Skip to content

Instantly share code, notes, and snippets.

View securetorobert's full-sized avatar

Robert John securetorobert

  • Nigeria
View GitHub Profile
@securetorobert
securetorobert / split_boston_data.py
Created June 14, 2020 00:29
Split boston housing data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(predictors, target, test_size=0.3, random_state=40)
@securetorobert
securetorobert / extract_columns_from_boston.py
Created June 14, 2020 00:22
Extract predictors and labels from boston
predictors = train_df[['rm']]
target = train_df['medv']
@securetorobert
securetorobert / read_boston_from_gdrive.py
Created June 13, 2020 23:58
Read boston training data from Google Drive
import pandas as pd
train_df = pd.read_csv('/content/gdrive/My Drive/boston/train.csv', index_col='ID')
@securetorobert
securetorobert / access_google_drive.py
Created June 13, 2020 23:42
Access Google Drive from Colab
from google.colab import drive
drive.mount('/content/gdrive')
@securetorobert
securetorobert / nginx-deployment.yaml
Created June 7, 2020 20:48
Sample nginx deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
// Imports the Google Cloud client library
const {Translate} = require('@google-cloud/translate').v2;
// Creates a client
const translate = new Translate();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const text = 'The text to translate, e.g. Hello, world!';
@securetorobert
securetorobert / train_model_transfer_learning.py
Created September 28, 2019 17:25
Train model for transfer learning
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(ds, epochs=3, steps_per_epoch=10)
@securetorobert
securetorobert / image_input_pipeline.py
Created September 28, 2019 17:23
Create Image input pipeline
def preprocess_image(image):
image = tf.image.decode_jpeg(image, channels=NUM_CHANNELS)
image = tf.image.resize(image, [HEIGHT, WIDTH])
image /= 255.0 # normalize to [0,1] range
return image
def load_and_preprocess_image(path):
image = tf.io.read_file(path)
return preprocess_image(image)
@securetorobert
securetorobert / extend_base_model.py
Created September 28, 2019 17:17
Add layers for transfer learning in TF 2.0
x = base_model.output
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(4096, activation='relu')(x)
x = layers.Dense(1, activation='sigmoid')(x)
model_3 = models.Model(inputs=base_model.input, outputs=x)
print(model_3.summary())
@securetorobert
securetorobert / base_model.py
Created September 28, 2019 17:14
Create a base model for transfer learning in TF 2.0
base_model = tf.keras.applications.vgg19.VGG19(input_shape=(HEIGHT, WIDTH, NUM_CHANNELS), include_top=False, weights='imagenet')
base_model.trainable = False
print(base_model.summary())