Skip to content

Instantly share code, notes, and snippets.

View securetorobert's full-sized avatar

Robert John securetorobert

  • Nigeria
View GitHub Profile
@securetorobert
securetorobert / lenet_with_normalization.py
Created October 1, 2020 17:09
LeNet with a normalization layer
# Create the input vector for images
inputs = Input((WIDTH, HEIGHT))
# The first layer is the preprocessing layer, which is bound to the input vector
x = Normalize()(inputs)
# Implement LeNet
x = tf.layers.Conv2D(filters=6, kernel_size=(5,5), strides=1, activation='tanh', input_shape=(HEIGHT, HEIGHT, NUM_CHANNELS))(x)
x = tf.layers.AveragePooling2D(pool_size=(2,2))(x)
x = tf.layers.Conv2D(filters=16, kernel_size=(5,5), strides=1, activation='tanh')(x)
@securetorobert
securetorobert / normalize.py
Created October 1, 2020 16:50
Implement normalization in a layer
class Normalize(layers.Layer):
""" Custom Layer for Preprocessing Input """
def __init__(self):
""" Constructor """
super(Normalize, self).__init__()
def build(self, input_shape):
""" Handler for Input Shape """
self.kernel = None
@securetorobert
securetorobert / fit.py
Created October 1, 2020 16:19
Train a model
optimizer = optimizers.SGD(learning_rate=0.01, momentum=0.9, decay=0.0005)
model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(ds, epochs=1, steps_per_epoch=2)
@securetorobert
securetorobert / alexnet.py
Created October 1, 2020 16:13
Model definition of AlexNet
model = models.Sequential([
layers.Conv2D(filters=96, kernel_size=(11, 11), strides=4, activation='relu', input_shape=(HEIGHT, WIDTH, NUM_CHANNELS), bias_initializer=tf.initializers.zeros(), kernel_initializer=tf.initializers.RandomNormal(mean=0, stddev=0.01)),
layers.BatchNormalization(),
layers.MaxPooling2D(),
layers.Conv2D(filters=256, kernel_size=(5, 5), activation='relu', bias_initializer=tf.initializers.ones(), kernel_initializer=tf.initializers.RandomNormal(mean=0, stddev=0.01)),
layers.BatchNormalization(),
layers.MaxPooling2D(),
layers.Conv2D(filters=384, kernel_size=(3, 3), activation='relu', bias_initializer=tf.initializers.zeros(), kernel_initializer=tf.initializers.RandomNormal(mean=0, stddev=0.01)),
layers.Conv2D(filters=384, kernel_size=(3, 3), activation='relu', bias_initializer=tf.initializers.ones(), kernel_initializer=tf.initializers.RandomNormal(mean=0, stddev=0.01)),
@securetorobert
securetorobert / query.sql
Created July 13, 2020 10:15
SQL Example
#standardSQL
SELECT
weight_pounds,
state,
year,
gestation_weeks
FROM
`bigquery-public-data.samples.natality`
ORDER BY
weight_pounds
@securetorobert
securetorobert / engineer_cubic_features_boston_lr.py
Created June 14, 2020 11:32
Engineer cubic rooms for boston LR
predictors['rm_2'] = predictors['rm'].map(lambda x: x**2)
predictors['rm_3'] = predictors['rm'].map(lambda x: x**3)
@securetorobert
securetorobert / select_features_boston_lr.py
Created June 14, 2020 11:28
Select new features for boston LR
predictors = train_df[['zn','rm', 'black', 'crim', 'indus', 'nox', 'rad', 'tax', 'ptratio']]
target = train_df['medv']
@securetorobert
securetorobert / evaluate_lr_boston.py
Created June 14, 2020 01:31
Evaluate baseline LR model for boston housing
from sklearn.metrics import mean_squared_error
print('Score: {}'.format(lr.score(X_test, y_test)))
print('MSE: {}'.format(mean_squared_error(y_test, y_pred)))
@securetorobert
securetorobert / compare_lr_predictions_boston.py
Created June 14, 2020 01:11
Compare baseline predictions of LR estimator to ground truth of boston data
y_pred = lr.predict(X_test)
_preds_df = pd.DataFrame(dict(observed=y_test, predicted=y_pred))
_preds_df.head()
@securetorobert
securetorobert / train_lr_boston.py
Created June 14, 2020 00:41
Train a Linear Regression estimator on boston data
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, y_train)