Created
June 16, 2017 02:43
-
-
Save secsilm/2c2a331e5a32a8fc75429a1e70f99f81 to your computer and use it in GitHub Desktop.
CSDN - 儿童统计
We can make this file beautiful and searchable if this error is corrected: No commas found in this CSV file in line 0.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| no gend age high weight | |
| 6 0 10 1.46 38 | |
| 18 0 11 1.56 48 | |
| 17 0 11 1.5 40 | |
| 7 1 10 1.48 39 | |
| 12 1 10 1.43 43 | |
| 26 1 12 1.64 60 | |
| 15 0 10 1.48 39 | |
| 45 0 10 1.43 35 | |
| 21 1 11 1.55 46 | |
| 27 1 11 1.55 | |
| 9 1 11 1.46 40 | |
| 27 1 13 1.59 55 | |
| 4 0 11 1.52 42 | |
| 5 1 10 1.43 43 | |
| 10 0 12 1.6 53 | |
| 14 1 12 1.59 42 | |
| 8 1 11 14.8 40 | |
| 3 0 11 1.55 44 | |
| 20 0 10 1.44 37 | |
| 19 0 12 1.62 56 | |
| 1 1 12 1.6 55 | |
| 2 1 12 1.62 53 | |
| 11 0 11 1.55 55 | |
| 16 0 10 1.44 38 | |
| 13 1 11 1.46 41 | |
| 40 1 12 1.62 | |
| 25 1 11 1.55 48 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "import numpy as np\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "import seaborn as sns\n", | |
| "%matplotlib inline" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "children = pd.read_csv('children.csv', index_col=False, delim_whitespace=True)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "collapsed": false, | |
| "scrolled": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>no</th>\n", | |
| " <th>gend</th>\n", | |
| " <th>age</th>\n", | |
| " <th>high</th>\n", | |
| " <th>weight</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>6</td>\n", | |
| " <td>0</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.46</td>\n", | |
| " <td>38.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>18</td>\n", | |
| " <td>0</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.56</td>\n", | |
| " <td>48.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>17</td>\n", | |
| " <td>0</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.50</td>\n", | |
| " <td>40.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>7</td>\n", | |
| " <td>1</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.48</td>\n", | |
| " <td>39.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>12</td>\n", | |
| " <td>1</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.43</td>\n", | |
| " <td>43.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>26</td>\n", | |
| " <td>1</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.64</td>\n", | |
| " <td>60.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>15</td>\n", | |
| " <td>0</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.48</td>\n", | |
| " <td>39.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td>45</td>\n", | |
| " <td>0</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.43</td>\n", | |
| " <td>35.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td>21</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.55</td>\n", | |
| " <td>46.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9</th>\n", | |
| " <td>27</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.55</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>10</th>\n", | |
| " <td>9</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.46</td>\n", | |
| " <td>40.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>11</th>\n", | |
| " <td>27</td>\n", | |
| " <td>1</td>\n", | |
| " <td>13</td>\n", | |
| " <td>1.59</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>12</th>\n", | |
| " <td>4</td>\n", | |
| " <td>0</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.52</td>\n", | |
| " <td>42.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>13</th>\n", | |
| " <td>5</td>\n", | |
| " <td>1</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.43</td>\n", | |
| " <td>43.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>14</th>\n", | |
| " <td>10</td>\n", | |
| " <td>0</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.60</td>\n", | |
| " <td>53.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>15</th>\n", | |
| " <td>14</td>\n", | |
| " <td>1</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.59</td>\n", | |
| " <td>42.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>16</th>\n", | |
| " <td>8</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>14.80</td>\n", | |
| " <td>40.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>17</th>\n", | |
| " <td>3</td>\n", | |
| " <td>0</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.55</td>\n", | |
| " <td>44.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>18</th>\n", | |
| " <td>20</td>\n", | |
| " <td>0</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.44</td>\n", | |
| " <td>37.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>19</th>\n", | |
| " <td>19</td>\n", | |
| " <td>0</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.62</td>\n", | |
| " <td>56.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>20</th>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.60</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>21</th>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.62</td>\n", | |
| " <td>53.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>22</th>\n", | |
| " <td>11</td>\n", | |
| " <td>0</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.55</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>23</th>\n", | |
| " <td>16</td>\n", | |
| " <td>0</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.44</td>\n", | |
| " <td>38.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>24</th>\n", | |
| " <td>13</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.46</td>\n", | |
| " <td>41.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>25</th>\n", | |
| " <td>40</td>\n", | |
| " <td>1</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.62</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>26</th>\n", | |
| " <td>25</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.55</td>\n", | |
| " <td>48.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " no gend age high weight\n", | |
| "0 6 0 10 1.46 38.0\n", | |
| "1 18 0 11 1.56 48.0\n", | |
| "2 17 0 11 1.50 40.0\n", | |
| "3 7 1 10 1.48 39.0\n", | |
| "4 12 1 10 1.43 43.0\n", | |
| "5 26 1 12 1.64 60.0\n", | |
| "6 15 0 10 1.48 39.0\n", | |
| "7 45 0 10 1.43 35.0\n", | |
| "8 21 1 11 1.55 46.0\n", | |
| "9 27 1 11 1.55 NaN\n", | |
| "10 9 1 11 1.46 40.0\n", | |
| "11 27 1 13 1.59 55.0\n", | |
| "12 4 0 11 1.52 42.0\n", | |
| "13 5 1 10 1.43 43.0\n", | |
| "14 10 0 12 1.60 53.0\n", | |
| "15 14 1 12 1.59 42.0\n", | |
| "16 8 1 11 14.80 40.0\n", | |
| "17 3 0 11 1.55 44.0\n", | |
| "18 20 0 10 1.44 37.0\n", | |
| "19 19 0 12 1.62 56.0\n", | |
| "20 1 1 12 1.60 55.0\n", | |
| "21 2 1 12 1.62 53.0\n", | |
| "22 11 0 11 1.55 55.0\n", | |
| "23 16 0 10 1.44 38.0\n", | |
| "24 13 1 11 1.46 41.0\n", | |
| "25 40 1 12 1.62 NaN\n", | |
| "26 25 1 11 1.55 48.0" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "children" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": { | |
| "collapsed": false, | |
| "scrolled": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>no</th>\n", | |
| " <th>gend</th>\n", | |
| " <th>age</th>\n", | |
| " <th>high</th>\n", | |
| " <th>weight</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>6</td>\n", | |
| " <td>0</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.46</td>\n", | |
| " <td>38.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>18</td>\n", | |
| " <td>0</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.56</td>\n", | |
| " <td>48.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>17</td>\n", | |
| " <td>0</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.50</td>\n", | |
| " <td>40.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>7</td>\n", | |
| " <td>1</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.48</td>\n", | |
| " <td>39.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>12</td>\n", | |
| " <td>1</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.43</td>\n", | |
| " <td>43.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>26</td>\n", | |
| " <td>1</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.64</td>\n", | |
| " <td>60.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>15</td>\n", | |
| " <td>0</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.48</td>\n", | |
| " <td>39.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td>45</td>\n", | |
| " <td>0</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.43</td>\n", | |
| " <td>35.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td>21</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.55</td>\n", | |
| " <td>46.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>10</th>\n", | |
| " <td>9</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.46</td>\n", | |
| " <td>40.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>11</th>\n", | |
| " <td>27</td>\n", | |
| " <td>1</td>\n", | |
| " <td>13</td>\n", | |
| " <td>1.59</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>12</th>\n", | |
| " <td>4</td>\n", | |
| " <td>0</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.52</td>\n", | |
| " <td>42.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>13</th>\n", | |
