Skip to content

Instantly share code, notes, and snippets.

View securetorobert's full-sized avatar

Robert John securetorobert

  • Nigeria
View GitHub Profile
@securetorobert
securetorobert / regularization_imports.py
Last active July 12, 2018 00:45
Required imports for regularization tutorials
#imports
import numpy as np
import pandas as pd
import math
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
@securetorobert
securetorobert / train_test_split_boston.py
Created July 12, 2018 00:43
Train-test-split of Boston housing data
#create our X and y
X = train_df.drop('medv', axis=1)
y = train_df['medv']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.3)
@securetorobert
securetorobert / linear_regression_boston.py
Created July 12, 2018 00:47
Linear Regression Model for Boston housing data
lr_model = LinearRegression()
lr_model.fit(X_train, y_train)
print('Training score: {}'.format(lr_model.score(X_train, y_train)))
print('Test score: {}'.format(lr_model.score(X_test, y_test)))
y_pred = lr_model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
rmse = math.sqrt(mse)
@securetorobert
securetorobert / poly_features_lin_reg_boston.py
Created July 12, 2018 00:56
Create polynomial features on a linear regression model for Boston housing data
steps = [
('scalar', StandardScaler()),
('poly', PolynomialFeatures(degree=2)),
('model', LinearRegression())
]
pipeline = Pipeline(steps)
pipeline.fit(X_train, y_train)
@securetorobert
securetorobert / poly_features_ridge_boston.py
Created July 12, 2018 01:04
Polynomial features and ridge regression model applied to Boston housing data
steps = [
('scalar', StandardScaler()),
('poly', PolynomialFeatures(degree=2)),
('model', Ridge(alpha=10, fit_intercept=True))
]
ridge_pipe = Pipeline(steps)
ridge_pipe.fit(X_train, y_train)
print('Training Score: {}'.format(ridge_pipe.score(X_train, y_train)))
@securetorobert
securetorobert / poly_features_lasso_boston.py
Created July 12, 2018 01:11
Polynomial features with lasso regression on Boston housing data
steps = [
('scalar', StandardScaler()),
('poly', PolynomialFeatures(degree=2)),
('model', Lasso(alpha=0.3, fit_intercept=True))
]
lasso_pipe = Pipeline(steps)
lasso_pipe.fit(X_train, y_train)
@securetorobert
securetorobert / loss_optimization_scipy.py
Created July 12, 2018 23:04
Loss optimization in scientific python
import pandas as pd
import numpy as np
from scipy.optimize import fmin, minimize
#load training data
train_df = pd.read_csv('./train.csv', index_col='ID')
y = train_df['medv'].values
y = y.reshape(-1, 1)
train_df['constant'] = 1
columns = ['constant', 'crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax', 'ptratio', 'black', 'lstat']
@securetorobert
securetorobert / tf_estimator_linear_regressor.py
Created July 12, 2018 23:17
Linear Regression with TensorFlow canned estimators
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
train_df = pd.read_csv('./train.csv')
#create feature columns
crim = tf.feature_column.numeric_column('crim', dtype=tf.float64, shape=())
zn = tf.feature_column.numeric_column('zn', dtype=tf.float64, shape=())
@securetorobert
securetorobert / loss_optimizer_tf.py
Created July 12, 2018 23:25
Optimizing loss functions in TensorFlow
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.python.ops import confusion_matrix
from tensorflow.python.ops import math_ops
train_df = pd.read_csv('./train.csv', index_col='ID')
y = train_df['medv'].values
y = y.reshape(-1, 1)
@securetorobert
securetorobert / neural_network_boston_data_imports.py
Created July 12, 2018 23:43
Neural Network with Keras on Boston Housing data
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
#read in training data
train_df = pd.read_csv('train.csv', index_col='ID')
train_df.head()
target = 'medv'