Skip to content

Instantly share code, notes, and snippets.

View seanbenhur's full-sized avatar
🚀
Teaching machines to learn!!

Sean Benhur seanbenhur

🚀
Teaching machines to learn!!
View GitHub Profile
from reg_resampler import resampler
# Initialize the resampler object
rs = resampler()
# You might recieve info about class merger for low sample classes
# Generate classes
Y_classes = rs.fit(train, target=target, bins=num_bins)
# Create the actual target variable
Y = df_train[target]
from datasets import load_dataset
from transformers import AutoTokenizer
#load the dataset
dataset = load_dataset("imdb")
#create tokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
def encode_batch(batch):
"""Encodes a batch of input data using the model tokenizer."""
import numpy as np
from transformers import AutoConfig, AutoModelWithHeads
from transformers import TrainingArguments, Trainer, EvalPrediction
config = AutoConfig.from_pretrained(
"distilbert-base-uncased",
num_labels=2,
)
model = AutoModelWithHeads.from_pretrained(
import argparse
from transformers import AutoTokenizer
import torch
import numpy as np
from collections import Counter
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
[verbose]: Creating arXiv submission AutoTeX object
[verbose]: *** Using TeX Live 2020 ***
[verbose]: Calling arXiv submission AutoTeX process
[verbose]: TeX/AutoTeX.pm: admin_timeout = minion
[verbose]: <Copyright-logo.txt> is of type 'unknown'.
[verbose]: <Copyright-lppl.txt> is of type 'unknown'.
[verbose]: <Copyright.txt> is of type 'unknown'.
[verbose]: <Makefile> is of type 'unknown'.
[verbose]: <README.md> is of type 'unknown'.
def convert_annot_to_yolov5(x_min, y_min, x_max, y_max, img):
"""
Convert annotations into required yolov5 formamt
x_center, y_center, width, height
"""
w = x_max - x_min
h = y_max - y_min
imgheight,imgwidth = img.shape[0], img.shape[1]
#x,y,w,h = a['hbox'] //for each tag in gtboxes object
"""
for i, data in enumerate(test_dataloader, 0):
x0, x1 = data
concat = torch.cat((x0, x1), 0)
output1, output2 = model(x0.to(device), x1.to(device))
eucledian_distance = F.pairwise_distance(output1, output2)
if label == torch.FloatTensor([[0]]):
label = "Original Pair Of Signature"
else:
label = "Forged Pair Of Signature"
from waitress import serve
import io
from flask import Flask, request,jsonify
from PIL import Image
import base64
from spacymodels.activeorpassive.model import find_passive_or_active
import spacy
import pandas as pd
import torch
import numpy as np
import re
import wandb
from datasets import load_dataset, concatenate_datasets
from functools import partial
import logging
logger = logging.getLogger(__name__)
def load_hf_format_dataset(file_path,split):
import time
import json
import multiprocessing
from multiprocessing import Pool
txt_path = "tamil_dataset.txt"
json_path = "tamil_final_dataset.json"