| " <td>5</td>\n", | |
| " <td>1</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.43</td>\n", | |
| " <td>43.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>14</th>\n", | |
| " <td>10</td>\n", | |
| " <td>0</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.60</td>\n", | |
| " <td>53.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>15</th>\n", | |
| " <td>14</td>\n", | |
| " <td>1</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.59</td>\n", | |
| " <td>42.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>16</th>\n", | |
| " <td>8</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>14.80</td>\n", | |
| " <td>40.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>17</th>\n", | |
| " <td>3</td>\n", | |
| " <td>0</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.55</td>\n", | |
| " <td>44.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>18</th>\n", | |
| " <td>20</td>\n", | |
| " <td>0</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.44</td>\n", | |
| " <td>37.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>19</th>\n", | |
| " <td>19</td>\n", | |
| " <td>0</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.62</td>\n", | |
| " <td>56.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>20</th>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.60</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>21</th>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>12</td>\n", | |
| " <td>1.62</td>\n", | |
| " <td>53.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>22</th>\n", | |
| " <td>11</td>\n", | |
| " <td>0</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.55</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>23</th>\n", | |
| " <td>16</td>\n", | |
| " <td>0</td>\n", | |
| " <td>10</td>\n", | |
| " <td>1.44</td>\n", | |
| " <td>38.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>24</th>\n", | |
| " <td>13</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.46</td>\n", | |
| " <td>41.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>26</th>\n", | |
| " <td>25</td>\n", | |
| " <td>1</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1.55</td>\n", | |
| " <td>48.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " no gend age high weight\n", | |
| "0 6 0 10 1.46 38.0\n", | |
| "1 18 0 11 1.56 48.0\n", | |
| "2 17 0 11 1.50 40.0\n", | |
| "3 7 1 10 1.48 39.0\n", | |
| "4 12 1 10 1.43 43.0\n", | |
| "5 26 1 12 1.64 60.0\n", | |
| "6 15 0 10 1.48 39.0\n", | |
| "7 45 0 10 1.43 35.0\n", | |
| "8 21 1 11 1.55 46.0\n", | |
| "10 9 1 11 1.46 40.0\n", | |
| "11 27 1 13 1.59 55.0\n", | |
| "12 4 0 11 1.52 42.0\n", | |
| "13 5 1 10 1.43 43.0\n", | |
| "14 10 0 12 1.60 53.0\n", | |
| "15 14 1 12 1.59 42.0\n", | |
| "16 8 1 11 14.80 40.0\n", | |
| "17 3 0 11 1.55 44.0\n", | |
| "18 20 0 10 1.44 37.0\n", | |
| "19 19 0 12 1.62 56.0\n", | |
| "20 1 1 12 1.60 55.0\n", | |
| "21 2 1 12 1.62 53.0\n", | |
| "22 11 0 11 1.55 55.0\n", | |
| "23 16 0 10 1.44 38.0\n", | |
| "24 13 1 11 1.46 41.0\n", | |
| "26 25 1 11 1.55 48.0" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "# 丢弃所有含有缺失值的行\n", | |
| "children.dropna(how='any', axis=0, inplace=True)\n", | |
| "children" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "# 按照性别分组\n", | |
| "groupby_gend = children.groupby('gend')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "0\n", | |
| " no gend age high weight\n", | |
| "0 6 0 10 1.46 38.0\n", | |
| "1 18 0 11 1.56 48.0\n", | |
| "2 17 0 11 1.50 40.0\n", | |
| "6 15 0 10 1.48 39.0\n", | |
| "7 45 0 10 1.43 35.0\n", | |
| "12 4 0 11 1.52 42.0\n", | |
| "14 10 0 12 1.60 53.0\n", | |
| "17 3 0 11 1.55 44.0\n", | |
| "18 20 0 10 1.44 37.0\n", | |
| "19 19 0 12 1.62 56.0\n", | |
| "22 11 0 11 1.55 55.0\n", | |
| "23 16 0 10 1.44 38.0\n", | |
| "\n", | |
| "1\n", | |
| " no gend age high weight\n", | |
| "3 7 1 10 1.48 39.0\n", | |
| "4 12 1 10 1.43 43.0\n", | |
| "5 26 1 12 1.64 60.0\n", | |
| "8 21 1 11 1.55 46.0\n", | |
| "10 9 1 11 1.46 40.0\n", | |
| "11 27 1 13 1.59 55.0\n", | |
| "13 5 1 10 1.43 43.0\n", | |
| "15 14 1 12 1.59 42.0\n", | |
| "16 8 1 11 14.80 40.0\n", | |
| "20 1 1 12 1.60 55.0\n", | |
| "21 2 1 12 1.62 53.0\n", | |
| "24 13 1 11 1.46 41.0\n", | |
| "26 25 1 11 1.55 48.0\n", | |
| "\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# 查看每个性别的内容\n", | |
| "for name, group in groupby_gend:\n", | |
| " print(name)\n", | |
| " print(group, end='\\n\\n')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGJCAYAAAD1xCsNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFe5JREFUeJzt3XmQ5nld2PH3TI/sDrvbsqAsKIKI5OuSeIuCXCIpjUeU\nEOIBZZQo0QLKM5EcoAiayGVRgkKJUaPiFRAVUVGJhlCKLl4lEb4gKpeAsC7MLuyyzJE/nh7tnZ3Z\nnaf36X56Zl6vqq2e5+r9zPPrXz/v+R3Pc+DEiRMBABe2g+seAABYP0EAAAgCAEAQAAAJAgAgQQAA\nJAgAgAQBAJAgAACqQ+seAFi/McYXVN9b/dPq3dUPzTmfvd6pgL1kCwFc4MYY96teVv1F9a+qn66e\nMcb4zrUOBuypAz7LAC5sY4xXVJtzzvtvu+77q2+qrphzfmhtwwF7xhYCuICNMW5XPaR66Sk3vbja\nrB6450MBayEI4ML2CdXtqjeecv1fbn0dezsOsC6CAC5sH7n19cgp11+79XVzD2cB1kgQwIXt1n4H\nHN+TKYC1EwRwYXv/1tfLTrl+85TbgfOcIIAL25urY9UnnnL9ycuv39txgHURBHAB2zql8FXVI065\n6ZHV+6o/3POhgLXwToXA91a/Ncb4herHqgdU31E9cc55w1onA/aMNyYCGmN8efU9LU4zfEf1vDnn\nc9Y7FbCXlg6CMcbDq1+sTlQHtr6+ZM75FasfDwDYCzvZZXCf6leqx7YIgiqbFQHgHLaTILiyet2c\n8z2rHgYAWI+dnGVwn27+NqcAwDlsJ8cQXNdil8FnVhvV/6q+a8754dWPBwDshaV2GYwx7l4drq6v\n/k11z+q51cXVt618OgBgT+xkC8Ed5pzv23b5EdVPVZfOOW/xm33D45944j1Hzr3THK9939/1wuc8\nuXvd617rHgV2zVVXXdVjn/xTXXanu697lKVce/Vbe+HTvqb73ve+6x4FdtuBW7/Lzi19UOH2GNjy\n+hZbCO5YXX1Lj73xxO06fufPWvZ/uXZHj72+d77zvd3xjndZ9yj7ysbGwTY3D3fkyPUdO+YzcM51\n1113Q5fd6e7d4S73XvcoSzty5PquueYD6x5jX7F+nl9OLs/dtOwugy+ofqa627Z3MPv06uo55y3G\nwLnu6NHjHT1qpTqdY8c8N+eD48fPva13J/kZPDPPDWdr2S0Ev1d9sPrRMcZTq3tVz6ievurBAIC9\ns9Rph3PO66ovrD66uqp6YfWCOeezd2E2AGCP7OQYgte3iAIA4Dzh448BAEEAAAgCACBBAAAkCACA\nBAEAkCAAABIEAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAJAgA\ngAQBAJAgAAASBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIEAECCAABIEAAACQIAIEEAACQI\nAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAJAgAgAQBAJAgAAASBABAggAASBAAAN2GIBhjvHyM\n8WOrHAYAWI8dBcEY46uqL1rxLADAmiwdBGOMy6tnVH+4+nEAgHU4tIPHPKv6yepjVzwLALAmS20h\nGGN8fvWg6mm7Mw4AsA5nvYVgjHFR9YLqcXPOD40xdm+qfejQoYMdOuSkjO02Ng7e5CvntoMHD6x7\nhB3b2LB+nsr6eX7Zi+W4zC6Dp1RXzTl/e5dm2ccOtLl5uMsvv2Tdg+xLm5uH1z0CK3DppReve4Qd\ns36emfWTs7VMEHxldcUY49qtyxdVjTEeOefcXPlk+8qJjhy5vmuu+cC6B9lXNjYOtrl5uCNHru/Y\nsePrHofb6Lrrblj3CDtm/bw56+f55eTy3E3LBMFDqo/YdvkZ1YnqO1c60T519Ojxjh61Up3OsWOe\nm/PB8eMn1j3CjvkZPDPPDWfrrINgzvm27Ze3thScmHP+9cqnAgD2lKNNAIAdvQ9BVXPOx6xyEABg\nfWwhAAAEAQAgCACABAEAkCAAABIEAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQ\nAAAJAgAgQQAAJAgAgAQBAJAgAAASBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIEAECCAABI\nEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAJAgAgAQBAJAgAAASBABAggAA\nSBAAAAkCACBBAABUh5Z9wBjjXtUPVQ+orq6eN+d81qoHAwD2zlJbCMYYB6qXV++uPq36pupJY4yv\n2oXZAIA9suwugyuqP6keN+d885zzN6pXVg9c+WQAwJ5ZapfBnPNd1VefvDzGeED14BZbCgCAc9TS\nxxCcNMb4m+rjql+tfnFF8wAAa7DjIKgeUd2lekH1nOpbVjLRPnXo0MEOHXJSxnYbGwdv8pVz28GD\nB9Y9wo5tbFg/T2X9PL/sxXLccRDMOf+4aozxbdVPjzG+Y855dGWT7SsH2tw83OWXX7LuQfalzc3D\n6x6BFbj00ovXPcKOWT/PzPrJ2VoqCMYYd67uP+f85W1X/0V1u2qz+vsVzraPnOjIkeu75poPrHuQ\nfWVj42Cbm4c7cuT6jh07vu5xuI2uu+6GdY+wY9bPm7N+nl9OLs/dtOwWgntWvzjGuNuc851b131W\n9Z4553kaAwtHjx7v6FEr1ekcO+a5OR8cP35i3SPsmJ/BM/PccLaWDYKrqtdWPzbG+PYWgfCM6ntX\nPRgAsHeWOkphznm8+vLqA9XvVT9SPWfO+bxdmA0A2CNLH1S49V4Ej9yFWQCANXE+CgAgCAAAQQAA\nJAgAgAQBAJAgAAASBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIEAECCAABIEAAACQIAIEEA\nACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAJAgAgAQBAJAgAAASBABAggAASBAAAAkCACBB\nAAAkCACABAEAkCAAABIEAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgCg\nOrTMnccYH1P9YPXQ6oPVL1T/ec554y7MBgDskaWCoHpJdXX1gOpO1Y9XR6snrnguAGAPnXUQjDFG\n9dnVFXPO925d913VMxMEAHBOW+YYgndV/+JkDGw5UH3kakcCAPbaWW8hmHO+v/qtk5fHGAeqJ1S/\nvQtzAQB7aNljCLZ7ZvVp1WetaJZ97dChgx065KSM7TY2Dt7kK+e2gwcPrHuEHdvYsH6eyvp5ejfe\neGOve92fr3uMpR08eKCHPvRBu/r/2FEQjDGeXn1z9RVzztevdqT96ECbm4e7/PJL1j3IvrS5eXjd\nI7ACl1568bpH2DHr55lZP2/qqqv+ou945ou77E53X/coS7n26rf2p/stCMYYz62+sXr0nPOXVj/S\nfnSiI0eu75prPrDuQfaVjY2DbW4e7siR6zt27Pi6x+E2uu66G9Y9wo5ZP2/O+nl6R45c32V3unt3\nuMu91z3KvrPs+xB8d/Xvq6+cc750d0ban44ePd7Ro1aq0zl2zHNzPjh+/MS6R9gxP4Nn5rm5KXF0\nZsucdnhl9aTqv1W/N8a44uRtc85378JsAMAeWeZoky/buv+Tqr/d+u+dW18BgHPYMqcdPr16+i7O\nAgCsifNRAABBAAAIAgAgQQAAJAgAgAQBAJAgAAASBABAggAASBAAAAkCACBBAAAkCACABAEAkCAA\nABIEAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAJAgAgAQBAJAg\nAAASBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIEAECCAABIEAAACQIAIEEAACQIAIAEAQCQ\nIAAAEgQAQIIAAEgQAADVoZ0+cIxxUfXa6vFzzletbiQAYK/taAvBVgz8bHWf1Y4DAKzD0kEwxriy\nek11z9WPAwCsw062EDykemV1/+rAascBANZh6WMI5pwvOPnnMcZqpwEA1mLHBxVeaA4dOtihQ07K\n2G5j4+BNvnJuO3jw3N3gt7Fh/TyV9fP0PB9nJgjOyoE2Nw93+eWXrHuQfWlz8/C6R2AFLr304nWP\nsGPWzzOzft6U5+PMBMFZOdGRI9d3zTUfWPcg+8rGxsE2Nw935Mj1HTt2fN3jcBtdd90N6x5hx6yf\nN2f9PL0jR65f9wj7liA4S0ePHu/oUSvV6Rw75rk5Hxw/fmLdI+yYn8Ez89zclDg6MztTAIDbHATn\n7j8pAIB/cJt2Gcw5N1Y1CACwPnYZAACCAAAQBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIE\nAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAJAgAgAQBAJAgAAAS\nBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIEAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAA\nEgQAQIIAAEgQAAAJAgAgQQAAJAgAgAQBAJAgAACqQ8s+YIxxUfXD1SOqD1bPnnP+wKoHAwD2zk62\nEDyr+ozq86rHVd89xnjEKocCAPbWUkEwxrh99fXVN885/2zO+cvVM6on7MZwAMDeWHYLwae22M3w\n+9uue3X1OSubCADYc8sGwV2r9845j2677t3VxWOMO61uLABgLy17UOHtqw+dct3Jyxfd9nH2rze9\n6Q0dO/bhdY+xrxw8eKBLL7246667oePHT6x7HG6jN77xDV179VvXPcbSrr36rb3pTZe1seGkqe2s\nn6f3pjfNc/bnfLcdOHHi7H9QxhiPrH5wzvkx2677pOr/VXeac75v9SMCALtt2aR+R/VRY4ztj7tL\ndb0YAIBz17JB8KfVh6v7bbvuQdVVK5sIANhzS+0yqBpjPL96QPXvqrtVP1F97dYpiADAOWjpdyqs\nvr3FOxX+7+r91ZPFAACc25beQgAAnH+cpwMACAIAQBAAAAkCACBBAAC0s9MOb2aMcVH12urxc85X\nbV338dULq/tXf1N925zzt27he3x19bQWH6D0iuqxc86rVzEfy1vRMn1fdVl1YOuqE9Vlc84P7t7k\nnM7plue220b12jnnZbfyPR5dPbW6ovr16hvnnH+/SyNzC1a0PK9t8fk029fPw3POG3dhZG7BGX7f\n3q96dvUp1durZ805/8ctfI/b/Bp6m7cQbP1Ffra6zyk3/VL1t9VnVj9dvXSMcbczfI/Prn60+u4W\nH6V8eYs3PGINVrRMP6ZFDHxCi7e3vkt1VzGw925heTbGuEf1sm7lw8nGGPevfqT6ry2C8M7VGX85\nsXtWtDzvXh2u7tFN108xsMdOtzzHGFdUv9bi/X4+rXpK9dwxxhed4Xus5DX0Nm0hGGNcWf3Maa7/\n/BYvBPebc95Qff8Y42Et3t3wqaf5Vo+vfn7O+aKtx39N9ZYxxj3mnG+5LTOynBUu0yurd1p+63Wm\n5bl127+unt/iM0puzROqF805f27rsV9b/dUY42PnnGfzeFZghcvzyurtc863r3A8lnQLy/PhLX5/\nPnnr8pvHGA+tHtVi69ypVvIaelu3EDykemWLfzEc2Hb951R/vPXCcdKrt+53Over/mGz19YP6Vu7\n6WcmsDdWtUzvU71xVyZkGWdanlVfXP2n6j+cxfc5dR39mxYvPNbRvbWq5Wn93B/OtDx/vXrMae7/\nkWf4Pit5Db1NWwjmnC84+efFbqt/cNcWm5a3e3eLzz44nWXvzy5Z4TK9srpkjPE71aj+pPrWOeeb\nVjctt+YWlmdzzq/fuv5hZ/GtrKP7wAqX55XVZWOM363+SfVHLdbPN69sWG7VmZbnnPOtLV7QT952\n5+qrqu86w7dayfq5W2cZ3L760CnXfagz79da9v7svWWX0Se12I/11OrLquurV44xLtm1CdlNF2cd\nPZ+cXD+f0mL9PNpi/Ty8zqG4uTHGxdVLWrzg/8gZ7raS19CVnGVwGjdUdzzluouqMx1QdkM3H/yW\n7s/eW3aZfmH1EScPItw6Qv1t1b+sfm63hmTX3Jh19HzysG66fn51iyPZv6R68ToH4x9t/QPqV6pP\nrB5wyi7b7VbyGrpbWwje0eKo1e3uUr1zRfdn7y21jOacH95+RsGc80PVX1cfu2sTspuso+eR06yf\nN1Rvyfq5b4wxLqt+s8XxHg+dc/7VLdx9JevnbgXBa6rP2Dqd4qQHbl1/pvs/8OSFMcbHtdj3cab7\ns/eWWqZjjL8cY/zbbZcvqe5dvWFXp2S3nLqO3rPFL5w/WNtE7NgY46/HGI/advnS6l5ZP/eFMcaB\n6qXVx1cPnnPe2nJZyWvobu0y+D8tNg//xBjjaS32Ud23+rqqMcZHtNj8/J455/EWp8r8zhjjNS3e\nnOE51cucsravnO0y/bs554nq5dX3jDHeUr23xRtmvLXFubXsc6dZns+vfnOM8QctDhB9bvVSp62d\nG04uzznnu7eu+rXqaWOMt1d/X31f9eY55yvWNSM38Q3V57XYxXpk630Jqm6cc16zW6+hq9xCcOLk\nH7YG/PIW/4J4bYtzJx++7ZfH57Y4QOJuW/d/TfWNLd5U4dXV1S3Ob2e9drJMP27r8n9ssS/yRS0q\n9WD1JVsvLqzHMs/9g1ssz7tWzTlf3eJc56dV/7d6V4tfWqzP0stz6w3Dqr69xRuN/Uz1+9Wx6ktX\nOx5LOtE/LtNHtDgN8VdbrIcn/3vJ1u278hp64MQJv58B4ELnw40AAEEAAAgCACBBAAAkCACABAEA\nkCAAABIEAECCAABIEAAACQIAIEEAALR7H38M7BNjjH9W/ffqAdUl1durH5pz/sDW7Y+qnlTds/rT\n6mer58w5D27dvlk9q3p4dbsWn3b5xDnnH+3xXwXYRbYQwHlsjHG4+s3qPdX9qvtUv1A9c4zxKWOM\nL63+Z/XC6pOrH6++v5t+tO6vV/eovrj67BYfZ/3qMcan7tXfA9h9Pv4YzmNjjI+qHtNii8AHt667\nuPpg9TXVY6t3zDkfve0xz66+dc65McZ4WPWK6qPmnO/bdp/frf5qzrn0Z64D+5NdBnAem3O+d4zx\n/OrRY4xPrz6x+tQWWwAOVZ9RvfiUh72q+tatP396iy2JbxtjbL/P7bb+A84TggDOY2OMK6o/qN5V\n/UqLf+1f1eI4ghPV0W551+HB6v0twuHAKbd9aNXzAusjCOD89qjqDtUnzDmPV40xPnnrtgPVn7U4\ntuAHtz3mc7f9+XXVZnXRnPMNJ68cY7yw+pPqh3dvdGAvCQI4v72txZkFXznGeHV1ZfUDLbYOXNTi\nAMKXjzGuql5WPah6wrbH/0aLaPj5Mca3bH2/x1dfW71or/4SwO5zlgGcx+acL66eWT27en2LGPjR\nFscJ3HfO+YoWBxY+rvrz6utb/Kv/xq3HH6/+eYtTDX++RRw8sHr4nPN39/LvAuwuZxnABWyM8eDq\nXXPON2677r9Uj5lz3nt9kwF7zS4DuLB9YYszEL6uenOLswq+pXreOocC9p4ggAvbU6rbVz9ZfXSL\nYwSe3WI3A3ABscsAAHBQIQAgCACABAEAkCAAABIEAECCAABIEAAACQIAoPr/+oKbtUzhJZAAAAAA\nSUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x263e4f25630>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGJCAYAAAD1xCsNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAF2NJREFUeJzt3XmUpXld3/F3LzI0w7QMgwLKIo7k5xB3QVFwQXJCXKKE\nEBc4ikaNCRDXGDUBNZBE2QwHVIhj1Ki4hcUNFZS4hOM2uHAg4E+CyoACwjhYAzQMveSPWy1N2z3M\nrb5Vt2/X63VOn6771PPc5/v87ree+tSz3Hvg1KlTAQD728F1FwAArJ9AAAAIBACAQAAAJBAAAAkE\nAEACAQCQQAAAJBAAANXhdRcAXDzGGHerXlF9wZzzt9ZdD7B3HCEAqhpj3L16cXV03bUAe88RAtjn\nxhgHqkdVT1l3LcD6OEIAfEz1rOpHqi+rDqy1GmAtBALgddXVc85vrt5Z+QhU2IecMoB9bs75tupt\n664DWC9HCAAAgQAAEAgAgAQCACCBAPj73HYI+5BAAJzNbYewDx04dWq5n/0xxkOr57fYaRzY/v95\nc84vXH15AMBe2Mn7ENyn+vnqq3vvocV3rawiAGDP7SQQXFO9cs75llUXAwCsx06uIbhP9aerLgQA\nWJ+dXEPw9hanDD6xOlT9r+rb55zvWX15AMBeWOqUwRjjHtWR6lj1L6p7Vc+sblt9w8qrAwD2xE6O\nENxh+8NQTj9+WPVj1e3nnLf4ZKdOnTp14IBbnHn/rrvuur768T/WFVfdY92lLOWmG67v2id+afe7\n3/3WXQpw6dnVX6BLX1R4ZhjY9uoWRwjuWN1wS8seOHCgra1jnThxctnV7luHDh3s6NEj+27ctraO\ndcVV9+gOd7n3uktZ2tbWsW688R3rLmNp+7XXLoQx2xnjtrzTY7ablj1l8I+rn6juNuc8favhx1c3\nzDlvMQycduLEyY4f1wDL2m/jtsk7iU1/rTa9/nUwZjtj3C4uyx4h+O3qndUPjjGeUF1dPbl60qoL\nAwD2zlK3Hc453149pPqg6rrq2urZc86n7UJtAMAe2ck1BK9uEQoAgEuEDzcCAAQCAEAgAAASCACA\nBAIAIIEAAEggAAASCACABAIAIIEAAEggAAASCACABAIAIIEAAEggAAASCACABAIAIIEAAEggAAAS\nCACABAIAIIEAAEggAAASCACABAIAIIEAAEggAAASCACABAIAIIEAAEggAAASCACABAIAIIEAAEgg\nAAASCACABAIAIIEAAEggAAASCACABAIAIIEAAEggAAASCACABAIAIIEAAEggAAASCACABAIAIIEA\nAOgCAsEY44VjjB9aZTEAwHrsKBCMMb64+uwV1wIArMnSgWCMcWX15Or3V18OALAOh3ewzFOrH60+\ndMW1AABrstQRgjHGZ1WfVj1xd8oBANbhVh8hGGNcVj27evSc891jjB2t8NAhNzYs4/R47bdx2+Tt\nPXToYIcPb179m9prN998c6985SvWsu6DBw90+9vftre//V2dPHlqR8/xUR/10d3mNrdZcWUXt03t\ntXXai7Fa5pTBd1bXzTl/7UJWePTokQtZfN/ab+O2ydt79OiRrrzy8nWXsWObNvbXXfeqvukpz+2K\nq+6x7lKWdtMN13ftE490v/vdb92lrMWm9dqlbplA8EXVnccYN20/vqxqjPHwOefRW/skW1vHOnHi\n5BKr3d8OHTrY0aNH9t24bW0dW3cJO7a1dawbb3zHustY2qb22tbWsa646h7d4S73XncpO7Kp/XIh\nNrXX1un0mO2mZQLBZ1QfcMbjJ1enqn+/zApPnDjZ8eMaYFn7bdw2eSex6a/VptW/yb1Smzfeq7Sf\nt/1idKsDwZzz9Wc+3j5ScGrO+ecrrwoA2FOu6AAAdvQ+BFXNOb9ilYUAAOvjCAEAIBAAAAIBAJBA\nAAAkEAAACQQAQAIBAJBAAAAkEAAACQQAQAIBAJBAAAAkEAAACQQAQAIBAJBAAAAkEAAACQQAQAIB\nAJBAAAAkEAAACQQAQAIBAJBAAAAkEAAACQQAQAIBAJBAAAAkEAAACQQAQAIBAJBAAAAkEAAACQQA\nQAIBAJBAAAAkEAAACQQAQAIBAJBAAAAkEAAACQQAQAIBAJBAAAAkEAAACQQAQAIBAJBAAAAkEAAA\nCQQAQHV42QXGGFdX31c9oLqh+t4551NXXRgAsHeWOkIwxjhQvbB6c/Vx1b+uHjfG+OJdqA0A2CPL\nnjK4c/VH1aPnnK+dc/5K9ZLqgSuvDADYM0udMphzvqn6ktOPxxgPqD69xZECAGBDLX0NwWljjL+o\n7l79YvX8FdUDAKzBjgNB9bDqLtWzq6dXX3drFjp0yI0Nyzg9Xvtt3DZ5ew8dOtjhw5tX/6b22qbV\ne7ZN7ZcLsam9tk57MVY7DgRzzj+sGmN8Q/XjY4xvmnMev6Vlvuqx39Jb/vbUTle5Nje97a+79umP\n7+qrr15bDUePHlnbutdhk7f36NEjXXnl5esuY8c2bew3rd6zbXq/XIhNf+0uNUsFgjHGB1efMuf8\nuTMmv6q6TXW0+ptbWv7mk7fp5Affd+ki1+34iVf3xje+tTve8S57vu5Dhw529OiRtraOdeLEyT1f\n/7psbR1bdwk7trV1rBtvfMe6y1japvbaJvdKbW6/XIhN7bV1Oj1mu2nZIwT3qp4/xrjbnPON29Pu\nW71lznmLYWDTHT9+suPH19e4J06sd/17bZN3Epv+Wm1a/ZvcK7V5471K+3nbL0bLBoLrqpdVPzTG\n+MYWAeHJ1X9edWEAwN5Z6iqFOefJ6guqd1S/Xf1A9fQ55/fuQm0AwB5Z+qLC7fciePgu1AIArIl7\nPgAAgQAAEAgAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQC\nACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggA\ngAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAA\nEggAgAQCACCBAABIIAAAqsPLzDzG+JDqGdWDqndWP1N925zz5l2oDQDYI0sFgup51Q3VA6qrqh+u\njlffsuK6AIA9dKsDwRhjVJ9U3XnO+dbtad9ePSWBAAA22jLXELyp+ienw8C2A9UHrrYkAGCv3eoj\nBHPOv61+9fTjMcaB6rHVr+1CXQDAHlr2GoIzPaX6uOq+K6rlonb48MEOH977mzIOHTr4Pv/vF5u8\nvYcOradXLtSm9tqm1Xu2Te2XC7GpvbZOezFWOwoEY4wnVV9bfeGc89WrLelidKCjR4905ZWXr62C\no0ePrG3d67DJ27vuXrlQmzb2m1bv2Ta9Xy7Epr92l5qlA8EY45nV11SPnHP+7OpLuhidamvrWDfe\n+I49X/OhQwc7evRIW1vHOnHi5J6vf122to6tu4QdW1evXKhN7bVN7pXa3H65EJvaa+t0esx207Lv\nQ/Ad1b+qvmjO+YLdKenidPz4yY4fX1/jnjix3vXvtU3eSWz6a7Vp9W9yr9Tmjfcq7edtvxgtc9vh\nNdXjqv9a/fYY486nvzfnfPMu1AYA7JFlrlL4/O35H1f91fa/N27/DwBssGVuO3xS9aRdrAUAWBP3\nfAAAAgEAIBAAAAkEAEACAQCQQAAAJBAAAAkEAEACAQCQQAAAJBAAAAkEAEACAQCQQAAAJBAAAAkE\nAEACAQCQQAAAJBAAAAkEAEACAQCQQAAAJBAAAAkEAEACAQCQQAAAJBAAAAkEAEACAQCQQAAAJBAA\nAAkEAEACAQCQQAAAJBAAAAkEAEACAQCQQAAAJBAAAAkEAEACAQCQQAAAJBAAAAkEAEACAQCQQAAA\nJBAAAAkEAEACAQCQQAAAVId3uuAY47LqZdVj5py/tbqSAIC9tqMjBNth4Cer+6y2HABgHZYOBGOM\na6rfre61+nIAgHXYyRGCz6heUn1KdWC15QAA67D0NQRzzmef/nqMsdpqAIC12PFFhfvN4cMHO3x4\n72/KOHTo4Pv8v19s8vYeOrSeXrlQm9prm1bv2Ta1Xy7EOnvt5ptv7pWvfMWer/dCHTx4oAc96NN2\ndR0Cwa1yoKNHj3TllZevrYKjR4+sbd3rsMnbu+5euVCbNvabVu/ZNr1fLsQ6XrvrrntV3/SU53bF\nVffY83VfiJtuuL4/FgguBqfa2jrWjTe+Y8/XfOjQwY4ePdLW1rFOnDi55+tfl62tY+suYcfW1SsX\nalN7bZN7pTa3Xy7EOntta+tYV1x1j+5wl3vv6Xo3gUBwKx0/frLjx9e3kzxxYr3r32ub9AvpbJv+\nWm1a/ZvcK7V5471K69j2Te+X3bS/TlwBAOd0oYHg1EqqAADW6oJOGcw5D62qEABgfZwyAAAEAgBA\nIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCB\nAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQC\nACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggAgAQCACCBAABIIAAAEggA\ngAQCACCBAACoDi+7wBjjsur7q4dV76yeNuf8nlUXBgDsnZ0cIXhq9QnVZ1aPrr5jjPGwVRYFAOyt\npQLBGON21VdWXzvnfPmc8+eqJ1eP3Y3iAIC9sewRgo9tcZrhd86Y9tLqk1dWEQCw55YNBHet3jrn\nPH7GtDdXtx1jXLW6sgCAvbTsRYW3q9591rTTjy+78HIuXq95zZ904sR79ny9Bw8e6Pa3v21vf/u7\nOnny1J6vf11e85rZTTdcv+4ylnbTDdf3mtdc0aFDm3cDz6b22qb2Sm12v1yIdfbapvbLXtR84NSp\nW/9ijDEeXj1jzvkhZ0z7yOr/VlfNOd+2+hIBgN22bCz9y+pOY4wzl7tLdUwYAIDNtWwg+OPqPdX9\nz5j2adV1K6sIANhzS50yqBpjPKt6QPUvq7tVP1I9avsWRABgAy39ToXVN7Z4p8L/Xf1t9XhhAAA2\n29JHCACAS8/+utcFADgngQAAEAgAAIEAAEggAADa2W2Hf88Y47LqZdVj5py/tT3tw6prq0+p/qL6\nhjnnr97Cc3xJ9cQWH6D0ouqr55w3rKK+i9WKxu1t1RXVge1Jp6or5pzv3L3K1+dcY3bG90b1sjnn\nFe/nOR5ZPaG6c/XL1dfMOf9ml0q+KKxo3G5q8XkmZ/bakTnnzbtQ8tqd5+fz/tXTqo+p3lA9dc75\nP27hOezX2tG47fv92hjjIdWTqn9Qzerb5py/cgvPccG9dsFHCLY35Cer+5z1rZ+t/qr6xOrHqxeM\nMe52nuf4pOoHq+9o8VHKV7Z4w6NL1orG7UNa/NB8eIu3kL5LdddL/IfmXGPWGOOe1S/0fj5ka4zx\nKdUPVP+xRej64Oq8O6ZLwYrG7R7VkeqevW+vXcph4H3GbIxx5+qXWrwHy8dV31k9c4zx2ed5Dvu1\ndjRu+36/Nsa4unp+9UPb03+0+tntn8NzPcdKeu2CjhCMMa6pfuIc0z+rxYt5/znnu6rvHmM8uMW7\nGz7hHE/1mOqn55zP2V7+S6vXjTHuOed83YXUeDFa4bhdU73xUhyjs51vzLa/98+rZ7X4rI3357HV\nc+acP7W97KOqPxtjfOic89Ysv1FWOG7XVG+Yc75hheVdlG5hzB7a4uft8duPXzvGeFD1iBZHms5m\nv7aw7LjZry3eBfi/zzmfsf34v40xHld9UnWujz1cSa9d6BGCz6he0uIvrQNnTP/k6g+3f