIoB6V4cl8YuHRO6XoCYsABeuvDDf4mQeHO1Eenu3MA\n1zgK2Id8oLBmTfLTnx5xYUG4wEy3BvBaTMAcQxB0b4cBrLk2/3ffTcfH7LMug2jLT4DcVL09qNG8\nGWiBLoc93f9/e3ce3lZ15w38e+6mXbLl3bHjxNlDVkggGxAgQCDQpFDasL0Zysx0SqedlIeBtkzp\nMtMObVP6tmztdAPeZgpNKIFCQkgTICELZA9JSJzVSxbbsi1rl+5y3j9kTGLLtmRbluz8Pg/Pgyzd\ne+6RdPzL8bnn/I581idKAr+mMvGNOMGvAWh1KQr7BMCMyA3x53WxFoBldzOA1h//WBs9upuraNUi\nAHF4zwG6pUEAcPO9wUmzulx33neC5jeffxtAaNgd6bsKIaQdDXH0xsZjJgAzy2OOLu7gmTbWA/Dm\nKAyHALjPxHJ+tJyFw+GH9+E6KKe4OnWqOmlSV+XL7zu9K3PVnQoAcXjPMdfbKALIKTDS+i+u+dxa\nZkR16/BY3qz0XYUQ0o4CdG/sPyMDmFeZeHxDOhW0rqoDUF9kUdgBBlb+h7etq1YB0B8BAKUGwQce\nSHiuBgOA49vDw8fNbaWN6iFAGwZ8LQKAnPz05lw1NW0DEC5eSBPsCBkYFKB7I6QKANxdbPEntKgA\nfE7lp/852o4tU6Jz7fVhANGrr45MPgi0qDc9EJudYJTAAA8KMWeLVTxhBuB4xC9WaNKYHgJ0yCcY\nOgA43enNZimGagFojvxNpg0AACAASURBVPFpvQohpB2NQfdGWGUAutrpinljAM6VWM+OOADwG0N3\nC4EAgOi112q5YQDqdfdCTLA/YFCIGeCXfTQSHOIw3f5Nv+WOnjdfiHefJZlbHelNKBrPYKdby9J6\nFUJIOwrQvRHRGABzF+u890YYAG+OIrEDNsN5438dVLZvB6Dni5xFAAh64jlqPhYBcOXfJwCQpySb\nIMnfEt9yMM3png0tPgNat3Scu00ISRMK0L3REhLQ9SqV93QZgN8h27B77rnZeU89LzQ3A4iVKQDA\nJcHITXjiccnjbLZ96dn5AJQZyW4IFGhlAGx92PY7GWL4DLgOJurmkrReiBDSjgJ0ysIqq/WKAEbl\nJx4d5qoBwCY35mBN4akoAG3s2Jann45cPQWAwJ1d3WR7w3LotpdmKWFZqtSsDwSTrI+hMwBimu8m\nyMFjADTrcC6kJwkTIaQTCtApO9EkGRxWhZe5Et+U4zoHoIjNgGE9eQ5AZOHC8B13GGJ8nbcj4Vkq\n09eZjnzxmesAWJcFWdIpOHQNAISuM1P3C8lfBUCzj0nrVQghF6JZHKn52buONw5ZAFS6NZaoH8wB\nFjMAaJIKwHbsDIDozHgiDj8AZiTe0Lfqv/H85kfKThQwE7fcmcLG7GqUAQlvOvYfbpgbNgLQ7N2t\nrCGE9C8K0CngHL/a4jA4AEwpTXwTz18fe+iXBwGcKaoGUFgVAKBOnw7AEBsBsEQD0PpZ0f10aXwb\nQfPnwkJuCgPKNVUSAEcqp6RKjJxVmnYAUF2T03cVQkgHFKBToHMWj84/uc37ucsSLPIWWtURX9pm\nPhM8Oi7n6R+/4lJzbnjVy00mIzcXgCofAiCrEzufGNsrAzhT6fF+t/r62aUp1UpTGYCiJBYc9hrj\nOgAwIVxyW/quQgjpgMagU6B92km9eVzEae7YY2Uqdz+4y3ws0FBouWXdLT53YOa5aYIOw922wbYW\nD9DaZZ1Lju6VAeyef3TYIkFIcTpzfAw63TcJAQAs5Q3GCSF9QL9vKdA+vSkoJRrwdfzkiLK9icvs\nS6/ccGqkA8DlJ0cBMPLyAHBoqnQEgKwmCNC+fQzA0Zm1Y9SCVGvFDQZASm+A5gCQcNCdEJI2FKBT\ncNwjATBJ3NY5ib7BLSurAdQ+OfW9+fExCj59nwOAXlgIwBAb4qtUJG1U55J5lQJAmBiVUv9GQgEG\nQEkibXSvMT0MgCbYETLAKECnYM1BK4AFY6NKpzltUpVfaFW5ItTfVR5/hkHL3XMSgDZpEgAu+AAw\nbgVXOparMrlZATCywNmLWnnOigDSt4sKACHSCMAw5afvEoSQzihAJ0s38PpBM4DPXZZgDpz0URMA\ndbJLU+IfqQFw554qAOrEiQAM1gqAGQlCsN4oMA7O+GU5vYmA8QCdX5rOAB1tBKArFKAJGVAUoJO1\n5aSpISBaFX796ATzN+RdzQBil+fojAFg0BRulo8eB6BOnMhZxOf8EdqWEXZ0tikEwOcOXc5STnPB\nedt2Kvnp7EGLMQ8Aw5Ty+DghpC8oQCdre7UJwHWjItZEu7hKh30A1Om5PkEAICJQFihlmsZtNm3k\nyIh5rarsBiCpCVbi7Q+eBxBxR5yGOdVa7dtsCvmZbOIlI9I5zU4LAjCkxGsgCSFpQgE6WTENAIoc\nXeSAbooB0AtNNaIIQMHpq49NAaCXl0MQwtZVAKzB+3K9z3Q+d3fsLACTtTffxZrf2AFc/4WwxZ7W\npd7xwmkWByEDigJ0slSDAZC7SHnBGiMAjPy2AG3CKaXZD0ArL9fFM1HTBwCzBb/S+Q5hreitDwcB\nuKydbh72pKZK2rfZxBhufzCQ6rmp4TTNjpAMoJWEPatukZb8Ia8hIAJQEn1gLKjF828YbqWurQdd\nrXh8APSysrDldcCQ1amSVtn53LfNR8wBBYDZmnI2jXdW2jjHpNnR4ePSOL4BgHrQhGQE9aB79mG1\nEo/OAMbkJ0jBIXpiACAyI1f+WFEAmPHJ8LcOAlCnTtXlowBMkesTFr5fOVtc4wYgpL6j4OlPJADX\nLE68s3g/kkLVoGl2hAw4CtA9awoJAK4fHdnzcP2dUxLMsRMaowCMPJNPEj+WZQB2bJ66MayOHx+6\n4w6D+QEI3JWw8FrRO3Z/OQB5YrJbqLSLhhkAaxfD4v1IadoOIOa+Kt0XIoRciIY4etYUFACU5ehF\njsRT2QRPFICar3ygKDogo778/LHcCJp/+U0uBwzBi66zjNaK3jEHhgGQJ6Y8TBGLpH0NIQAxWC1G\nzoOJ0dyZab0QIaQDCtA9WH/U/D877ADybF12VONTOD4ocfyT2w3Ajs0lxXxfM4CvfHZMojz9KtP1\nJuaudwKQxveyB53uAK207ASg2sdymabZETKgaIijB/vPyLoBSeBXlHW5SaA/bADwOWUADHouXpl6\n8QGM26REWUZbWNjZaAfArFxwpzZSUXdcOndaYgylI9N7h9AUH9/Io/ENQgYa9aB7EO+dfml6+LrR\n0a6O2SfK5YCDYa3/B487fibx4FeL4P3DS+qMGZ+WYmY8QaahMFMlVQSALjYI78bffm/jHFdcHymu\nSOMaQgCmxvcARPOvSetVCCGdUQ+6Bxzxpdtd8grCIS4AKEb4nLxVQDA/xJRGCMzNDFfbf4miM4Aw\nU0VdAMBSnGIX8gvvvWoFcFvSe8v2jhQ8KUbOQ5Bi+XPSeiFCSGfUg+4Bb+vaJu7hHpDlh5vlPT/a\nB6DGsvY58wYARQ0cAJflHgt/03J43N5yAKznYy+yaZUlHGTFFfr0+V326/uF4tkKIOacROu8CRl4\n1IPugTfMADi62GP7kCwv+etpc0TXJOy99hMADJj/GvSKCr2iosfC3zYfGV5VBEBKcY7dhpetABbe\nFxTS/AUqvoMAYu4r03sZQkgi1IPuwdlWEUCJM/E4b6sg3Lq2BsAzT67e+o+7fgMM+zZsoW/Ub3us\nx5L9QvSo3HATBwAxlVRHpw7Jpw7JooTrvxhK/qzekXxHAGjOCem+ECGkM+pBd0cz2BmfBKC4ixnQ\nWqt61YcNAHbcdJixCADHJiCJwQ0Au+VaA9zGFaSY5eL91ywApsyN5qS++DBFXPIfBaDax6b5QoSQ\nBChAd2f5mpyjDRKAUlfiUHjXQx/JquEZhhOTzjJwsQXW3eDJ7Q+4XzkHoEhLbWw3FmHrV1oBzL8z\n7d1nMdooaH6AafbR6b4WIaQzGuLoUijG1n1iBjClVB1XkHiMuPSQF8Ar/+TnjFdGUficbBTmx+Yk\nNeGhXvADyA3ZAaCLMe7O/F4h6BMAzLo57Sk4xOApAIa5gEuJl0ESQtIqiwK0oqScbzNOlmVRTDkV\nXI/WHzNFNDbMZfz9oVbWxTQLS0sUwJu3+6w6vl8B8dk/txy4FkAy7yQiaQBsfjMA2SUk+fZlue2P\nHrtTFjt9e5IkCUKyRfXIFD0LQLdW9KJAURT7qxp9wRiTkxtxSishvo1DGlppSiRJYoxlw/eSJc1D\nEARJkga4JrqewsKFLArQqpryWuc4TdNSes9JeuugDcBN48Ka1rFiYRY8IR/wgy3xqQB8ueE798Bd\nj/oJE4zk38VZ8coTExyn7QC4VUvy7Wtq2y+5pqlGp263LMuSJKX6STKuyi17mNFxqaTY8AEAzVLW\ni6+GMdbrL7Qfcc41LdnPNn3ioTkdrTQlgiBwzjP+aSCbmoeu6wNcE85TWJWWRQE6pXp3OLHX53Zj\n0zETgBvHRjoX/lTu13eY365vefcOoxEAzwnc82PoxcV6Tg6SqwkPs69deb+1+dM9ruxGkm/B+DQq\nJ3zT/FPJFNXOcfi/7Sd/3dWrmqW8dx9vOr6UXkhT80i1DsiCDyRLqhGXDdXo3e/LQMqiAJ1V/FGh\nJSwAmFyS4F/XQ8qHGgryaicBVSGbcJ9vc/7riN56c/LlRzeZrc3mmFlFsWZzSsrsZNebREIMgKxw\nof/+XBbDdQAMJZfLHfe0NQRLpGRRv12JEJIKCtCJNQYEAJLAcy0d52/Ui7V+ocWP/zP5VACAVNT6\n0IhD3GLxL1+efPnhNRYAq/9l803fyalQS5I/MeQXAFgd/flvfnxwwz/mm8GRD/ZjsYSQPqIAnUBE\nYxuPmQG4rUZ8hrIB44Dpg6DgA3BKPqTDFeRLK6oDAKTGRgCR++83ioqSGd/QYWzRT495t0gANt25\n5x/0JclXzNso7HnPhP5I0i+oXqVpB+MaADF8BgCEzN+0IYRciAJ0Aj9/z/HcVjuAAntbHNxkXfWr\nnIfbD6jFH5vYLfeuXANA8NdwiyX0jW8kWfj3XOur16s/Dc9rGOY9PrvWXW9NvmI/eyj3420mAHZX\nX3vQOfuWm+s3XPgMFxNndCKEZAoF6AQ+OGUCMNKtPXhVW664HeZ1AAr1MqfhNoSmWnGErBrT9zYA\n0Eb5Al/9T6OwEFrPy7U3m06+YNt5Z/01AOoneR4KzWWp7MTqbRQBlFZqtyzrUxI7pgVMje8DUJ0T\nwSQAhuyK5s3rS5mEkH5HAbqjYIwdOi8DeOme5so8DUCUhfeZtgB4tOXXY9TxDYVz9iMn77hPVsFl\n1rDp15CEZKbatgjhf8t5jYPP8o8AMBNlN/lT6D4DUGMA8NUft069uk9J7MyN7zEjpluHN16zoeej\nCSEZQgG6o/1nFd2A22qMdLf1iA+atsdYJMcoKNSm/2/OR15xiQdl1x7xAjCKBEhJLZevF/3/4VrX\nIAZKdedNvvExAEqywxSGjg/fMbc2ta0hFFPP7t9BfHAjUnhDH8shhKQVBeiO9p2RAUwrjbUnMDqo\n7AAwNTrv5w7XHyxLgCUAxh2tA6ANT2qVWoBF78h74bTUzMCe8i6Wm5UYwJLeS3DH25Yn/zm3/Ue5\nb2PFTA+b6v8OCtCEZD0K0B0drpcBTBv22fTnCAsCcOtFVRIADEfV8EjBNZs/AmAUJDVG8bhr7Wmp\n2WWY/91/3dWRysa3LACUK7vc5LCD6iMSgLwSvWy0VlCqV17Wp4VP1tpXBNWrm0tiBTToTEhWowDd\nUTxAjy/8LAhycAAMLCCEAdu9/LnlOxYXrnsHuMnI6TkX3V+s+1ZbDwhgv29ZOjtaEdtm0mpEZuOW\nJeEkq1R3XAJw872hpd/09+YtXcjQ4osGg6O+wlPdx4UQMrAoQH9md53yUY1yvEkAUDPyxVftnvjz\nJ+SPAcSUvV6pCci3GRbTrlqgAgCUHtbz1YreJ5xvA3ggeOXsaAWA0F8sAMy3hJm15yGOD9eb645L\nR/coQF9375aCp8z1G8TgaTFUy2VHqHxpX0ojhAwACtBtOMe9f3L7owIAwRRcV/kI2EWLQcLKJwcw\nBkCO7rSvaAHGAeCmHu4QrnC+5xeiE9Six30LAIAj8o4ZgOWOnrvP9TXij77sbv+xbHSfArTr42+b\nPFvij4Pl99Aeg4RkPwrQbRoCYjw6516+OnfS+rmRW9tfMoRmw7RtGs81mABgwc7pYn0NwGNX6KGl\n5d2UGWXaevMRAN/x3WDiEgC9TuQ+gYlQZvU8AO31iAAUM5+5IFI6Uh+R4r6FHQixZgAx90zNPiYw\n+mt9KYoQMjAoQLc51SwCyLXHKr9yl93Ieez8ofaXgrbf+UzbfOr0eJrnYT89D4BLx5v+8lVuNndR\nHgD83XzMz6L5hu2a6Kj4M1qVDEAYrrEkMvQHfQxAfqn+2G9aev2+2jEtCMA/5uFowTV9L40QMgAu\n6QC9/qh5d21bAoqdzV4AlvzTADqs7lPlwyE4VuGfAQgGt77TCljUmUb30RnAe82n//lXt13uKw9H\nc9qKOigDkMckHqwIB9hbL9jik50BnD0pAbA5+zrrWdB81lMviDEPAC6ltjSGEJJBl26AXn/U/OAr\n7guyG9kBREu2A5Bw0fQGVf74DTzwvLIQwIKNZ4SIBVD9y+f3eIlp3512/Z+vABC4+HlpfOIAvfJn\nzjd+Z+vwpCOnr3mR7Mefsx9/Ov7YkDomFCWEZK1LNEBXt0jL1+RwjutHRyYUaQD+an+OM2Px9OaK\nwNfGx65oP5KzsC4fPYWvA7giFvv9oxsAGIUno/M+3/0lQgF9zuuTAbD7Wm2uCyZ7iLD9Q4JMGmdP\nSW+9YAVw833BC3Mhzbk12dl4XeCWc28AiJQsirlnao4xfSuNEDJwLsUAHYiy+1e6fRHhqorYH+9u\nji/V3lH6GICv1O8o8l1030+TP+HQq3EZgK/uPV+2LwYgtLjnKRDNfxPNIeVMpWf6kxGR9bwc/Hff\nc+oam3FD5Gs/ae3V20pM8e4Tg9Wcyd6pK6j7TMjgMsQD9BuHLFtPKbh4TPm4RzrRJLmtxtOfb4lH\n53qxNv5S59xyEfMGANV8gi2kLXp8L8CAI5ElC7q7qoHg7238JROALV/aP4NN6L6S616yHdkt79po\nFkQs+06fl6JcgHHNfvwZALGCeRSdCRl0hniAXr4mJ6olyOcpMDxzR8swV9smnutsL8YfKLzjfb+A\n7Tkf3B6W92+/PVi8sR4AV7bEJnW3eUrgWbv/SacEcMb33nMI6C5AnzokP/9tV/zxjUtDFeP7c/9K\nuXmn+fzbAMIlt/djsYSQgTGUA3RMZ/Ho/G9X+20XT2sbk69dO+qzjJ0qiwG4Jrwkx8i/uAwOpn2M\nWRxs2cpjAIAtRsF5SF1+btHtSmCFE8DpB07+ZuFGabSG5u4queUNC4CRE9XrvhBesDSU2jvsCdMj\nAHRLabjszv4tmRAyAIZygA7F2vrOX50bcHQ779iAASBPL0746kFcNe6od9ouDxjA3zKciQ8DYJwX\nvf/i5hosXwi98fTGDbZd/xic1c11Ocd7f7UAuP3BYL9HZwDxHa0MycnZUP6iCRmqhvLvbVhtC9AW\nOUF0fs3+6yp5b/zxSfkgLh6AXms2r/N40NjoK/2L8uG43z2yGQC31rNgC3eOTXw9A97lOYZHUCsj\nK55Z+b65CkCZ5uqmhsf2KZ6zoiTz2bdGevEGuyeordaa/wUAYSh/y4QMYUP5V9cfZQDMEu+cUt8r\neP7o/M8OT5r5Z3OQH3e5GtxujB0L4OVfbJz3wXkALPguAL2gIOHltJNSdIuJSfjVyy+/XLQr/uQo\nLa+bGh7crgC4bFbM5uzrZOfOLHWrzfXvAOCUdoOQwWkoB+izrSKAEqfe+aVGsQ6A1XD8g+8/4s8I\nEOZF2u6knZakBlGUNG3FLx5p+PfwJG004IpNj4XuugXiwuh11yW8HG8VAAhu45Op1QDuC14xK1Yx\nPzq6uxqekgD0Mb9zV5SWXQAixQt947+djvIJIek2lAP0Ob8IoNSVKEBLZwCU6CMWhu7r/OqHigJg\n6v79d2sf1GJ3mfEI4IrcPi20rLKbyxkBBoDZjYAQA3BzZNz10R5WhZyvFgEUVySoYd8pzTsBhIbf\nq9m7+0eCEJK1hnKArm6RAJRcPHqw2/TuKsevPOJZAPl6afvzmnTM53rCELwAtvPHf/HN8sXv7new\nWye8erPpRCl6otcLgV/ZATA7D7AoAEenGXvtao9Jv33CFfAKNVUSgMLyPuURvbgeEWXbvxZ4Pga4\nGDkHsFjOtH4rnBAysIZygH73mAlA+96vca/anz2sfBR/PEz7rEcctqyJmjYDiMF07PTMv/zfDYAA\nlLUfYDi6+6xCb5qi2xUAQqHeIoQBOI0utw58/zXLvs1trzKG4WP7LUCbjv9ePLGyfV255hhjKO7u\nTiCEZLEhG6A1g1U1SgAWjr9ogkSNfBTAMt93SvQR0yKfJd7kLAzAHL1+g/49yzkrAMMabXzWBM5k\ndSIkS/SGom4upx4RAZgXRoL/XRNlmgA2Qu8yMsbz1V15U+S6O8M5BXrBsP4Z4mB6yHz0lwCCI78c\nc18FQHVN6peSCSEZMWQDdFWjFNOZSeKj8z+7Bdcs1vuEZgZ2a3CZhdsvPJ6zCABBHf+iec7Ec7UA\nYFL1m+4EkEz4VD+RAJhujHxc3gCgVHfFM/QnFPILAEZPUefe1sdESBexn/wtizRyW5lvwne5oPRj\nyYSQjBg6AXpXrfL4Wld8VxQDukcLADCXHHqo5Lb2Y1REAeTrpfHoHMVrodhjXIgC0GDkvTAn7z8q\n3zKtdvhjALgl2ckVT9XuWHL4Ngvw0Kz/3Zt7HMAILbergw2jbZdui72vU+uYEcvd+6+y72D8RyF8\nHoB22cMUnQkZGoZOgF6133LwfHseZxFwA1BGbT4vVnc4cow6DQCY2przhG75LPNn4TPzrWccDvji\nP+qFSV03zFRttd0SUGJmdeuUIyEhCuAytcvVht5G8eRBGUDfRzZk7z7zubcufMawlmujH4Cv/xcl\nEkIG3tAJ0Of9IoAHrgzePC5ySPnwZccv8vTiR/OWmJte7nDkKHUKgJBltW5plutR/mhJ8IEvAzDV\nlQJ4+KnZeYXq148cCS29Ppnr6jAqD5cC8DxW84foFxEFA5sR63KvwliEARBEzL6lr6sHpcBxAKpr\nkm9C22xuuWCyLJoACtCEDAVDKED7RACzR8Suroxyy2ln7t8rY5df5fkJogkO5tCCjqcBFK2A9fjI\n8NiHAAi+dYC+4cZhkyrNAW+XXeDORh0sBTDyMqs72t1E6bhoGAAUE2cJsuylRg5UAYi5pkXzr44/\nI1poRytCho5BH6Cffx8/+FtBVEN89LnIrgN43/IaABltQ7Ehy2q/88fx24COjWMq/vFO0WcuZsvB\nIbaCS3LxxPUAWFgH0JRnlgDfD5zhVVZuAECUaVHW3Uy4Iq8FgDhGTebzPHNCAiAnsWlsN+zHn7Wf\n+h8WawWgO2gdCiFD06AP0C9sZw2Btr6oIvLKPO2sdGqn+e8ACvS2WcxB51OGWB9/7HpzlFJz0QQ4\npoK1tt0P9OSbGwotZYFA8AU7Pk2Gp0BR0MNtt/qK5knFApK47ffxNhOAovI+DUBb6/4iRD3xx7Hc\nGX0pihCStQZ9gPYEAODJRd6pparbaritxrvKbgDDtbEPeZ8EoMoHNLEaXM5rWs24YqupAqCV7mv+\nr0lScBjjTK+s5KIIYIXD8f8q3fdEQl85FWqKOQDkve4Jm2N35r0A4MnWRVZD7qoaZeVWmZs4eu4X\nhwIMwJU39WkAmmlBAN6pP4/lztTso/pSFCEkaw36AN3oB4AZ5eqEorZe8GF5J4BJ0dkmbgEQtrwO\nwBy9TonNACB5jgNgXNZuXtJh2OLDvLxzJtPE1lZWJwIQ3IYyI1Yln/+koNrOTTPOJU5iFyfLsqYl\ntSAwEhQAWGx9GuKIB2jVNZmiMyFD2OAO0FGNBaIA4LYaLe4v7zC/80fwCPDo15fe9fwspr8JoBTT\ngd8AAN4EACgAPOfuPjesY4aNn7f93xUfOzgx/PzlpT+IP1Wmd5fWWYg1577/Bcl/tMcKHzx11cfv\nrQfMxSceKX3zt0m+za5wkW4JEjKU9bzbdDZrDAgAGIPTcTpkXv9X8PjAwW0vzmZ6d28tip5TJO+9\n6nj748tjZd0caa35czLRGcDLm74RCLsY4yNLPknm+G4YklM3d7f6nBAy2A3uHnR87nO+zWCWvQeA\nesDMrU8dedbqjwFoetao/94dhsfseuQTZeRnQwpcYJiaX4D6+/LzT4ricr9/XrRtLp6F81zDAPC8\nY9vPxr/zufBl3/LdAGCY0U0Pmsc3LvGPfyxUsrib2sYiwvsPzwDw3eeOltzw0/q+vXeuuKgHTcjQ\nNrgDdH1AdIb1ifAeOnjifcdcNzCrdb7lLTMQMwT10PQbbIF8QDh9Tb4xqsN06KZmQdqeXwRgcvSM\nIraNX+tAfHzjw7zT8JsneYsL/DKAGEKxLuoge/eEPK1cLPbkPqhr3XXMd75nCgfF3ELj8kVOXXT2\n8b0TQoa8wR2gz/uE59YdudezFf8z5na0Z8f3AYgaRbY54+M/f+9zo3yJTp8KAHgc4xO9OHkasB5Y\n33MtxgJLk6/znEVhQez5MEIIGYgAzTlfu3atx+ORJGnJkiU2m63nc5Lz4FXBD0sb2zq9FwugbSmg\nBwj01/X6TJT4DV+kddiEkKQMRIA+ffp0KBRatmzZ3r17t2/fvmDBgn4s/Ko3KjceinGDM84sRg4+\n3ZlbK3BAOArAYjZ+pnQ5p81hdLlgROGiueuUoRfiTBTNLl3XOe9h8pwo8T5OsCOEXDoGIkDX1NSU\nlZUBKCsr27dvX/8WXjK8XDSbdD0t2/olT5a5phk9BmhCCEneQAToUChUWFgIwOVyhUKf/YG/devW\n5ubm+OORI0dWVvacaSghp9OZ8cgoCIJh9DW/c99JkiSKYk5OTqYrAkEQLBZLpmsBQRDsdnvGvxrG\nGICMt1JRFKl5XEiWZUEQTKYud6dLh2g0Uf62LgxEgDabzV6vF0Bra+uF34rD4WhvsiaTKcmVeJ3p\nup7x30BRFA0j8z1oxhhjrNefZD+SJCkbqgFA1/WM/4ElCAKAjLdSZM33kiXVUBRF1/UBrklKzWAg\nAnRFRcWePXsAnD17dvjw4e3PT5kypf2x3+/3+/29KNzhcASDwYz/BsaXemc8QFutVgCBQOZvi5pM\nppR6CmlitVrD4XAs1tUkyQEiiiKAjLdSk8kkyzI1j3aKokQikXC4P3ee618DsZJw5MiRNptt5cqV\nhw8fnjNnzgBckRBChoCB6EEzxm655ZYBuBAhhAwlgzsXByGEDGEUoAkhJEtRgCaEkCxFAZoQQrIU\nBWhCCMlSFKAJISRLUYAmhJAsRQGaEEKyFAVoQgjJUhSgCSEkS1GAJoSQLDXoA/T69euzIRlVNmSS\nBFBXV7d3795M1wIAsiGZJIDNmzfHU91mVjakogXg8Xi2bduW6VoAWdM8du3ade7cuUzXojvZsmms\nw+FwOLrbErsrL7744uzZs10uV79XaTA6f/58XV0dpQxst2bNmtGjR5eWlma6IlnhxIkTVVVV1157\nbaYrki3effddl8uVzc1j0PegCSFkqKIATQghWWrQB+gRI0ZIUrYM1GScw+EoKirKdC2ySFlZmdls\nznQtsoXVah02SxPkYwAABBhJREFUbFima5FFiouL7XZ7pmvRHZYN9y4IIYR0Nuh70IQQMlRRgCaE\nkCw1iEdvOedr1671eDySJC1ZssRms2W6RhmmadqKFStycnIATJ48ee7cuZmuUSZt3rw5Pz9/4sSJ\n1E5wwadBjUTTtDfffLO1tTUSidx2222lpaXZ3DzE73//+5muQy+dPn26urr6nnvu0XW9qqqqsrIy\n0zXKsKamplAodP/998+YMWP48OGZrk7GGIbxwgsvHDhwYOLEiQUFBZd4O+nwaVAjOXbsmM/nu+uu\nu0pLS9etW+d2u7O5eQziIY6ampqysjIAZWVltbW1ma5O5jU3N3s8npdffnnVqlWtra2Zrk7GMMaW\nLVvW3je8xNtJh0+DGonT6bzyyisBWK1WxliWN49BHKBDoVD8LzWXyxUKhTJdncyzWq1z5sxZunTp\nhAkT1q5dm+nqZAxjTBAExlj8x0u8nXT4NKiRlJSU5Ofnnzlz5pVXXrnmmmuyvHkM4jFos9kcT7PQ\n2tpqsVgyXZ3MKy8vjz8YN27cxo0bM1uZ7EHt5ELUSDjnmzZtqqmpWbx4cXFxcV1dXTY3j0Hcg66o\nqDhz5gyAs2fPXpqjaR188MEHO3fuBFBXV1dYWJjp6mQLaicXokZy+PDhlpaWZcuWFRcXI+ubxyBe\nqMI5f/vtt5ubmwVBWLx4sdVqzXSNMiwcDr/++uvhcFiSpEWLFrnd7kzXKJM2bdpUXFwcn8VB7aT9\n06BG8sYbb5w8eTK+vtTpdN59993Z3DwGcYAmhJChbRAPcRBCyNBGAZoQQrIUBWgyBM2fP591smbN\nmhkzZmS6aoSkgMagyRAUCATimypNmTLlueeemzdvHgBVVXfu3HnrrbdmunaEJIt60GQIstvtOTk5\nOTk5giC0P66urn7iiScAHDlyZO7cuY888kh+fv68efO2b98+c+ZMh8OxfPny+OlbtmyZPn26zWZb\nuHBhfA4WIRlBAZpcinbs2HH55ZdXVVVFIpElS5asXr16w4YNv/zlLxsbG5uamj7/+c//8Ic/rKur\nGz169H333ZfpypJL1yBeSUhIr5WUlNxzzz0AFixY4PV6Kz7V2tq6devW+fPn33777QBWrFiRl5en\n67ooipmuMrkUUYAml6L2jY4kSYqvKIs/BlBbW/vOO++MGDEi/qSiKA0NDSUlJZmoJrnUUYAm5CIl\nJSU33njjq6++CkDX9b1797ZHcEIGGI1BE3KRRYsWbdmyJZ7E/Vvf+tby5cvbU8ERMsAoQBNykeLi\n4j/96U+PPvpoRUXF7t27X3rppUzXiFy6aB40IYRkKepBE0JIlqIATQghWYoCNCGEZCkK0IQQkqUo\nQBNCSJaiAE0IIVmKAjQhhGQpCtCEEJKlKEATQkiWogBNCCFZ6v8DuoQW782nV78AAAAASUVORK5C\nYII=\n" | |
} | |
], | |
"prompt_number": 16 | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment