Requirements are:
- High IQ, high EQ
- Love for tech and capitalism
- High agency and low ego
- Taste
- Discretion
- A working cringe detector
- Instinct for narrative
- Strong writing ability
| import numpy as np | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| from transformers import BitsAndBytesConfig | |
| # Set up device | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Configure 4-bit quantization | |
| quantization_config = BitsAndBytesConfig( |
Requirements are:
| import ast | |
| import astor | |
| # Sample Python code with assert statements outside a function | |
| code = """ | |
| x = 5 | |
| assert x == 5 | |
| assert x < 3 | |
| assert x > 0 | |
| """ |
| #!/bin/bash | |
| YOUTUBE_URL="rtmp://a.rtmp.youtube.com/live2/KEY" | |
| TWITTER_URL="rtmp://va.pscp.tv:80/x/KEY" | |
| TWITCH_URL="rtmp://live.twitch.tv/app/KEY" | |
| YOUTUBE_BITRATE="9M" | |
| TWITTER_BITRATE="9M" | |
| TWITCH_BITRATE="7M" | |
| LOCAL_RTMP="rtmp://0.0.0.0:1935" | |
| PIPE_PATH_BASE="/tmp/live_stream" | |
| PLATFORMS=("youtube" "twitter" "twitch") |
| #!/bin/bash | |
| # Set up variables | |
| YOUTUBE_URL="rtmp://a.rtmp.youtube.com/live2/KEY" | |
| TWITTER_URL="rtmp://va.pscp.tv:80/x/KEY" | |
| TWITCH_URL="rtmp://live.twitch.tv/app/KEY" | |
| YOUTUBE_BITRATE="9M" | |
| TWITTER_BITRATE="9M" | |
| TWITCH_BITRATE="7M" | |
| LOCAL_RTMP="rtmp://0.0.0.0:1935" |
| #!/bin/bash | |
| YOUTUBE_URL="rtmp://a.rtmp.youtube.com/live2/KEY" | |
| TWITTER_URL="rtmp://va.pscp.tv:80/x/KEY" | |
| TWITCH_URL="rtmp://live.twitch.tv/app/KEY" | |
| YOUTUBE_BITRATE="9M" | |
| TWITTER_BITRATE="9M" | |
| TWITCH_BITRATE="7M" | |
| LOCAL_RTMP="rtmp://0.0.0.0:1935" | |
| SOCKET_PATH="/tmp/live_stream.sock" |
| import random | |
| import time | |
| def rolling_hash(rect, prev_hash=0): | |
| base = 256 | |
| mod = 2 ** 64 # Large prime to reduce collisions | |
| h = prev_hash | |
| for val in rect: |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| # Define the parametric equations | |
| def X(t): | |
| return (4 / 9) * np.sin(2 * t) + (1 / 3) * (np.sin(t) ** 8) * np.cos(3 * t) + (1 / 8) * np.sin(2 * t) * ( | |
| np.cos(247 * t) ** 4) | |
| #!/bin/bash | |
| unbind_gpu() { | |
| echo "Unbinding NVIDIA driver..." | |
| GPU_PCI=$(lspci | grep -i nvidia | cut -d ' ' -f 1) | |
| for gpu in $GPU_PCI; do | |
| echo -n "0000:$gpu" > /sys/bus/pci/drivers/nvidia/unbind | |
| done | |
| } |
| import itertools | |
| import time | |
| import random | |
| import math | |
| import pandas as pd | |
| def is_sorted_permutation(perm): | |
| for i in range(len(perm)): | |
| for j in range(i, len(perm)): |