6md9tLt\n+c7l/tXfHcbc3ulc3/t+ZsKlZFXjdp/qT3elwovP+cas6nOqb63+3a14nrN77S9a/ELcb71Wy42b\nXlv88vqKc8z/ged5Hvu1hWXHbd/32pzzN+ec31g1xjg8xvjK6jbV75/neVbSaxd0hGDO+ezTXy9O\nQ/6du7Y47H2mN7dIPeey7PwbbYXjdk11+Rjj16tR/VH19XPO16yu2ovDLYxZc86v3J7+4FvxVHrt\nvd9bZtyuqa4YY/xGi3Oaf9Ci1167smIvEucbsznn9Z3x19kY44OrL66+/TxPpdfa0bjZr7132tXV\nn7T44/1bt8fyXFbSa7t1l8HtqnefNe3dnf885bLzX6qWHYePbHGu6AnV51fHqpeMMS7ftQo3323T\naztxute+s0WvHW/Ra0fWWdS6jDFuWz2vxU74B84zm/3aWW7luNmvvddfV/dtcUrgCWOMf3ae+VbS\nayu5y+Ac3lXd8axpl1XnuyjkXf39wm9p/kvVsuP2kOoDTl9ss331/Ourf1r91G4VueFuTq/txIN7\n3177khZXi39u9dx1FrbXtn8x/Xz1EdUDzjrFdyb7tTMsMW72a9vmnDdVL69ePsb4h9W/rV5wjllX\n0mu7dYTgL1tcGXqmu1RvXNH8l6qlxmHO+Z4zr7ydc767+vPqQ3etws2n13bgHL32rup17bNeG2Nc\nUb24xXnuB805/+wWZtdr25YZN/u1GmPcZ4zxwLMmv6q603kWWUmv7VYg+N3qE7ZvpzjtgdvTzzf/\n3238GOPuLc59nG/+S9VS4zbG+H9jjC874/Hl1b1bnHPi3M7utXu1+MH5vbVVtAHGGH8+xnjEGY9v\nX50+v7kvjDEOtPjr7MOqT59zvr9tt19r+XGzX6sWR0OuPWvafatXn2f+lfTabp0y+M0Wh3h+ZIzx\nxBbnge5XfXnVGOMDWhwaf8uc82SLW59+fYzxuy3enOHp1S/sh9tOznJrx+2v55ynqhdW/2mM8brq\nrS3elOL6Fvf80jnH7FnVi8cYv9fiYqVnVi/YD7fTLeP0uM0537w96ZeqJ44x3lD9TfVfqtfOOV+0\nrhrX4Kuqz2yxs97avr++6uY55432a+d1a8fNfu29frz61jHGd7V4n5SHtLhN8/61e79DV3mE4NTp\nL7YL/IIWf3m9rMWGPPSMne6ntrio5G7b8/9u9TUt3lThpdUNLe693w92Mm533378zS3O3z6nRRI8\nWH3u9g/VpWyZ7fv0FmN216o550tbXKDzxOr/VG9qscPaD5Yet+03ian6xhZvmvUT1e9UJ6rPW215\nF6VTvXfcHtbi1rBfbNFTp/89b/v79mvvtZNxs1/btv2eKA9pEaT+uPo31cPnnC/fnmVXeu3AqVOX\n+hgDAO+PDzcCAAQCAEAgAAASCACABAIAIIEAAEggAAASCACABAIAIIEAAEggAAASCACAdu/jj4GL\nxBjjo6rvqh5QXV69ofq+Oef3bH//EdXjqnu1+GS1n6yePuc8uP39o9VTq4dWt2nxSZzfMuf8gz3e\nFGAXOUIAl7AxxpHqxdVbWnyW+n2qn6meMsb4mDHG51X/s7q2+ujqh6vv7n0/KvmXq3tWn1N9UouP\npH3pGONj92o7gN3n44/hEjbGuFP1FS2OCLxze9ptq3dWX1p9dfWXc85HnrHM06qvn3MeGmM8uHpR\ndac559vOmOc3qj+bcy79mevAxckpA7iEzTnfOsZ4VvXIMcbHVx9RfWyLIwCHq0+onnvWYr9Vff32\n1x/f4kji68cYZ85zm+1/wCVCIIBL2BjjztXvVW+qfr7FX/vXtbiO4FR1vFs+dXiw+tsWweHAWd97\n96rrBdZHIIBL2yOqO1QfPuc8WTXG+Ojt7x2oXt7i2oJnnLHMp57x9Suro9Vlc84/OT1xjHFt9UfV\n9+9e6cBeEgjg0vb6FncWfNEY46XVNdX3tDg6cFmLCwhfOMa4rvqF6tOqx56x/K+0CA0/Pcb4uu3n\ne0z1qOo5e7URwO5zlwFcwuacz62eUj2tenWLMPCDLa4TuN+c80UtLix8dPWK6itb/NV/8/byJ6t/\n1OJWw59uEQ4eWD10zvkbe7ktwO5ylwHsY2OMT6/eNOf80zOm/YfqK+ac915fZcBec8oA9reHtLgD\n4cur17a4q+Drqu9dZ1HA3hMIYH/7zup21Y9WH9TiGoGntTjNAOwjThkAAC4qBAAEAgAggQAASCAA\nABIIAIAEAgAggQAASCAAAKr/Dy1wJ9e1mz+cAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x263e4f257f0>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# 各分组的年龄分布\n", | |
| "for name, group in groupby_gend:\n", | |
| " plt.figure()\n", | |
| " plt.hist(group.age)\n", | |
| " plt.xlabel('age')\n", | |
| " plt.title(name)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAGJCAYAAAANJND6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAHaVJREFUeJzt3XuQpXV95/F3dw9zQ1qnsHYGoya4Yb8MyspFbjteyCYb\n1IippRRRyjWRBblYxtXssqlCieJGEe83WJNAyqBkWZQgBRiJBi0EDBMUoSRfiawOwohChukJ08Mw\n3b1/nNPQc+iZ6W/36X6e6bxfVVPd53d+fZ7vfM+vuz/9nOd5zsDExASSJEkzNdh0AZIkae9ieJAk\nSSWGB0mSVGJ4kCRJJYYHSZJUYniQJEklhgdJklRieJAkSSWGB0mSVLKk6QIk7X0i4reBDwAvBB4C\nPpuZH222KkkLxT0Pkkoi4ljgWuCHwH8GLgc+HBH/o9HCJC2YAd/bQlJFRPwNMJyZx00Z+xBwJrA6\nMx9vrDhJC8I9D5JmLCKWAq8Aru656ypgGHjpghclacEZHiRVvABYCvyoZ/yfuh9jYcuR1ATDg6SK\nZ3Y/jvSMb+l+HF7AWiQ1xPAgqWJPPzPGF6QKSY0yPEiq2Nz9uF/P+HDP/ZIWMcODpIofA2PAr/eM\nT96+Z2HLkdQEw4OkGeuehvlt4KSeu14HPAr8/YIXJWnBeYVJSVUfAG6MiCuBS4F1wLuBczNzW6OV\nSVoQXiRKUllE/C7wPjqnZj4AfCYzP9FsVZIWSjk8RMS/BT5L56+NR+j80PjILuYeDlwMHArcDZyV\nmXfMqWJJktSo0jEPETEAXEfnjXAOo3M52vMi4pRp5q7szv0WcARwK3BdRKyYa9GSJKk51QMmVwPf\nA87OzB9n5teAbzD9JWlPAbZm5rnZ8U46F5J5/ZwqliRJjSodMJmZPwfeOHk7ItYBL6ezB6LXMcDN\nPWPfAY4DvlArU5IktcWsT9WMiJ/QOWXrFuAr00w5AHiwZ+wh4Lmz3aYkSWreXK7zcBJwInA4MN1R\n1iuB3rfmfRxYNodtSpKkhs36Og+TZ01ExH8DLo+Id2fmjilTtvH0oLAM2DrTbUxMTEwMDAzMtsRW\nu/6Gr/OpS7/KsuUrmy4FgP947EH8wTmnN12GNCu33347p7/nL9lv/+c3XQpbHtnAn17wZo466qim\nS5Hm7RdoKTxExL8BjsvMa6YM/5DOW/QOA/88ZfwBYE3PQ6wBNs50ewMDA4yMjDI2tvjea2fDzx5i\nx6oj2Ge//ZsuBYD7f3YXIyOjDA+vWLQ9b6OhoUF73gcjI6Pst//zedaag5ouBejUs2nTY02X0Rqu\n84U32fP5Ut3zcCDwlYh4bmZOhoCXAL/MzH/umXsbcG7P2Do6V6ebsbGxcXbsWHyLbXysXRfnGp/g\nyW/qxdrzNrPnc9O2X0g+n9OzL4tHNTzcDqwHLo2Id9EJEx+mGwgiYjWwuXuJ2quAD0bEx4HP0zkj\nYyVwZZ9qlyRJDSgdMJmZ48DvAo/ROcvi88AnMvMz3SkbgZO7c7cAr6FzKud64GjgVZk52p/SJUlS\nE8oHTHav9fC6Xdw32HN7PXDk7EqTJElt5FtyS5KkEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyRJ\nKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSox\nPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxI\nkqQSw4MkSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8SJKk\nEsODJEkqMTxIkqQSw4MkSSpZUpkcEc8BPgX8BrAVuBL4o8zcPs3ca4ATgQlgoPvxxMy8fq5FS5Kk\n5pTCA/Bl4BFgHbA/cBmwAzh3mrlrgTcB35wytmkWNUqSpBaZcXiIiACOBlZn5sPdsfcCF9ETHiJi\nKXAgsD4zf9G/ciVJUtMqxzz8HHjlZHDoGgCeOc3cAMaB++ZQmyRJaqEZ73nIzM3AjZO3I2IAeDvw\nt9NMXwuMAJdHxPHA/cD5mfm1OVUrSZIaVz3mYaqLgMOAl0xz38HACuAG4IPAScC1EXFMZt5R2cjQ\n0OI8IWRwaKDpEnYyOPBUrxdrz9vInvdH2/o3NDTIkiXtqqlJrvOFN9+9nlV4iIgLgXcAJ2fmPb33\nZ+b7I+KT3b0VAHdFxJHAGcCZlW0ND6+YTYmtt+/KpcATTZfxpOXLlz7Z68Xa8zaz53PTtv4ND69g\n1ap9my6jddr2PGn2yuEhIj4NvA04NTP/elfzpgSHSfcAh1S3NzIyytjYePXLWu+xrU87u7VR27Zt\nZ2RklOHhFYu25200NDRoz/tgZGS06RJ2MjIyyqZNjzVdRmu4zhfeZM/nS/U6D+fT2Xvwhsy8ejfz\nLgPGM/O0KcOHAT+oFjg2Ns6OHYtvsY2PTTRdwk7GJ3jym3qx9rzN7PnctO0Xks/n9OzL4lE5VXMt\ncB7wJ8AtEbF68r7MfKh7e3NmbgO+ClwRETcBtwCn0rk2xOl9rF2SJDWgckTFa7vzzwMe7P7b2P1I\n9/OTAbp7Jc7uzr2LzpUmT8jMDf0pW5IkNaVyquaFwIW7uX+w5/alwKWzL02SJLWR581IkqQSw4Mk\nSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkq\nMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8\nSJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiS\npBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpJIllckR8RzgU8BvAFuBK4E/yszt08w9\nHLgYOBS4GzgrM++Yc8WSJKlR1T0PXwaWA+uAU4ATgQt6J0XESuA64FvAEcCtwHURsWJO1UqSpMbN\neM9DRARwNLA6Mx/ujr0XuAg4t2f6KcDWzJwcf2dEvBp4PfCFOVctSZIaU9nz8HPglZPBoWsAeOY0\nc48Bbu4Z+w5wXK08SZLUNjPe85CZm4EbJ29HxADwduBvp5l+AJ3jHKZ6CHjhLGqUJEktUjpgssdF\nwGHAS6a5byXweM/Y48CyOWxPkiS1wKzCQ0RcCLwDODkz75lmyjaeHhSW0TlDo2RoaHGeTTo4NNB0\nCTsZHHiq14u1521kz/ujbf0bGhpkyZJ21dQk1/nCm+9el8NDRHwaeBtwamb+9S6mPQCs6RlbA2ys\nbm94eHGeoLHvyqXAE02X8aTly5c+2evF2vM2s+dz07b+DQ+vYNWqfZsuo3Xa9jxp9qrXeTgfOAN4\nQ2ZevZupt/H0MzDWAR+olQcjI6OMjY1Xv6z1Htv6tEtjNGrbtu2MjIwyPLxi0fa8jYaGBu15H4yM\njDZdwk5GRkbZtOmxpstoDdf5wpvs+XypnKq5FjgP+BPglohYPXlfZj7Uvb05M7cBVwEfjIiPA58H\nzqRzHMSV1QLHxsbZsWPxLbbxsYmmS9jJ+ARPflMv1p63mT2fm7b9QvL5nJ59WTwqL4q8tjv/PODB\n7r+N3Y90Pz8ZIDO3AK8BXg6sp3N9iFdlZrv+PJAkSWWVUzUvBC7czf2DPbfXA0fOvjRJktRGHvoq\nSZJKDA+SJKnE8CBJkkoMD5IkqcTwIEmSSgwPkiSpxPAgSZJKDA+SJKnE8CBJkkoMD5IkqcTwIEmS\nSgwPkiSpxPAgSZJKDA+SJKnE8CBJkkoMD5IkqcTwIEmSSgwPkiSpxPAgSZJKDA+SJKnE8CBJkkoM\nD5IkqcTwIEmSSgwPkiSpxPAgSZJKDA+SJKnE8CBJkkoMD5IkqcTwIEmSSgwPkiSpxPAgSZJKDA+S\nJKnE8CBJkkoMD5IkqcTwIEmSSgwPkiSpxPAgSZJKDA+SJKnE8CBJkkoMD5IkqWTJbL8wIpYB64Fz\nMvPbu5hzDXAiMAEMdD+emJnXz3a7kiSpWbMKD93gcAVwyB6mrgXeBHxzytim2WxTkiS1Qzk8RMRa\n4EszmLcUOBBYn5m/mEVtkiSphWZzzMMrgG8Ax9F5KWJXAhgH7pvFNiRJUkuV9zxk5iWTn0fE7qau\nBUaAyyPieOB+4PzM/Fp1m5IkqT1mfcDkDBwMrABuAD4InARcGxHHZOYdM32QoaHFeULI4NDudtos\nvMGBp3q9WHveRva8P9rWv6GhQZYsaVdNTXKdL7z57vW8hYfMfH9EfDIzN3eH7oqII4EzgDNn+jjD\nwyvmpb6m7btyKfBE02U8afnypU/2erH2vM3s+dy0rX/DwytYtWrfpstonbY9T5q9+dzzwJTgMOke\n9nyGxk5GRkYZGxvvX1Et8djW7U2XsJNt27YzMjLK8PCKRdvzNhoaGrTnfTAyMtp0CTsZGRll06bH\nmi6jNVznC2+y5/Nl3sJDRFwGjGfmaVOGDwN+UHmcsbFxduxYfIttfGyi6RJ2Mj7Bk9/Ui7XnbWbP\n56Ztv5B8PqdnXxaPvoaHiFgNbM7MbcBXgSsi4ibgFuBUYB1wej+3KUmSFtZcj6jo/fN5I3AyQGZe\nDZwNnAfcRedKkydk5oY5blOSJDVoTnseMnOo5/Zgz+1LgUvnsg1JktQunjcjSZJKDA+SJKnE8CBJ\nkkoMD5IkqcTwIEmSSgwPkiSpxPAgSZJKDA+SJKnE8CBJkkoMD5IkqcTwIEmSSgwPkiSpxPAgSZJK\nDA+SJKnE8CBJkkoMD5IkqcTwIEmSSgwPkiSpxPAgSZJKDA+SJKnE8CBJkkoMD5IkqcTwIEmSSgwP\nkiSpxPAgSZJKDA+SJKnE8CBJkkoMD5IkqcTwIEmSSgwPkiSpxPAgSZJKDA+SJKnE8CBJkkoMD5Ik\nqcTwIEmSSgwPkiSpxPAgSZJKDA+SJKnE8CBJkkoMD5IkqWTJbL8wIpYB64FzMvPbu5hzOHAxcChw\nN3BWZt4x221KkqTmzWrPQzc4XAEcsps5K4HrgG8BRwC3AtdFxIrZbFOSJLVDOTxExFrgNuDAPUw9\nBdiamedmxzuBLcDr62VKkqS2mM2eh1cA3wCOAwZ2M+8Y4Oaese90v06SJO2lysc8ZOYlk59HxO6m\nHkDnOIepHgJeWN2mJElqj1kfMDkDK4HHe8YeB5ZVHmRoaHGeEDI4tLudNgtrfOwJfvHIz/j+9+/g\nGc9Yzr/8yzbGxycaq+eJJ54AYJ999mmshknzXcvg4MCMe96mvkx60YsOZenSpU2X0bqfE0NDgyxZ\n0o6atm/fzt1339VoDZPrfNOmLYyPT7RmDbdl/c6H+f6emM/wsI2nB4VlwNbKgwwPL87jK/dduRR4\noukyABj55U944JGlvPfPvtt0KQA8dN/trHzmavbb//lNl2Itu7HlkQ386QUrOOqoo5oupXU/J4aH\nV7Bq1b5NlwHA7bf/kHdfdFUr1k2b1nCb1u/eaD7DwwPAmp6xNcDGyoOMjIwyNjbet6La4rGt25su\nYSf77f98nrXmoKbLAGDLI/ez3/7Pa0U91rJ7IyOjbNr0WNNlMDIy2nQJO2lLX6BTS1u+v9u2htv0\nPPXb0NDgvIbq+QwPtwHn9oytAz5QeZCxsXF27Fh84WF8rLmXBaR+acv3Z9v+wGhLX6B9vWmTNj1P\ne5u+hoeIWA1szsxtwFXAByPi48DngTPpHAdxZT+3KUmSFtZcj6jo/fN5I3AyQGZuAV4DvJzOlSiP\nBl6Vme3avyhJkkrmtOchM4d6bg/23F4PHDmXbUiSpHZpx7lEkiRpr2F4kCRJJYYHSZJUYniQJEkl\nhgdJklRieJAkSSWGB0mSVGJ4kCRJJYYHSZJUYniQJEklhgdJklRieJAkSSWGB0mSVGJ4kCRJJYYH\nSZJUYniQJEklhgdJklRieJAkSSWGB0mSVGJ4kCRJJYYHSZJUYniQJEklhgdJklRieJAkSSWGB0mS\nVGJ4kCRJJYYHSZJUYniQJEklhgdJklRieJAkSSWGB0mSVGJ4kCRJJYYHSZJUYniQJEklhgdJklRi\neJAkSSWGB0mSVGJ4kCRJJYYHSZJUsqT6BRGxDPgccBKwFfhoZn5sF3OvAU4EJoCB7scTM/P6WVcs\nSZIaVQ4PwEeAI4DjgV8DvhARP8nMr0wzdy3wJuCbU8Y2zWKbkiSpJUrhISJWAqcBJ2TmncCdEfFh\n4O3AV3rmLgUOBNZn5i/6VK8kSWpY9ZiHF9MJHLdOGbsZOGaauQGMA/fNrjRJktRG1fBwAPBwZu6Y\nMvYQsDwi9u+ZuxYYAS6PiAcj4rsR8co51CpJklqgGh5WAo/3jE3eXtYzfjCwArgBOAG4Hrg2Io6o\nFilJktqjesDkNp4eEiZvb506mJnvj4hPZubm7tBdEXEkcAZw5kw3ODS0OM8mHRwaaLoEac6GhgZZ\nsqT579G2/ZxoS1+gfb1pkzY9T/023897NTw8ADw7IgYzc7w7tgYYzcxHeydPCQ6T7gEOqWxweHhF\nscS9w74rlwJPNF2GNCfDwytYtWrfpsto3c+JtvQF2tebNmnT87S3qYaH79P5jXcscEt37GXA7b0T\nI+IyYDwzT5syfBjwg8oGR0ZGGRsb3/PEvcxjW7c3XYI0ZyMjo2za9FjTZTAyMtp0CTtpS1+gfb1p\nkzY9T/02NDQ4r8GxFB4yczQivgBcEhFvBZ4LvBt4C0BErAY2Z+Y24KvAFRFxE52gcSqwDji9ss2x\nsXF27Fh84WF8bKLpEqQ5a8v3Z9v+wGhLX6B9vWmTNj1Pe5vZvCjyLuAf6Fz46dPAezLzmu59G4GT\nATLzauBs4DzgLjpXmjwhMzfMtWhJktSc8hUmM3MU+P3uv977BntuXwpcOuvqJElS6yzOw0wlSdK8\nMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8\nSJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiS\npBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxIkqQS\nw4MkSSoxPEiSpBLDgyRJKjE8SJKkEsODJEkqMTxIkqQSw4MkSSoxPEiSpJIl1S+IiGXA54CTgK3A\nRzPzY7uYezhwMXAocDdwVmbeMftyJUlS02az5+EjwBHA8cDZwPkRcVLvpIhYCVwHfKs7/1bguohY\nMetqJUlS40rhoRsITgPekZl3ZuY1wIeBt08z/RRga2aemx3vBLYAr59r0ZIkqTnVPQ8vpvNSx61T\nxm4Gjplm7jHd+6b6DnBccZuSJKlFquHhAODhzNwxZewhYHlE7D/N3Ad7xh4CnlvcpiRJapHqAZMr\ngcd7xiZvL5vh3N55uzU0tDhPCBkcGmi6hJ1seWRD0yU8aevmnwMTTZcBWMvubHlkA/feu18rvkfv\nvTdbs4bb1BdoV2/atIa3PLKBoaGjWbKkHc9Tv833+quGh208/Zf/5O2tM5zbO293BoaHF+fxlWee\n/mbOPL3pKqTF4Td/8+Wcc07TVbSTvdF8qEaTB4BnR8TUr1sDjGbmo9PMXdMztgbYWNymJElqkWp4\n+D7wBHDslLGXAbdPM/c24D/0jK3rjkuSpL3UwMRE7fWniLiYTgh4K52DH/8CeEtmXhMRq4HNmbkt\nIvYD7gWuAD4PnAm8Dvj1zBzt339BkiQtpNkcUfEu4B+AbwKfBt7Tvd4DdF6SOBkgM7cArwFeDqwH\njgZeZXCQJGnvVt7zIEmS/nVbnOeoSJKkeWN4kCRJJYYHSZJUYniQJEklhgdJklRSvTx1X0TEMjqn\nb56Tmd/ew9xfA+4Cfmfq3Ih4I3ABnTfg+hvg9Mx8ZN6K3sv1qeePAvsBk2/MMQHsl5mVS47/qzGT\nnkfENcCJdHo50P14YmZe373fdV7Qp567zgtm2PNDgc8BR9K5/s8fZOZNU+53nRf0qedzWucLvueh\n+5++Ajhkhl9yMZ032Zr6GEcDfwacT+etv1fRuViVptGnnj+HzkJ7AZ3LjK8BDvAH6vQKPV8LvInO\nD8013Y83dh/DdV7Qp567zgtm0vOIGAa+DtwNvAi4Grg6Ip7dvd91XtCnns95nS/onoeIWAt8qTD/\nVOAZ09x1DvB/MvOL3XlvBn4aEb+amT/tS7GLRB97vhbYaH/3bKY9j4ilwIHA+sz8xTRTXOcz1Mee\nu85nqPCz5feALZl5Vvf2H0fEq4CXAF/DdT5jfez5nNf5Qu95eAXwDeA4ntpVMq2I2B/4EHDGNHOP\nBZ7cVZOZPwM2sPN7bqijXz0/BPjRfBS4CM205wGMA/ft4n7X+cz1q+eu85mbac9fAVwzdSAzj8nM\nr3Vvus5nrl89n/M6X9A9D5l5yeTnEbGn6R8D/iIz75lm7gHAgz1jD9F5rw1N0ceerwX2jYi/o/MD\n+HvAOzPz3j6WuygUer4WGAEuj4jjgfuB86d8g7vOZ6iPPXedz1Ch5y8A/j4i/jfwWuD/AX+Ymbd0\n73edz1Afez7ndd7Ksy0i4rfovCPnBbuYshJ4vGfscWDZfNa1mM2g5wfTeS3y/XQW4yjwjYjYd2Eq\nXJQOBlYANwAnANcD10bEEd37Xef9t6eeu8777xnAuXQCwivp7GX4ekT8Svd+13n/7annc17njZxt\nsTsRsRy4BDgrM7fvYto2nr6wlgEe1DQLM+z5CcA+kwfUdI+NuJ/OUet/tSCFLjKZ+f6I+GRmbu4O\n3RURR9J52ehMXOd9N4Oeu877bwfwvcx8X/f2nRHx28Cb6bxM6jrvvz31fM7rvI17Ho6mc0DTlyNi\nS0Rs6Y7fEBGf637+AJ2jQ6daQ+ddPVW3x55n5hNTj8TNzMfp7Ar7lac9mmZsyi+xSffwVE9d5/Ng\ndz13nc+LjcA/9oz9CHhe93PXef/ttuf9WOdtDA/fBQ4CDgNe3P0HcBrw3u7ntwEvnfyCiHgendfH\nblu4MheVPfY8Iv4pIv7L5Bd0d28dxNMXqGYoIi6LiD/vGT6Mzi8zcJ333Z567jqfF7fx1M+USQfT\n+WU1eb/rvL922/N+rPPWvGwREauBzZm5jZ4jobsHhjyYmQ93hy4G/i4ibqNzoYxPANd6Wk9NsefX\nAe+LiJ8CD9M5NmIDndeMNUM9Pf8qcEVE3ATcApwKrANO7053nffBDHv+X7vTXed90NPzS4C3R8R7\ngS8Cb6Gzp/OL3emu8z4o9nzO67zJPQ8TPbc3AifPZG5m3ga8jc5FRW4GHgHe2u8CF6FZ9xz478BV\ndBbfbXTWzu9kZu887WyXPc/Mq4GzgfPoXNHzROCEzNzQvd91Pjuz6fn93bmu89nZXc830HmN/bV0\nr1wLvDozN3bvd53Pzqx7Th/W+cDEhN8TkiRp5tp4zIMkSWoxw4MkSSoxPEiSpBLDgyRJKjE8SJKk\nEsODJEkqMTxIkqQSw4MkSSoxPEiSpBLDgyQiYnzqG+VMc//5EXHfru6fZv5lEfHN/lQnqW0MD5Jm\n4iLgqKaLkNQOrXlXTUntlZlbga1N1yGpHQwPkiYdHBE3Ai+l886Gn8nMDwFExB8Db8nMA7u3XwB8\nBngZ8CjwMTrvVnlBZn6h+3j7RMSHgd8DVgI3Amdk5i8X7H8kaV74soWkSecAlwFrgYuBP4mI47v3\nTXT/ERErgMnjGY4DTgF+Hziw5/HWAc/qfnx1d+5F81e+pIXingdJkz6bmV/qfv6/IuIPgZcAN/XM\nOwXYH3hjZm4GiIhTgTt75j2YmWd0P783Iv4K+K15qVzSgnLPg6RJ9/bcfhRYMc28w4GcDA50btwF\nbO6Z9+Oe25t28XiS9jKGB0mTxqYZG5hmbAcz+9kx08eTtJcxPEiquhM4KCKeNTkQEWuBZzZXkqSF\nZHiQVHUF8DDwpYj49xFxLPCXTDmoUtLiZniQBNP/0p82DGTmduCVwD7ArcD/Bf6czksS2+exRkkt\nMTAx4R8KkmYuIn4V+HeZeeOUsQOAB4CXZeZ3GitO0oLwVE1JVSuA6yPifwJfBlYBHwASuK3JwiQt\nDF+2kFSSmf8IvAF4E3A38HU6p2n+p8yc7gwLSYuML1tIkqQS9zxIkqQSw4MkSSoxPEiSpBLDgyRJ\nKjE8SJKkEsODJEkqMTxIkqQSw4MkSSr5//bFLK17tQ5kAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x263e4fdf710>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGJCAYAAAAaBkAzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGhRJREFUeJzt3XuQpXV95/F3TzcMzaVlQkrA4I0lfh2y8YKJ4AIisJa4\nG4WirHBbIxclEVkrmt2wKreSYHQYTAkqxKhQxJJUWINL4mVF3VXZSCmKhGX1K0EJwiAl1EBPhpmB\nvuwfz6/x0PYM3dO/p5/Tp9+vqqmZ85zu3/P9nt/M6c/8nssZmp6eRpIkaVXXBUiSpP5gKJAkSYCh\nQJIkFYYCSZIEGAokSVJhKJAkSYChQJIkFYYCSZIEGAokSVIx0nUBkpaPiDgAuBM4PjO/2XU9kupy\npUDSvETEc4GvAGNd1yKpHa4USNqhiBgC3gJc1nUtktrlSoGkZ/IS4CrgWuAPgKFOq5HUGkOBpGfy\nL8C/ycz/CjwO+NGq0oDy8IGkHcrMR4FHu65DUvtcKZAkSYChQJIkFYYCSZIEGAokSVJhKJC0UF6S\nKA0oQ4GkhfKSRGlADU1P79y/74hYDdwGvGPmHugRcRhwOc3NTu4H1mfmpyrVKkmSWrRTKwUlEFwP\nHNyzbV/gi8DXgZcBFwNXRsTrF1+mJElq24JvXhQRa4HPzvHUCcCDmXlBeXxPRBwNnAp8aedLlCRJ\nS2FnVgqOAr4GvIqnn3D0JeCMOb7+WTuxD0mStMQWvFKQmVfP/DkierffB9zX89yzgZOBCxdXoiRJ\nWgqtXH0QEbsBnwM2AJ9oYx+SJKmu6h+IFBF7ADcBBwGHZ+bW+X7v9PT09NBQf18C/fG/vIb/ecsP\nuy5jTrtOb+KGz1zVdRmSpG4s+gdo1VAQEXsBXwYOBI7OzJ8s5PuHhoYYH9/C5ORUzbKq+pf7HmTq\n2Yd3Xcactj10Cxs3bu66DACGh1cxNjba9/NZw0rp1T4Hi30Olpk+F6taKIiIIeBG4AXAqzPz7p0Z\nZ3JyiomJ/p24qZ28r8PSmO67167f57OmldKrfQ4W+1SvmisFbwVeA7wBGC/3LQB4IjM3VtyPJElq\nwWJDwTS/vOXpiTTHM/5h1td8AzhmkfuRJEktW1QoyMzhnj9750JJkpYxPxBJkiQBhgJJklQYCiRJ\nEmAokCRJhaFAkiQBhgJJklQYCiRJEmAokCRJhaFAkiQBhgJJklQYCiRJEmAokCRJhaFAkiQBhgJJ\nklQYCiRJEmAokCRJhaFAkiQBhgJJklQYCiRJEmAokCRJhaFAkiQBhgJJklQYCiRJEmAokCRJhaFA\nkiQBhgJJklQYCiRJEmAokCRJhaFAkiQBhgJJklQYCiRJEmAokCRJhaFAkiQBhgJJklQYCiRJEmAo\nkCRJhaFAkiQBhgJJklQYCiRJEmAokCRJxcjOfmNErAZuA96Rmd8s214A/BXwKuBe4F2ZefPiy5Qk\nSW3bqZWCEgiuBw6e9dTngQ3AK4DPADdGxAGLqlCSJC2JBYeCiFgL3Aq8cNb2Y4ADgT/MxgeBbwNn\n1ihUkiS1a2dWCo4CvkZziGCoZ/uhwPczc2vPtlvK10mSpD634HMKMvPqmT9HRO9T+9McOuj1EODh\nA0mSloGdPtFwDrsD22Zt2wasXsggw8P9fUHEqqGhZ/6izgwxMtIfr9/MPPb7fNawUnq1z8Fin4Ol\nVn81Q8FW4NdmbVsNPL6QQcbGRqsV1IbVo7s0nfahkZFVrFmzR9dlPE2/z2dNK6VX+xws9qleNUPB\nA/zq1Qj7AQ8uZJDx8S1MTk5VK6q2bVue7LqE7ZqYmGLjxs1dlwE0qXVsbLTv57OGldKrfQ4W+xws\nM30uVs1QcCtwXkSszsyZwwhHAN9ayCCTk1NMTPTvxE1NT3ddwg5M991r1+/zWdNK6dU+B4t9qlfN\nUPAN4GfAtRFxCfBG4HeB0yvuQ5IktWSxZyY89d/mzJwCjqc5ZHAbcCpwQmbev8h9SJKkJbColYLM\nHJ71+CfA0YuqSJIkdWKwr9GQJEnzZiiQJEmAoUCSJBWGAkmSBBgKJElSYSiQJEmAoUCSJBWGAkmS\nBBgKJElSYSiQJEmAoUCSJBWGAkmSBBgKJElSYSiQJEmAoUCSJBWGAkmSBBgKJElSYSiQJEmAoUCS\nJBWGAkmSBBgKJElSYSiQJEmAoUCSJBWGAkmSBBgKJElSYSiQJEmAoUCSJBWGAkmSBBgKJElSYSiQ\nJEmAoUCSJBWGAkmSBBgKJElSYSiQJEmAoUCSJBWGAkmSBBgKJElSYSiQJEmAoUCSJBUjNQeLiAOA\nq4BXA48AH8nMj9TchyRJakftlYIbgE3AIcAfA5dGxPGV9yFJklpQLRRExN7AocCfZeY9mXkT8GXg\n2Fr7kCRJ7am5UrAF2AycEREjERHA4cD3K+5DkiS1pFooyMxtwLnAH9EEhB8CX8zMa2vtQ5Iktaf2\nOQVrgZuAVwKnA2+KiFMq70OSJLWg2tUHEXEscBZwQFk1uL1cjXA+cP18xxke7u+rJFcNDXVdwg4M\nMTLSH6/fzDz2+3zWsFJ6tc/BYp+DpVZ/NS9JPAS4uwSCGbcD713IIGNjoxVLqm/16C6wtesq5jYy\nsoo1a/bouoyn6ff5rGml9Gqfg8U+1atmKNgAHBQRI5k5UbatBX66kEHGx7cwOTlVsay6tm15susS\ntmtiYoqNGzd3XQbQpNaxsdG+n88aVkqv9jlY7HOwzPS5WDVDwd8D64BPRsSlwIuB95Rf8zY5OcXE\nRP9O3NT0dNcl7MB03712/T6fNa2UXu1zsNinetW8+mCc5p4E+wPfAS4H3p+Zn6y1D0mS1J6qtznO\nzB8Br6s5piRJWhqDfTqmJEmaN0OBJEkCDAWSJKkwFEiSJMBQIEmSCkOBJEkCDAWSJKkwFEiSJMBQ\nIEmSCkOBJEkCDAWSJKkwFEiSJMBQIEmSCkOBJEkCDAWSJKkwFEiSJMBQIEmSCkOBJEkCDAWSJKkw\nFEiSJMBQIEmSCkOBJEkCDAWSJKkwFEiSJMBQIEmSCkOBJEkCDAWSJKkwFEiSJMBQIEmSCkOBJEkC\nDAWSJKkwFEiSJMBQIEmSCkOBJEkCDAWSJKkwFEiSJMBQIEmSCkOBJEkCDAWSJKkwFEiSJABGag4W\nEbsCfwGcAmwDPp2Z76u5D0mS1I7aKwVXAMcCrwVOBd4WEW+rvA9JktSCaqEgItYAZwJvzczvZeb/\nAtYDh9bahyRJak/NwwdHAI9m5i0zGzJzXcXxJUlSi2qGggOBeyPizcB7gV2Ba4BLM3O64n4kSVIL\naoaCPYEXAWcDpwP7A58ANtOcfDgvw8P9fUHEqqGhrkvYgSFGRvrj9ZuZx36fzxpWSq/2OVjsc7DU\n6q9mKJgA9gJOycz7ASLi+cDbWUAoGBsbrVhSfatHd4GtXVcxt5GRVaxZs0fXZTxNv89nTSulV/sc\nLPapXjVDwYPA1plAUCTw3IUMMj6+hcnJqYpl1bVty5Ndl7BdExNTbNy4uesygCa1jo2N9v181rBS\nerXPwWKfg2Wmz8WqGQpuBXaLiIMy85/LtoOBexcyyOTkFBMT/TtxU9P9fHrEdN+9dv0+nzWtlF7t\nc7DYp3pVO8iSmT8GvgBcGxEviYjXAecBH6+1D0mS1J6qdzQETgOuBL4FPA5ckZkfq7wPSZLUgqqh\nIDM30Vx5cHrNcSVJUvsG+xoNSZI0b4YCSZIEGAokSVJhKJAkSYChQJIkFYYCSZIEGAokSVJhKJAk\nSYChQJIkFYYCSZIEGAokSVJhKJAkSYChQJIkFYYCSZIEGAokSVJhKJAkSYChQJIkFYYCSZIEGAok\nSVJhKJAkSYChQJIkFYYCSZIEGAokSVJhKJAkSYChQJIkFYYCSZIEGAokSVJhKJAkSYChQJIkFYYC\nSZIEGAokSVJhKJAkSYChQJIkFYYCSZIEGAokSVJhKJAkSYChQJIkFYYCSZIEGAokSVJhKJAkSUCL\noSAivhARn25rfEmSVFcroSAiTgZe38bYkiSpHdVDQUSsAdYB36k9tiRJas9IC2OuB64DfqOFsSVJ\nUkuqrhRExDHAkcAlNceVJEntq7ZSEBGrgauBczJzW0Ts1DjDw/19QcSqoaGuS9iBIUZG+uP1m5nH\nfp/PGlZKr/Y5WOxzsNTqr+bhg4uB72bmVxczyNjYaJ1qWrJ6dBfY2nUVcxsZWcWaNXt0XcbT9Pt8\n1rRSerXPwWKf6lUzFJwE7BsRm8rj1QAR8abMHJvvIOPjW5icnKpYVl3btjzZdQnbNTExxcaNm7su\nA2hS69jYaN/PZw0rpVf7HCz2OVhm+lysmqHgKGCXnsfrgGngTxcyyOTkFBMT/TtxU9PTXZewA9N9\n99r1+3zWtFJ6tc/BYp/qVS0UZObPeh+XFYPpzPxprX1IkqT2DPaZF5Ikad7auE8BAJl5RltjS5Kk\n+lwpkCRJgKFAkiQVhgJJkgQYCiRJUmEokCRJgKFAkiQVhgJJkgQYCiRJUmEokCRJgKFAkiQVhgJJ\nkgQYCiRJUmEokCRJgKFAkiQVhgJJkgQYCiRJUmEokCRJgKFAkiQVhgJJkgQYCiRJUmEokCRJgKFA\nkiQVhgJJkgQYCiRJUmEokCRJgKFAkiQVhgJJkgQYCiRJUmEokCRJgKFAkiQVhgJJkgQYCiRJUmEo\nkCRJgKFAkiQVhgJJkgQYCiRJUmEokCRJgKFAkiQVhgJJkgTASM3BIuI5wBXA0cDjwN8C78nMJ2ru\nR5Ik1Vc1FACfAx4BDgf2Aa4BJoDzKu9HkiRVVi0UREQArwT2zcyHy7YLgcswFEiS1PdqnlPwc+C4\nmUBQDAHPqrgPSZLUkmorBZn5GHDzzOOIGALOBb5aax+SJKk9tc8p6HUZ8DLgd1rchyRJqqSVUBAR\nHwLeCfx+Zv5wId87PNzfV0muGhrquoQdGGJkpD9ev5l57Pf5rGGl9Gqfg8U+B0ut/qqHgoi4EvhD\n4LTM/PxCv39sbLR2SVWtHt0FtnZdxdxGRlaxZs0eXZfxNP0+nzWtlF7tc7DYp3rVvk/BRcDZwEmZ\neePOjDE+voXJyamaZVW1bcuTXZewXRMTU2zcuLnrMoAmtY6Njfb9fNawUnq1z8Fin4Nlps/FqnlJ\n4lrgfOADwD9GxL4zz2XmQ/MdZ3JyiomJ/p24qenprkvYgem+e+36fT5rWim92udgsU/1qnmQ5Y1l\nvPOBDeXXg+V3SZLU52pekvgh4EO1xpMkSUtrsE/HlCRJ82YokCRJgKFAkiQVhgJJkgQYCiRJUmEo\nkCRJgKFAkiQVhgJJkgQYCiRJUmEokCRJgKFAkiQVhgJJkgQYCiRJUmEokCRJgKFAkiQVhgJJkgQY\nCiRJUmEokCRJgKFAkiQVhgJJkgTASNcFSJK0PU888QR33XXnTn//8PAqxsZGGR/fwuTkVMXKGr/1\nW7/NrrvuWn3crhgKJEl966677uRPP/x37LXP87ou5VdseuQ+1r0bXv7yV3RdSjWGAklSX9trn+ex\n936/2XUZK4LnFEiSJMBQIEmSCkOBJEkCDAWSJKkwFEiSJMBQIEmSCkOBJEkCDAWSJKkwFEiSJMBQ\nIEmSCkOBJEkCDAWSJKkwFEiSJMBQIEmSCkOBJEkCDAWSJKkwFEiSJABGag4WEauBjwMnAo8Dl2fm\nh2vuQ5IktaP2SsF64BDgNcA5wEURcWLlfUiSpBZUCwURsTtwFvDOzLwjM/8HsA44t9Y+JElSe2qu\nFLyU5nDEt3u23QIcWnEfkiSpJTVDwf7Aw5k50bPtIWC3iNin4n4kSVILap5ouDuwbda2mcer5zvI\n8HB/XxCxamio6xJ2YIh/+qfbuy4CgFWrhthzz93413/dytTUdNfltGql9Gqfg2W59Hn33cmmR+7r\nuow5bXrkPoaHX8nISPc/t2r97Byanq7zlyEi3gRckZnP6dn2YuAuYJ/MfLTKjiRJUitqxpsHgF+P\niN4x9wO2GAgkSep/NUPBD4AngcN6th0JfLfiPiRJUkuqHT4AiIirgMOBM4EDgGuBt5TLEyVJUh+r\nekdD4N00dzT8OvAYcIGBQJKk5aHqSoEkSVq+ur+OQpIk9QVDgSRJAgwFkiSpMBRIkiTAUCBJkora\nlyTulIhYTXMp44nA48DlmfnhbquqLyKeA1wBHE3T598C78nMJzotrEUR8QXgocw8s+taaouIXYG/\nAE6h+ZyPT2fm+7qtqr6IOAC4Cng18Ajwkcz8SLdV1VXeg24D3pGZ3yzbXgD8FfAq4F7gXZl5c1c1\n1rCdPg8DLgdeAtwPrM/MT3VX5eLN1WfPc2PA/wPem5nXdVFfLduZz+cCfwkcRXOn4fdl5g3zHbNf\nVgrWA4cArwHOAS6KiBM7ragdnwN2o7nB08nAG4BLOq2oRRFxMvD6ruto0RXAscBrgVOBt0XE27ot\nqRU3AJto/o3+MXBpRBzfbUn1lDfW64GDZz31eWAD8ArgM8CNJSAtS3P1GRH7Al+kubfMy4CLgSsj\nYtn+u93BfM5YR/OpvsvaduZzmGY+t9LM53rgMxGxvdfiV3S+UhARuwNnAa/LzDuAOyJiHXAu8Hed\nFldRRATwSmDfzHy4bLsQuAw4r8va2hARa2j+8X2n61raUPo7EzgmM79Xtq0HDqX53+VAiIi9aXo6\nKzPvAe6JiC/ThKFlf2OyiFgLfHaO7ccABwKHZeZW4IMRcSzNnL9/aatcvO31CZwAPJiZF5TH90TE\n0TQh90tLVV8tO+hz5vkjgGOAny9ZUS3YQZ//EfgNmr+3m4G7I+I44N/RrI48o35YKXgpTTj5ds+2\nW2jeiAbJz4HjZgJBMQQ8q6N62rYeuA74YdeFtOQI4NHMvGVmQ2auy8y3dlhTG7YAm4EzImKkhNvD\nge93W1Y1RwFfozlE0Pu56IcC3y+BYMYt5euWo+31+SXgjDm+frm+L22vz5nDfZ+gWY1e7odst9fn\nUcDXSiAAIDNPzMxPznfgzlcKaJZxHs7MiZ5tDwG7RcQ+mflIR3VVlZmPAU8dj4yIIZrVkK92VlRL\nyv+yjgR+G7i643LaciBwb0S8GXgvsCtwDXBpZg7MbUIzc1tEnAt8lObQwTBwTWZe22lhlWTmU38/\nm7zzlP1pDh30eojmM12Wne31mZn3Aff1PPdsmkObFy5lfbXsYD4B3gd8LzO/Osdzy8oO+jwQ+GlE\n/DnwZuAXwMUL+biBflgp2J3mJK1eM49XL3EtS+kymmM+A3ViWjnOdTVwTmbOntdBsifwIuBs4HTg\nT4B30vzgHDRrgZtoDn+dDrwpIk7ptKL2be99aWDfkyJiN5rznjbQ/I96YJRj6mcD7+q6lpbtSbPy\nszfwe8BfA/89Ig6Z7wD9sFKwlV/9hzbz+PElrmVJRMSHaH6A/H5mDtry+sXAdzNz4FZAZpkA9gJO\nycz7ASLi+cDbaa5IGAjlOPpZwAEl5N1eTrY7n+Ykp0G1Ffi1WdtWM7jvSXvQBL+DgMNnHTYZBJ8A\nLpx1+HYQTdCsvL+9PP5BRBxJE4j+aD4D9MNKwQPAr0dEby37AVsy89GOampNRFxJk1ZPy8zPd11P\nC04CToiITRGxCTgN+E8RMd5xXbU9CGydCQRFAs/tqJ62HALcPWvV53bg+R3Vs1QeoHkf6rUfzbwP\nlIjYC/gKzVnsR2fmTzouqaqIeB7NiXaX97wvPQ+4ulwyPUgeBH48a9uC3pf6IRT8AHgSOKxn25HA\nd7sppz0RcRFNYjtpIdeNLjNH0ZxL8NLy6yaas9Rf2mVRLbiV5ryXg3q2HUxzPfsg2QAcFBG9q4pr\ngZ92VM9SuRU4pBwOm3FE2T4wyrlNNwIvAF6dmT/qtqJW3E+zAvIyfvm+tAG4ABi0E4NvBf5tmdcZ\na1nA+1Lnhw8yc0tEXEeT2s6kOZHnT4C3dFtZXeUSkvOBDwD/WK4PBiAzH+qssMoy82e9j0sqn87M\ngfohkpk/Lv/LuDYizqE5Me08luHlas/g72kuLf1kRFwKvBh4T/k1yL4B/Ixmfi8B3gj8Ls05FYPk\nrTT3h3kDMN7zvvREZm7srKqKMnMKeNrqR0RMAL/IzEFb+bmeJux8vFwi/TrgOJrzgealH1YKAN4N\nfI/mBhpXAhcs5GzJZeKNNK/3+TQpdQPNUs/sM5y1fJwG/DPwLeBa4IrM/FinFVWWmeM09yTYn+ae\nE5cD71/IJU7LyFNXjZQfJMfTHDK4jea6/RNmHS5arqb5Za8n0lzS9g/88n1pA80Jh8vdjq4CGpgr\nhHj639tNNDdTWwvcCfxnmnPX7pjvYEPT04P02kiSpJ3VLysFkiSpY4YCSZIEGAokSVJhKJAkSYCh\nQJIkFYYCSZIEGAokSVJhKJAkSYChQJIkFYYCaQWKiKmI+IMdPH9RRMz70/Ii4pqI+Hqd6iR1xVAg\naS6X0XwAkKQVpPNPSZTUfzLzceDxruuQtLQMBdLK9eKIuBk4AngE+GhmfhAgIi4G3pKZLyyPDwQ+\nChwJPAp8GDgHuCQzryvj7RIR62g+Xnh34Gbg7Mz8xZJ1JGlRPHwgrVzvAK6h+ZjVq4APRMRrynNP\nfbxuRIzSfKw5wKuAk4EzgBfOGu9wYO/y+38oX3tZe+VLqs2VAmnl+lhmfrb8+dKI+C/A7wD/e9bX\nnQzsA5ySmY8BRMRpwOzPaN+QmWeXP98dEX8D/PtWKpfUClcKpJXr7lmPHwVG5/i6lwM5EwhoHtwJ\nPDbr6+6Z9XjjdsaT1KcMBdLKNTnHtqE5tk0wv/eK+Y4nqU8ZCiQ9kzuA34yIvWc2RMRa4FndlSSp\nDYYCSc/keuBh4LMR8ZKIOAz4a3pORpQ0GAwF0so01w/zOX/IZ+YTwHHALsC3gRuAT9EcGniixRol\nLbGh6WmDvqTti4jnAy/KzJt7tu0PPAAcmZn/p7PiJFXlJYmSnsko8MWI+G/A54A1wJ8BCdzaZWGS\n6vLwgaQdyswfAScBpwL/F/gKzeWIr83Mua44kLRMefhAkiQBrhRIkqTCUCBJkgBDgSRJKgwFkiQJ\nMBRIkqTCUCBJkgBDgSRJKgwFkiQJgP8PhQ0X4SJqSDIAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x263e5034b38>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# 各分组的身高分布\n", | |
| "for name, group in groupby_gend:\n", | |
| " plt.figure()\n", | |
| " plt.hist(group.high)\n", | |
| " plt.xlabel('high')\n", | |
| " plt.title(name)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAGJCAYAAAAAOqC9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAHlxJREFUeJzt3XuUXWWZ5/FvVcWEiqQ0HccE26bF22NQRi5ym6CijiK2\niM1CRFk9duNAI15aZc0wTqPYYmtz8664cBp6IavpphEEGrQbccTh1iaiSEb6aZRxQUOIEkMqkAqY\nqswf+9Rax5O3kuxz6lyS+n7WqlXZ73nP2U+99dY5v+zz7n2Gtm7diiRJUqvhfhcgSZIGkyFBkiQV\nGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVLRvH4XIGnXExFvAD4JvBRYC3w5\nMy/sb1WSZptHEiTVEhGHAdcDPwX+ELgcOC8i/ntfC5M064b87AZJdUTEPwFjmXl4U9tfAacBSzPz\nyb4VJ2lWeSRB0k6LiPnAq4FrWm66ChgDjuh5UZK6xpAgqY7nA/OBf2tp/1nje/S2HEndZEiQVMcz\nGt/HW9o3Nr6P9bAWSV1mSJBUx46eM6Z6UoWknjAkSKpjQ+P7opb2sZbbJe0GDAmS6vg5MAm8sKV9\nevve3pYjqZsMCZJ2WuP0xu8Dx7XcdDzwGPCDnhclqWu84qKkuj4J3BQRVwKXACuAM4AzM3NzXyuT\nNKu8mJKk2iLiWOAvqE55fAj4UmZ+rr9VSZpttUNCRLwA+DLV/x7WUT05XDBD3wOAi4D9gNXAezLz\nro4qliRJPVFrTUJEDAE3UH2gy/5Ul2E9KyJOLPRd2Oh7C3AgcAdwQ0SMdlq0JEnqvroLF5cCPwJO\nz8yfZ+a3gZspX4r1RGBTZp6ZlQ9SXXDlbR1VLEmSeqLWwsXMfAR4x/R2RKwAXkV1RKHVocCtLW23\nAYcDl9UrU5Ik9Vrbp0BGxC+oToW6Hbi60GUv4OGWtrXAc9vdpyRJ6p1OrpNwHHAMcABQWtW8EGj9\nyNgngQUd7FOSJPVI29dJmD5LISI+BFweEWdk5pamLpvZNhAsADbt7D62bt26dWhoqN0Su2blypWc\n8tGvs2jJ3v0uZRsb1z3A1875Iw4++OB+lyJJ6q+OX0BrhYSIeDZweGZe29T8U6qPjh0Dft3U/hCw\nrOUhlgFrdnZ/Q0NDjI9PMDk5WJ8ZMz4+waIle/PMZS/qdylF4+MTrF//RO37jYwMMzY2OpBjvrty\nzHvPMe89x7z3pse8U3WPJOwDXB0Rz83M6Rf7VwC/ysxft/S9EzizpW0F1dXadtrk5BRbtgzWpBr0\nSd7pmA3imO/uHPPec8x7zzHf9dQNCSuBVcAlEfFhqtBwHo0X/ohYCmxoXJr1KuDTEfFZ4GKqMyAW\nAlfOUu2SJKmLai1czMwp4FjgCaqzGi4GPpeZX2p0WQOc0Oi7EXgz1SmSq4BDgKMzc2J2SpckSd1U\ne+Fi41oJx89w23DL9irgoPZKkyRJ/eRHRUuSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoy\nJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRI\nkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKk\nIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJD\ngiRJKjIkSJKkIkOCJEkqmlenc0Q8B/gC8BpgE3Al8JHMfKrQ91rgGGArMNT4fkxm3thp0ZIkqftq\nhQTgG8A6YAWwBLgU2AKcWei7HHgn8N2mtvVt1ChJkvpgp0NCRARwCLA0Mx9ttH0MOJ+WkBAR84F9\ngFWZ+cvZK1eSJPVKnTUJjwBvnA4IDUPAMwp9A5gC7u+gNkmS1Ec7fSQhMzcAN01vR8QQ8D7gO4Xu\ny4Fx4PKIOBJ4EDg7M7/dUbWSJKln6q5JaHY+sD/wisJtLwFGgW8BnwaOA66PiEMz8646OxkZGbwT\nMAaxpmYjI8PMm1e/xumfa9B/vt2JY957jnnvOea9N1tj3VZIiIhzgQ8AJ2Tmva23Z+YnIuLzjaMP\nAPdExEHAqcBpdfY1NjbaToldNYg1NRsbG2Xx4qd3dH/1lmPee4557znmu57aISEivgj8KXBSZn5z\npn5NAWHavcC+dfc3Pj7B5ORU3bt11fj4RL9L2K7x8QnWr3+i9v1GRoYZGxsdyDHfXTnmveeY955j\n3nvTY96putdJOJvqaMDbM/Oa7fS7FJjKzHc3Ne8P/KRugZOTU2zZMliTatAneadjNohjvrtzzHvP\nMe89x3zXU+cUyOXAWcCngNsjYun0bZm5trG9ITM3A9cBV0TE94DbgZOorq1wyizWLkmSuqjOyoa3\nNPqfBTzc+FrT+E7j3ycANI4ynN7oew/VlRePyswHZqdsSZLUbXVOgTwXOHc7tw+3bF8CXNJ+aZIk\nqZ88H0WSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkSJElS\nkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEh\nQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGS\nJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFc2r0zkingN8AXgN\nsAm4EvhIZj5V6HsAcBGwH7AaeE9m3tVxxZIkqSfqHkn4BrAHsAI4ETgGOKe1U0QsBG4AbgEOBO4A\nboiI0Y6qlSRJPbPTRxIiIoBDgKWZ+Wij7WPA+cCZLd1PBDZl5nT7ByPiTcDbgMs6rlqSJHVdnSMJ\njwBvnA4IDUPAMwp9DwVubWm7DTi8XnmSJKlfdvpIQmZuAG6a3o6IIeB9wHcK3feiWofQbC3w0jZq\nlCRJfVBr4WKL84H9gVcUblsIPNnS9iSwoIP9SZKkHmorJETEucAHgBMy895Cl81sGwgWUJ0RsdM+\n8N/OZuvWYaam2qmye9aueRCGX9LvMmY0MjLMvHn1z24dGRn+re/qPse89xzzHXvqqadYvfqeWXu8\n4eEh9txzDx5/fDNTU1s7fryXvWw/5s+fPwuV7b5ma37XDgkR8UXgT4GTMvObM3R7CFjW0rYMWFNn\nX/f8+xB7Pmf/auXDAFk3OY9Bfn4ZGxtl8eKnd3R/9ZZj3nuO+cxWrvwpZ5x/FYuW7N3vUraxcd0D\nfO2cUQ4++OB+lzIn1L1OwtnAqcDbM/Oa7XS9k23PeFgBfLJeeWrH+PgE69c/Uft+IyPDjI2NMj4+\nweTkgB2+2U055r3nmO/Y+PgEi5bszTOXvajfpRS1+xw3l0zP807VOQVyOXAW8Cng9ohYOn1bZq5t\nbG/IzM3AVcCnI+KzwMXAaVTrFK7suGLt0OTkFFu2tP/k1+n9VZ9j3nuO+cwGPTz5u+udOgfN39Lo\nfxbwcONrTeM7jX+fAJCZG4E3A68CVlFdX+HozJyYnbIlSVK31TkF8lzg3O3cPtyyvQo4qP3SJElS\nPw3w8jtJktRPhgRJklRkSJAkSUWGBEmSVGRIkCRJRYYESZJUZEiQJElFhgRJklRkSJAkSUWGBEmS\nVGRIkCRJRYYESZJUZEiQJElFhgRJklRkSJAkSUWGBEmSVGRIkCRJRYYESZJUZEiQJElFhgRJklRk\nSJAkSUWGBEmSVGRIkCRJRYYESZJUZEiQJElFhgRJklRkSJAkSUWGBEmSVGRIkCRJRYYESZJUZEiQ\nJElFhgRJklRkSJAkSUWGBEmSVGRIkCRJRYYESZJUZEiQJElFhgRJklRkSJAkSUWGBEmSVDSv3TtG\nxAJgFfDezPz+DH2uBY4BtgJDje/HZOaN7e5XkiT1RlshoREQrgD23UHX5cA7ge82ta1vZ5+SJKm3\naoeEiFgO/O1O9JsP7AOsysxftlGbJEnqo3bWJLwauBk4nOothJkEMAXc38Y+JElSn9U+kpCZX53+\nd0Rsr+tyYBy4PCKOBB4Ezs7Mb9fdpyRJ6r22Fy7uhJcAo8C3gE8DxwHXR8ShmXlXF/c7542MDDNv\nXv2DRCMjw7/1Xd3nmPeeY75jgz427T7HzSWz9TvsWkjIzE9ExOczc0Oj6Z6IOAg4FTitW/sVjI2N\nsnjx0zu6v3rLMe89x3xmgz42nT7Haed180gCTQFh2r3s+IwIdWh8fIL165+ofb+RkWHGxkYZH59g\ncnKqC5WplWPee475jo2PT/S7hO1q9zluLpme553qWkiIiEuBqcx8d1Pz/sBPurVPVSYnp9iypf0n\nv07vr/oc895zzGc26OHJ313vzGpIiIilwIbM3AxcB1wREd8DbgdOAlYAp8zmPiVJUnd0urJha8v2\nGuAEgMy8BjgdOAu4h+rKi0dl5gMd7lOSJPVAR0cSMnOkZXu4ZfsS4JJO9iFJkvrDc0gkSVKRIUGS\nJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQV\nGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkS\nJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJ\nUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFc1r944RsQBYBbw3M78/Q58D\ngIuA/YDVwHsy86529ylJknqnrSMJjYBwBbDvdvosBG4AbgEOBO4AboiI0Xb2KUmSeqt2SIiI5cCd\nwD476HoisCkzz8zKB4GNwNvqlylJknqtnSMJrwZuBg4HhrbT71Dg1pa22xr3kyRJA672moTM/Or0\nvyNie133olqH0Gwt8NK6+5QkSb3X9sLFnbAQeLKl7UlgQRf3OedNTW7hvvuSkZH6B4mGh4fYc889\nePzxzUxNbZ312n7zm98A8LSnPW3WH7tT/aptZ8f8ZS/bj/nz5/ewsp3z1FNPsXr1Pf0uY7tax276\nb6Odv5HZNMhjd9992e8StmtkZJh58zw5b3tma353MyRsZttAsADY1MV9znlPPLaGr13/MItu39jv\nUrax9v6VLHzGUhYt2bvfpWxjkGvbuO4BvnbOKAcffHC/S9nGypU/5YzzrxrIcYPtj93YWH/XUA/y\n2K29fyVLnz94823a2Ngoixc/vd9lzAndDAkPActa2pYBa7q4TwGLluzNM5e9qN9lbGPjugdZtOT3\nrK0N4+MTrF//RL/L2Mb4+MTAzrdprWM3MjLM2Ngo4+MTTE5O9bWuQR27jese7HcJ2zWofw+DZHqe\nd6qbIeFO4MyWthXAJ7u4T2m3NDk5xZYt/XtBm0k/X2R31kxj1+8x3RXGblD1+3c3l8xqSIiIpcCG\nzNwMXAV8OiI+C1wMnEa1TuHK2dynJEnqjk5XNrSutFoDnACQmRuBNwOvoroy4yHA0Zk50eE+JUlS\nD3R0JCEzR1q2h1u2VwEHdbIPSZLUH55DIkmSigwJkiSpyJAgSZKKDAmSJKnIkCBJkooMCZIkqciQ\nIEmSigwJkiSpyJAgSZKKDAmSJKnIkCBJkooMCZIkqciQIEmSigwJkiSpyJAgSZKKDAmSJKnIkCBJ\nkooMCZIkqciQIEmSigwJkiSpyJAgSZKKDAmSJKnIkCBJkooMCZIkqciQIEmSigwJkiSpyJAgSZKK\nDAmSJKnIkCBJkooMCZIkqciQIEmSigwJkiSpyJAgSZKKDAmSJKnIkCBJkooMCZIkqciQIEmSigwJ\nkiSpyJAgSZKK5tW9Q0QsAL4CHAdsAi7MzM/M0Pda4BhgKzDU+H5MZt7YdsWSJKknaocE4ALgQOBI\n4HnAZRHxi8y8utB3OfBO4LtNbevb2KckSeqxWiEhIhYC7waOysy7gbsj4jzgfcDVLX3nA/sAqzLz\nl7NUryRJ6pG6axJeThUs7mhquxU4tNA3gCng/vZKkyRJ/VQ3JOwFPJqZW5ra1gJ7RMSSlr7LgXHg\n8oh4OCL+JSLe2EGtkiSph+qGhIXAky1t09sLWtpfAowC3wKOAm4Ero+IA+sWKUmSeq/uwsXNbBsG\nprc3NTdm5ici4vOZuaHRdE9EHAScCpxWu1JpDhsZGWbevME7Y3lkZPBqatU6dtM197v2fu9/Vzao\nfw+DZLbmV92Q8BDwrIgYzsypRtsyYCIzH2vt3BQQpt0L7Fu/TGluGxsbZfHip/e7jG2MjY32u4Qd\nmmns+l17v/e/KxvUv4fdUd2Q8GPgN8BhwO2NtlcCK1s7RsSlwFRmvrupeX/gJ23UKc1p4+MTrF//\nRL/L2Mb4+ES/S9ih1rEbGRlmbGyU8fEJJientnPP7tel9gzq38MgmZ7nnaoVEjJzIiIuA74aEScD\nzwXOAN4FEBFLgQ2ZuRm4DrgiIr5HFShOAlYAp3RctTTHTE5OsWVL/17QZtLPF9mdNdPY9XtMd4Wx\nG1T9/t3NJe28afFh4IdUF0j6IvDRzLy2cdsa4ASAzLwGOB04C7iH6sqLR2XmA50WLUmSuq/2FRcz\ncwL4k8ZX623DLduXAJe0XZ0kSeobl4dKkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRI\nkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKk\nIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJD\ngiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4Ik\nSSoyJEiSpCJDgiRJKppX9w4RsQD4CnAcsAm4MDM/M0PfA4CLgP2A1cB7MvOu9suVJEm90s6RhAuA\nA4EjgdOBsyPiuNZOEbEQuAG4pdH/DuCGiBhtu1pJktQztUJC44X/3cAHMvPuzLwWOA94X6H7icCm\nzDwzKx8ENgJv67RoSZLUfXWPJLyc6i2KO5rabgUOLfQ9tHFbs9uAw2vuU5Ik9UHdkLAX8Ghmbmlq\nWwvsERFLCn0fbmlbCzy35j4lSVIf1F24uBB4sqVtenvBTvZt7bdL2rjugX6XULRpwyPA1n6XUWRt\n7dm47gHuu28RIyODdzLSffflwP4tQHnshoeH2HPPPXj88c1MTfXvdz7IYzfofw8jI4cwb97g/T0M\nktl6vqgbEjaz7Yv89Pamnezb2m9G//uKjw/Vqq5nju13AdJAeN3rXsV739vvKnZNjp12BXWjxkPA\nsyKi+X7LgInMfKzQd1lL2zJgTc19SpKkPqgbEn4M/AY4rKntlcDKQt87gf/U0rai0S5Jkgbc0Nat\n9d53ioiLqF7sT6ZahPg3wLsy89qIWApsyMzNEbEIuA+4ArgYOA04HnhhZk7M3o8gSZK6oZ2VDR8G\nfgh8F/gi8NHG9RKgeivhBIDM3Ai8GXgVsAo4BDjagCBJ0q6h9pEESZI0N3gOiSRJKjIkSJKkIkOC\nJEkqMiRIkqQiQ4IkSSqqe1nmroiIFwBfprr+wjrgS5l5QeO2zwPvp7qQ+FDj+/sz8yt9Kne3EhE3\nAGsz8+TG9vOAr1F9WucvgA9l5k19K3A3VBhz53iXRMRbgav57bH9Rmae4Fzvjh2MuXO9CyJiPvBZ\n4B1Un5F0SWb+eeO259HBPO/7kYSIGAJuoPqEyP2pLrp0VkSc2OiyHDiT6lMllzW+X9KHUnc7jTE+\nuqX5m1Sf3nkQcDlwTUT4yZ2zZIYxd453z77AdVTjOj22/7Vx27U417the2PuXO+OLwCvA14PvBM4\nJSJOadzW0TwfhCMJS4EfAadn5hPAzyPiZuAI4O+oJtV5mfnLPta424mIxcB5wA+a2l4LPB84LDM3\nA38VEa+jurrmJ/pS6G6kNOYNzvHuWQ6szsxfNTc25vo+wKHO9VlXHPOm25zrs6jxvHIy8NrM/GGj\n7QLg0Ij4GR3O876HhMx8hOoQCQARsYLqKo2nNS7t/LvAv/WpvN3ZBcBlVOM77VDgrsZkmnYr1WEq\ndW6bMXeOd92+QOnQqnO9e4pj7lzvmiOAxzLz1umGzDwPICI+QofzvO8hoVlE/AL4PeAfqd7TOoTq\nPauzIuJoqvUKn8nMy/pV4+6g8b+oVwL7AV9tumkvqsNSzdZSfUaHOrCdMd8X53g3BfDGiPhzYAT4\nB+BjONe7aaYxd653x/OBX0TEHwH/E5gPXAr8JbMwz/u+JqHFccAxwAHA56gm2xTwU6r3cf8XcHFE\nHNu3CndxEbGA6kXq9Mx8suXmhVSLXpo9CSzoRW27qx2MuXO8SyJib2AUmADeBpxB9X7t+TjXu2KG\nMT+Jasyd692xJ/Bi4FTgj6nG/P3Ah5iFeT5QRxIy8y6AiPgQ1QKLMeC6zHys0WV1RLwYeA/VYgzV\n93FgZWZ+p3DbZuB3WtoWAJu6XdRu7uPMMOaZeVlEOMe7IDMfiIglTWP7k4gYoXpuuRRY3HIX53qH\ntjPmX6d6MXOuz74twCLgHZn57wAR8fvA6cA/A0ta+tea530PCRHxbODwpk+ShCppzgcWZeavW+5y\nL/CaXtW3G3o7sDQiNja2FwBExPHAp6gOCTZbRvXpnmrfjGOemWNNT5rTnOOzZIax3QN4hGoRXTPn\n+izYzpj/TmauK9zmXO/MGmDzdEBoSKq3FB4CXtrSv9Y8H4S3G/YBro6IvZraXgH8CviziGhdAHMA\n8K+9Km439Gqq98Vf3vi6jirFvxz4F+DAxuHxaUcAd/a6yN3MTGO+f0T8hXO8OyLiDRHxaETs0dR8\nAPAo8H+Ag5zrs2s7Y74O+IBzvSvuBPaIiBc2te1LdU2EO+lwnvf9o6IjYhi4A/g18GGq0PDXVIsu\n7gRuAz5Cdf7+UcCFwJGZ2XoamdoQEZcCWzPz5Mbv4m5gNXAO8BaqsX9pS0pVB1rG/BU4x7siIvak\nOir5farTvV5AdVGZzza+fgLcg3N91uxgzG/Bud4VEXEd1VvFp1MtVryMavwvosN53vcjCZk5BRwL\nPAHcDlwMfC4zv5SZq4Djgf9C9UO+j+p9FydUFzT9LpYBq6gWeb3VJ83ucY53T2Y+TvVC9B+AlVQv\nVl/NzAsbc/0tONdn1Q7G3LnePScBP6M6QvY3wBcy88uzMc/7fiRBkiQNpr4fSZAkSYPJkCBJkooM\nCZIkqciQIEmSigwJkiSpyJAgSZKKDAmSJKnIkCBJkooMCZIkqciQIKmWiDg7Iu6v0f/SiPjuDvrs\nGxFv6rw6SbPJkCCprvOBg2f5Mf+R6tNfJQ2Qef0uQNKuJTM3AZtm+WGHZvnxJM0CP+BJmgMiYhVw\na2Z+sLF9LHANcHxmXt1ouxDYj+qT+i4A3grMp/r0uDMz84eNfh8H3pWZ+zS2nw98CXgl8BjwGaqP\nrD0nMy9rfDT2C6k+Ev6PgYXATcCpmfmriPh/wN6NUm/JzNd2cSgk1eDbDdLccD3w+qbt/wxMAa9p\nansTcC1wI/C8xvYhwJ3AbRHx8ka/rY0vImIUmF5vcDhwIvAnwD4t+18BPLPx/U2Nvuc3bjsYeAi4\nEDiu/R9R0mzz7QZpbrgO+FhE/G5mPkQVGK6lERIi4gXAi4GNwGHAszLzscZ9z4qII4A/A05uedwT\ngSXAOzJzQ+OxTgLubun3cGae2vj3fRHxd1RBhcx8NCImgceb9ilpABgSpDkgM38UEQ8Dr4+Im6n+\np38S8IOIeDbV/+5/DDyb6gjjgxHR/BDzG1+tDqgevgoIjX3dExEbWvr9vGV7PTDawY8kqQcMCdLc\ncT3wBqpFgj/IzB82gsNrgT+gOrIwDGwADmTbxYRPFh5zCzv3tuVkoc3FitKAc02CNHdcT3WI/3XA\nzY22m4G3AK+mCgmrgTFgQWbeP/0FfAQ4tvCYdwMviohnTjdExHLgGTVrcwW1NIAMCdLccTPVIf7j\n+O2QcALwSGbeDXyb6oX/7yPiyIh4QUR8BngX8H8Lj3kF8CjwtxHxHyPiMODrNC1u3EmPU4WNZ7fx\nc0nqEkOCNEdk5lNUpx5OUp2OCPAdqsP+1zb6TFEdbVgF/D1VYDgCeGtm3jLDY74ReFrjMf8B+OvG\nYz5Vo7wvAG8G/qnuzyWpe7xOgqS2RcTvAy/OzJua2vaiOqXxlZl5W9+Kk9QxFy5K6sQocGNE/A/g\nG8Bi4JNAUl1fQdIuzLcbJLUtM/8VeDvwTqpFj/9MdXbE6zOzdEaDpF2IbzdIkqQijyRIkqQiQ4Ik\nSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSr6/2Ct3tLJWni3AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x263e523e630>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAGJCAYAAAAAOqC9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XuUZWV55/Fv1elbtVLaIUM3GUJEo4+NErkIyDTgbQzi\niLgYRJQ1McGRIBrjZc0wTog6YnTk4t1ocAIuwoTEIAQI6ERxicMt0qJcRvIMkTg40LSCTVdDd0N3\nVc0f+9RYnn6rq/epOmef7vp+1qpVvd/9nrOffvd7+vx6n733GZqcnESSJKnTcNMFSJKkwWRIkCRJ\nRYYESZJUZEiQJElFhgRJklRkSJAkSUWGBEmSVGRIkCRJRYYESZJUtKjpAiTtviJiP+Bu4MTM/E7T\n9UiaXx5JkNSViPh14O+B0aZrkdQbHkmQVEtEDAFvAc5vuhZJveWRBEl1/RbwBeDLwO8AQ41WI6ln\nDAmS6vo/wHMy8z8AmwG/SlbaQ/lxg6RaMvMx4LGm65DUex5JkCRJRYYESZJUZEiQJElFhgRJklRk\nSJA0V14CKe2hDAmS5spLIKU91NDkZHev74i4DlifmafPsP4QqhuuHATcA7w9M+/otlBJktRfXR1J\niIhTgeN3sn45cB1wI3AocCtwXUSMdLM9SZLUf7VvphQRK4DzgO/upNupwObMPLu9/O6IeA3wBuDS\n2lVKkqS+6+ZIwgVUb/T37qTPkcBNHW03A0d1sT1JktSAWiEhIl4BHAOcO0vXfYGHOtrWA/vV2Z4k\nSWrOLoeEiFgKfBE4KzOfnKX7cqCzz5PA0nrlSZKkptQ5J+FDwO2Z+c1d6LuVHQPBUqpvjNtlk5OT\nk0NDXoI9m99/1/t5eMN402UUrVg+zpf/7MKmy5CkhWjOb6B1QsIbgZURsam9vBQgIk7OzNGOvg8C\nqzraVgHr6hQ3NDTE2NgWxscn6jxswXl86xAT+6xpuoyizRtuZcOGJ5ouY2C1WsOMjo44z/vIMe8/\nx7z/psZ8ruqEhJcCi6ctn0d1E5X/WOh7G3B2R9sa4CO1qgPGxyfYvt1JtTPd3uuiHyYncf/tAud5\n/znm/eeY7352OSRk5k+mL7ePKExm5j+3l1cCGzNzK3AF8LGI+CRwEXAm1XkKX5mvwiVJUm/N522Z\n1wGnAGTmJuC1wLHAWuAI4PjM3DKP25MkST1U+2ZKUzLz9zqWhzuW1wKHdfv8kiSpWX7BkyRJKjIk\nSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiS\npCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQi\nQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqWlT3ARHxHODzwBrgUeBzmXnBDH2vBk4AJoGh9u8T\nMvP6riuWJEl9UetIQkQMAdcB64GDgTOBcyLi1Bkeshp4M7AvsKr9+xtdVytJkvqm7pGElcD3gbMy\n8wngRxFxA3A08FfTO0bEEuAAYG1m/nQ+ipUkSf1TKyRk5sPAm6aWI2INcCzVEYVOAUwA98+lQEmS\n1IyuT1yMiB8D3wFuAa4sdFkNjAGXRcRDEfEPEfHqbrcnSZL6q/aJi9OcRHWewReBTwF/2LH++cAI\n8DXgY+3+10bEkZl5x65upNXyAozZDA0NNV3CjIaGYNEi9+FMpua387x/HPP+c8z7b77GemhycnJO\nTxAR/xa4DNgrM7d3rHtGZm6ctnwN8FBmlj6eKJlbcQvE777jj3l02YubLqNor8e/y1/+2Z80XYYk\nLURz/h9krSMJEbEPcFRmXj2t+YfAEmAU+Pn0/tMDQtu9wIF1tjk2toXx8Yk6D1lwtm0bh2VNV1G2\nfds4GzY80XQZA6vVGmZ0dMR53keOef855v03NeZzVffjhgOAKyNiv8xc1257MfCzzPylgBARlwAT\nmfnWac0HA3fV2eD4+ATbtzupdmauR4N6aXIS998ucJ73n2Pef4757qduSLgdWAtcHBHvpQoN5wEf\nAYiIlcDGzNwKXANcHhHfpjq58TSqGzC9bX5KlyRJvVTrzIbMnABOBJ6geuO/CPhUZn6u3WUdcEq7\n71XAWcA5wN1Ud148LjMfmJ/SJUlSL9W+uqF9r4STZ1g33LF8MXBxd6VJkqQmeT2KJEkqMiRIkqQi\nQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOC\nJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJKjIkSJKkIkOCJEkqMiRIkqQiQ4IkSSoyJEiSpCJDgiRJ\nKjIkSJKkIkOCJEkqMiRIkqSiRXUfEBHPAT4PrAEeBT6XmRfM0PcQ4AvAQcA9wNsz847uy5UkSf1S\n60hCRAwB1wHrgYOBM4FzIuLUQt/l7b43AocCtwLXRcTIXIuWJEm9V/fjhpXA94GzMvNHmfl14Abg\n6ELfU4HNmXl2Vt4NbALeMKeKJUlSX9T6uCEzHwbeNLUcEWuAY6mOKHQ6Eripo+1m4Cjg0nplSpKk\nfuv6xMWI+DHwHeAW4MpCl32Bhzra1gP7dbtNSZLUP3O5uuEk4ATgEOBThfXLgSc72p4Els5hm5Ik\nqU9qX90wZeoqhYh4D3BZRLwvM7dP67KVHQPBUmBzne20Wl6lOZuhoaGmS5jR5MQ4d931/abLmNEL\nX3gQS5YsaWz7U/Pbed4/jnn/Oeb9N19jXSskRMQ+wFGZefW05h8CS4BR4OfT2h8EVnU8xSpgXZ1t\njo56McRsFi9uNV3CjDaNPcL7zr+Cvfbev+lSdrDp0Qf40rkjHH744U2X4jxvgGPef4757qfukYQD\ngCsjYr/MnHqzfzHws8z8eUff24CzO9rWAB+ps8GxsS2Mj0/ULHNh2bZtHJY1XUXZ+PYJ9tp7f565\n6rlNl1I0NraFDRueaGz7rdYwo6MjzvM+csz7zzHvv6kxn6u6IeF2YC1wcUS8lyo0nEf7jT8iVgIb\nM3MrcAXwsYj4JHAR1RUQy4Gv1Nng+PgE27c7qXZmcnKy6RJmNLiVVQZlfg1KHQuJY95/jvnup9aH\nFpk5AZwIPEF1VcNFwKcy83PtLuuAU9p9NwGvpbpEci1wBHB8Zm6Zn9IlSVIv1T5xsX2vhJNnWDfc\nsbwWOKy70iRJUpM81VSSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEh\nQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGS\nJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFS2q0zkifg34DPBy\nYDPwFeD9mflUoe/VwAnAJDDU/n1CZl4/16IlSVLv1QoJwFeBR4E1wN7AJcB24OxC39XAm4FvTWvb\n0EWNkiSpAbscEiIigCOAlZn5SLvtA8D5dISEiFgCHACszcyfzl+5kiSpX+qck/Aw8OqpgNA2BDyj\n0DeACeD+OdQmSZIatMtHEjJzI/CNqeWIGALeCXyz0H01MAZcFhEvA34CfDAzvz6naiVJUt/M5eqG\n84GDgT8qrHs+MAJ8DTgOuB64NiIOncP2JElSH9U9cRGAiPg48C7glMy8t3N9Zn44Ij7dPvoAcHdE\nHAacAZxZZ1utlldpzmZoaKjpEmY0uJVVWq1hFi1qbo5NzW/nef845v3nmPfffI117ZAQEZ8Ffh84\nLTP/dqZ+0wLClHuBA+tub3R0pO5DFpzFi1tNlzCjVoNvwLtidHSEFSue1nQZzvMGOOb955jvfure\nJ+GDVEcD3piZV+2k3yXARGa+dVrzwcBddQscG9vC+PhE3YctKNu2jcOypqsoG98+2PtubGwLGzY8\n0dj2W61hRkdHnOd95Jj3n2Pef1NjPld1LoFcDZwDfBS4JSJWTq3LzPXt5Y2ZuRW4Brg8Ir4N3AKc\nRnVvhbfVLXB8fILtA/5G07TJycmmS5jR4FZWGZT5NSh1LCSOef855rufOseCX9fufw7wUPtnXfs3\n7T+fAtA+ynBWu+/dVHdePC4zH5ifsiVJUq/VuQTy48DHd7J+uGP5YuDi7kuTJElNGuyzyiRJUmMM\nCZIkqciQIEmSigwJkiSpyJAgSZKKDAmSJKnIkCBJkooMCZIkqciQIEmSigwJkiSpyJAgSZKKDAmS\nJKnIkCBJkooMCZIkqciQIEmSigwJkiSpyJAgSZKKDAmSJKnIkCBJkooMCZIkqciQIEmSigwJkiSp\nyJAgSZKKDAmSJKnIkCBJkooMCZIkqciQIEmSihbV6RwRvwZ8Bng5sBn4CvD+zHyq0PcQ4AvAQcA9\nwNsz8445VyxJkvqi7pGErwLLgDXAqcAJwLmdnSJiOXAdcCNwKHArcF1EjMypWkmS1De7fCQhIgI4\nAliZmY+02z4AnA+c3dH9VGBzZk61vzsiXgO8Abh0zlVLkqSeq3Mk4WHg1VMBoW0IeEah75HATR1t\nNwNH1StPkiQ1ZZePJGTmRuAbU8sRMQS8E/hmofu+VOchTLceeEEXNUqSpAbUOnGxw/nAwcCLC+uW\nA092tD0JLK27kVbLCzBmMzQ01HQJMxrcyiqt1jCLFjU3x6bmt/O8fxzzHT311FPcc8/dPXv+4eEh\nnv70ZTz++FYmJiZrP/6FLzyIJUuW9KCyPdd8ze+uQkJEfBx4F3BKZt5b6LKVHQPBUqorImoZHfVc\nx9ksXtxquoQZtRp8A94Vo6MjrFjxtKbLcJ43wDH/hdtv/yHvO/8K9tp7/6ZL2cGmRx/gS+eOcPjh\nhzddyoJUOyRExGeB3wdOy8y/naHbg8CqjrZVwLq62xsb28L4+ETdhy0o27aNV9ecDKDx7YO978bG\ntrBhwxONbb/VGmZ0dMR53keO+Y7Gxraw197788xVz226lKKmX6e7o6l5Pld175PwQeAM4I2ZedVO\nut7Gjlc8rAE+Uq88GB+fYPuAv9E0bXKy/uG7fhncyiqDMr8GpY6FxDH/hUEPS+6r5tS5BHI1cA7w\nUeCWiFg5tS4z17eXN2bmVuAK4GMR8UngIuBMqvMUvjKfxUuSpN6p84Hx69r9zwEeav+sa/+m/edT\nADJzE/Ba4FhgLdX9FY7PzC3zU7YkSeq1OpdAfhz4+E7WD3csrwUO6740SZLUpME+9VySJDXGkCBJ\nkooMCZIkqciQIEmSigwJkiSpyJAgSZKKDAmSJKnIkCBJkooMCZIkqciQIEmSigwJkiSpyJAgSZKK\nDAmSJKnIkCBJkooMCZIkqciQIEmSigwJkiSpyJAgSZKKDAmSJKnIkCBJkooMCZIkqciQIEmSigwJ\nkiSpyJAgSZKKDAmSJKnIkCBJkooMCZIkqWhRtw+MiKXAWuAdmfmdGfpcDZwATAJD7d8nZOb13W5X\nkiT1R1choR0QLgcOnKXrauDNwLemtW3oZpuSJKm/aoeEiFgN/OUu9FsCHACszcyfdlGbJElqUDfn\nJLwUuAE4iuojhJkEMAHc38U2JElSw2ofScjML079OSJ21nU1MAZcFhEvA34CfDAzv153m5Ikqf+6\nPnFxFzwfGAG+BnwMOAm4NiKOzMw7dvVJWi0vwJjN0NDODug0a3Arq7Rawyxa1Nwcm5rfzvP+ccx3\nNOhj0fTrdHc0X/u0ZyEhMz8cEZ/OzI3tprsj4jDgDODMXX2e0dGRntS3J1m8uNV0CTNqDfgLe3R0\nhBUrntZ0Gc7zBjjmvzDoYzEor9OFqJdHEpgWEKbcy+xXRPySsbEtjI9PzF9Re6Bt28ZhWdNVlI1v\nH+x9Nza2hQ0bnmhs+63WMKOjI87zPnLMdzQ2tqXpEnaq6dfp7mhqns9Vz0JCRFwCTGTmW6c1Hwzc\nVed5xscn2D7gbzRNm5ycbLqEGQ1uZZVBmV+DUsdC4pj/wqCHJfdVc+Y1JETESmBjZm4FrgEuj4hv\nA7cApwFrgLfN5zYlSVJvzPUD487/KK4DTgHIzKuAs4BzgLup7rx4XGY+MMdtSpKkPpjTkYTMbHUs\nD3csXwxcPJdtSJKkZgz2qeeSJKkxhgRJklRkSJAkSUWGBEmSVGRIkCRJRYYESZJUZEiQJElFhgRJ\nklRkSJAkSUWGBEmSVGRIkCRJRYYESZJUZEiQJElFhgRJklRkSJAkSUWGBEmSVGRIkCRJRYYESZJU\nZEiQJElFhgRJklRkSJAkSUWGBEmSVGRIkCRJRYYESZJUZEiQJElFhgRJklS0qNsHRsRSYC3wjsz8\nzgx9DgG+ABwE3AO8PTPv6HabkiSpf7o6ktAOCJcDB+6kz3LgOuBG4FDgVuC6iBjpZpuSJKm/aoeE\niFgN3AYcMEvXU4HNmXl2Vt4NbALeUL9MSZLUb90cSXgpcANwFDC0k35HAjd1tN3cfpwkSRpwtc9J\nyMwvTv05InbWdV+q8xCmWw+8oO42JUlS//Xy6oblwJMdbU8CS3u4TUmSNE+6vrphF2xlx0CwFNhc\n50laLa/SnM3Q0M4+9WnW4FZWabWGWbSouTk2Nb875/lTTz3FPffc3URJs9q2bRsAixcvbriSshe+\n8CCWLFky4/qZxrzXBnmf3ndfNl3CTjX9Op3JIO/T4eEhXv7yY+b8PL0MCQ8CqzraVgHr6jzJ6KgX\nQ8xm8eJW0yXMqDWAL+zpRkdHWLHiaU2XscM8v/32H/K+869gr733b6iima2//3aWP2PlQNa26dEH\n+NK5Ixx++OGz9u33vy2Dvk9XPnv2MWvKoLxOOw3yPt306AP8YMBDwm3A2R1ta4CP1HmSsbEtjI9P\nzFtRe6Jt28ZhWdNVlI1vH+x9Nza2hQ0bnmhs+63WMKOjIzvM87GxLey19/48c9VzG6ttJpse/Ql7\n7f3rA1kbzL5PZxrzftQ1yPt0kDX9Op3JIO/T+TKvISEiVgIbM3MrcAXwsYj4JHARcCbVeQpfqfOc\n4+MTbB/wN5qmTU5ONl3CjAa3ssqgzK/OOgzG3dvVfdrvfe8+7d6gvE47LYR9OtdjwZ3vAeuAUwAy\ncxPwWuBYqjszHgEcn5lb5rhNSZLUB3M6kpCZrY7l4Y7ltcBhc9mGJElqxmCfVSZJkhpjSJAkSUWG\nBEmSVGRIkCRJRYYESZJUZEiQJElFhgRJklRkSJAkSUWGBEmSVGRIkCRJRYYESZJUZEiQJElFhgRJ\nklRkSJAkSUWGBEmSVGRIkCRJRYYESZJUZEiQJElFhgRJklRkSJAkSUWGBEmSVGRIkCRJRYYESZJU\nZEiQJElFhgRJklRkSJAkSUWGBEmSVLSo7gMiYinwp8BJwGbgwsz8xAx9rwZOACaBofbvEzLz+q4r\nliRJfVE7JAAXAIcCLwOeBVwaET/OzCsLfVcDbwa+Na1tQxfblCRJfVYrJETEcuCtwHGZeSdwZ0Sc\nB7wTuLKj7xLgAGBtZv50nuqVJEl9UvechBdRBYtbp7XdBBxZ6BvABHB/d6VJkqQm1Q0J+wKPZOb2\naW3rgWURsXdH39XAGHBZRDwUEf8QEa+eQ62SJKmP6oaE5cCTHW1Ty0s72p8PjABfA44DrgeujYhD\n6xYpSZL6r+6Ji1vZMQxMLW+e3piZH46IT2fmxnbT3RFxGHAGcOaubrDV8irN2QwNDTVdwowGt7JK\nqzXMokXNzbGp+d05z5333Zttn8405r3mPu1e06/TmSyEfVo3JDwI/GpEDGfmRLttFbAlMx/r7Dwt\nIEy5FziwzgZHR0dqlrjwLF7carqEGbUG8IU93ejoCCtWPK3pMnaY58777u3qPu33GLtPuzcor9NO\nC2Gf1g0JPwC2AS8Bbmm3HQPc3tkxIi4BJjLzrdOaDwbuqrPBsbEtjI9PzN5xAdu2bRyWNV1F2fj2\nwd53Y2Nb2LDhica232oNMzo6ssM8Hxvb0lhNu7vZ9ulMY96PutSdpl+nM1kI+7RWSMjMLRFxKfDF\niDgd2A94H/AWgIhYCWzMzK3ANcDlEfFtqkBxGrAGeFudbY6PT7B9wN9omjY5Odl0CTMa3MoqgzK/\nOuswGHdvV/dpv/e9+7R7g/I67bQQ9mk3x4LfC3yP6gZJnwX+ODOvbq9bB5wCkJlXAWcB5wB3U915\n8bjMfGCuRUuSpN6rfcfFzNwC/F77p3PdcMfyxcDFXVcnSZIaM9hnlUmSpMYYEiRJUpEhQZIkFRkS\nJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJ\nUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKRIUGSJBUZEiRJUpEhQZIkFRkSJElSkSFBkiQVGRIkSVKR\nIUGSJBUZEiRJUpEhQZIkFS2q+4CIWAr8KXASsBm4MDM/MUPfQ4AvAAcB9wBvz8w7ui9XkiT1SzdH\nEi4ADgVeBpwFfDAiTursFBHLgeuAG9v9bwWui4iRrquVJEl9UysktN/43wq8KzPvzMyrgfOAdxa6\nnwpszsyzs/JuYBPwhrkWLUmSeq/ukYQXUX1Eceu0tpuAIwt9j2yvm+5m4Kia25QkSQ2oGxL2BR7J\nzO3T2tYDyyJi70Lfhzra1gP71dymJElqQN0TF5cDT3a0TS0v3cW+nf12qtXyAozZDA0NNV3CjIaA\nTY8+0HQZRZsefYD77tur0Tk2PDzE05++jMcf38rExOT/b7/vvhzYcdu88WFgctZ+TdiVfTrTmPea\n+7Q7g/A6nckg79P5qqtuSNjKjm/yU8ubd7FvZ7+dGRod9TzH2fz3iz7adAk7cWLTBeyWXvnKY3nH\nO5quQvPJfbrnWQj7tG40exD41YiY/rhVwJbMfKzQd1VH2ypgXc1tSpKkBtQNCT8AtgEvmdZ2DHB7\noe9twL/qaFvTbpckSQNuaHKy3udQEfEFqjf706lOQvwy8JbMvDoiVgIbM3NrROwF3AdcDlwEnAmc\nDPxmZm6Zv7+CJEnqhW7OBHkv8D3gW8BngT9u3y8Bqo8STgHIzE3Aa4FjgbXAEcDxBgRJknYPtY8k\nSJKkhWHwrimRJEkDwZAgSZKKDAmSJKnIkCBJkooMCZIkqajubZl7IiKeA3ye6v4LjwKfy8wL2us+\nDfwB1Y3Fh9q//yAz/7ShcvcoEXEdsD4zT28vPwv4EtW3df4YeE9mfqOxAvdAhTF3jvdIRLweuJJf\nHtuvZuYpzvXemGXMnes9EBFLgE8Cb6L6jqSLM/OP2uuexRzmeeNHEiJiCLiO6hsiD6a66dI5EXFq\nu8tq4Gyqb5Vc1f59cQOl7nHaY3x8R/PfUn1752HAZcBVEeE3d86TGcbcOd47BwLXUI3r1Nj++/a6\nq3Gu98LOxty53hufAV4JvAp4M/C2iHhbe92c5vkgHElYCXwfOCsznwB+FBE3AEcDf0U1qc7LzJ82\nWOMeJyJWAOcB353W9grg2cBLMnMr8F8j4pVUd9f8cCOF7kFKY97mHO+d1cA9mfmz6Y3tuX4AcKRz\nfd4Vx3zaOuf6PGr/u3I68IrM/F677QLgyIj4J+Y4zxsPCZn5MNUhEgAiYg3VXRrPbN/a+V8C/7uh\n8vZkFwCXUo3vlCOBO9qTacpNVIepNHc7jLlzvOcOBEqHVp3rvVMcc+d6zxwNPJaZN001ZOZ5ABHx\nfuY4zxsPCdNFxI+BXwf+juozrSOoPrM6JyKOpzpf4ROZeWlTNe4J2v+LOgY4CPjitFX7Uh2Wmm49\n1Xd0aA52MuYH4hzvpQBeHRF/BLSAvwE+gHO9l2Yac+d6bzwb+HFE/DvgPwNLgEuAP2Ee5nnj5yR0\nOAk4ATgE+BTVZJsAfkj1Oe5/Ay6KiBMbq3A3FxFLqd6kzsrMJztWL6c66WW6J4Gl/ahtTzXLmDvH\neyQi9gdGgC3AG4D3UX1eez7O9Z6YYcxPoxpz53pvPB14HnAG8LtUY/4HwHuYh3k+UEcSMvMOgIh4\nD9UJFqPANZn5WLvLPRHxPODtVCdjqL4PAbdn5jcL67YCv9LRthTY3Oui9nAfYoYxz8xLI8I53gOZ\n+UBE7D1tbO+KiBbVvy2XACs6HuJcn6OdjPlfUL2ZOdfn33ZgL+BNmfl/ASLiN4CzgL8H9u7oX2ue\nNx4SImIf4Khp3yQJVdJcAuyVmT/veMi9wMv7Vd8e6I3AyojY1F5eChARJwMfpTokON0qqm/3VPdm\nHPPMHJ32j+YU5/g8mWFslwEPU51EN51zfR7sZMx/JTMfLaxzrs/NOmDrVEBoS6qPFB4EXtDRv9Y8\nH4SPGw4AroyIfae1vRj4GfCHEdF5AswhwD/2q7g90EupPhd/UfvnGqoU/yLgH4BD24fHpxwN3Nbv\nIvcwM435wRHxX5zjvRERvx0Rj0TEsmnNhwCPAP8TOMy5Pr92MuaPAu9yrvfEbcCyiPjNaW0HUt0T\n4TbmOM8b/6roiBgGbgV+DryXKjT8OdVJF7cBNwPvp7p+/zjgQuBlmdl5GZm6EBGXAJOZeXp7X9wJ\n3AOcC7yOauxf0JFSNQcdY/5inOM9ERFPpzoq+R2qy72eQ3VTmU+2f+4C7sa5Pm9mGfMbca73RERc\nQ/VR8VlUJyteSjX+X2CO87zxIwmZOQGcCDwB3AJcBHwqMz+XmWuBk4HfofpLvpPqcxcnVA9M2xer\ngLVUJ3m93n80e8c53juZ+TjVG9G/AG6nerP6YmZe2J7rr8O5Pq9mGXPneu+cBvwT1RGyLwOfyczP\nz8c8b/xIgiRJGkyNH0mQJEmDyZAgSZKKDAmSJKnIkCBJkooMCZIkqciQIEmSigwJkiSpyJAgSZKK\nDAmSJKnIkCCploj4YETcX6P/JRHxrVn6HBgRr5l7dZLmkyFBUl3nA4fP83P+HdW3v0oaIIuaLkDS\n7iUzNwOb5/lph+b5+STNA7/gSVoAImItcFNmvru9fCJwFXByZl7ZbrsQOIjqm/ouAF4PLKH69riz\nM/N77X4fAt6SmQe0l58NfA44BngM+ATVV9aem5mXtr8a+zepvhL+d4HlwDeAMzLzZxHxz8D+7VJv\nzMxX9HBnEfVWAAACe0lEQVQoJNXgxw3SwnAt8Kppy/8amABePq3tNcDVwPXAs9rLRwC3ATdHxIva\n/SbbP0TECDB1vsFRwKnA7wEHdGx/DfDM9u/XtPue3153OPAgcCFwUvd/RUnzzY8bpIXhGuADEfEv\nM/NBqsBwNe2QEBHPAZ4HbAJeAvxqZj7Wfuw5EXE08IfA6R3PeyqwN/CmzNzYfq7TgDs7+j2UmWe0\n/3xfRPwVVVAhMx+JiHHg8WnblDQADAnSApCZ34+Ih4BXRcQNVP/TPw34bkTsQ/W/+x8A+1AdYfxJ\nREx/iiXtn06HVE9fBYT2tu6OiI0d/X7UsbwBGJnDX0lSHxgSpIXjWuC3qU4S/G5mfq8dHF4B/Buq\nIwvDwEbgUHY8mfDJwnNuZ9c+thwvtHmyojTgPCdBWjiupTrE/0rghnbbDcDrgJdShYR7gFFgaWbe\nP/UDvB84sfCcdwLPjYhnTjVExGrgGTVr8wxqaQAZEqSF4waqQ/wn8csh4RTg4cy8E/g61Rv/X0fE\nyyLiORHxCeAtwP8qPOflwCPAX0bEb0XES4C/YNrJjbvocaqwsU8Xfy9JPWJIkBaIzHyK6tLDcarL\nEQG+SXXY/+p2nwmqow1rgb+mCgxHA6/PzBtneM5XA4vbz/k3wJ+3n/OpGuV9Bngt8D/q/r0k9Y73\nSZDUtYj4DeB5mfmNaW37Ul3SeExm3txYcZLmzBMXJc3FCHB9RPwn4KvACuAjQFLdX0HSbsyPGyR1\nLTP/EXgj8Gaqkx7/nurqiFdlZumKBkm7ET9ukCRJRR5JkCRJRYYESZJUZEiQJElFhgRJklRkSJAk\nSUWGBEmSVGRIkCRJRYYESZJU9P8AU2JyGDQ9l5gAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x263e52efdd8>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# 各分组的体重分布\n", | |
| "for name, group in groupby_gend:\n", | |
| " plt.figure()\n", | |
| " plt.hist(group.weight)\n", | |
| " plt.xlabel('weight')\n", | |
| " plt.title(name)" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "anaconda-cloud": {}, | |
| "kernelspec": { | |
| "display_name": "Python [default]", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.5.2" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment