Created
June 3, 2015 01:37
-
-
Save seibert/17ce9cc40898545b779b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"recurrence relation example\n", | |
"https://jakevdp.github.io/blog/2013/06/15/numba-vs-cython-take-2/" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0 0.471435\n", | |
"1 -1.190976\n", | |
"2 1.432707\n", | |
"3 -0.312652\n", | |
"4 -0.720589\n", | |
"5 0.887163\n", | |
" ... \n", | |
"99994 -0.940113\n", | |
"99995 -1.478211\n", | |
"99996 0.279401\n", | |
"99997 0.029286\n", | |
"99998 -1.220531\n", | |
"99999 0.384112\n", | |
"dtype: float64" | |
] | |
}, | |
"execution_count": 3, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"import numpy as np\n", | |
"import pandas as pd\n", | |
"from pandas import Series\n", | |
"from numba import jit\n", | |
"\n", | |
"np.random.seed(1234)\n", | |
"pd.set_option('max_row',12)\n", | |
"s = Series(np.random.randn(1e5))\n", | |
"com = 0.5\n", | |
"s" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"def python(s):\n", | |
" output = Series(index=range(len(s)))\n", | |
"\n", | |
" alpha = 1. / (1. + com)\n", | |
" old_weight = 1.0\n", | |
" new_weight = 1.0\n", | |
" weighted_avg = s[0]\n", | |
" output[0] = weighted_avg\n", | |
" \n", | |
" for i in xrange(1,len(s)):\n", | |
" v = s[i]\n", | |
" old_weight *= (1-alpha)\n", | |
" weighted_avg = ((old_weight * weighted_avg) + (new_weight * v)) / (old_weight + new_weight)\n", | |
" old_weight += new_weight\n", | |
" output[i] = weighted_avg\n", | |
" \n", | |
" return output\n", | |
"\n", | |
"def cython(s):\n", | |
" return pd.ewma(s,com=com,adjust=True)\n", | |
"\n", | |
"@jit\n", | |
"def f(arr, output):\n", | |
" alpha = 1. / (1. + com)\n", | |
" old_weight = 1.0\n", | |
" new_weight = 1.0\n", | |
" weighted_avg = arr[0]\n", | |
" output[0] = weighted_avg\n", | |
"\n", | |
" for i in range(1,arr.shape[0]):\n", | |
" v = arr[i]\n", | |
" old_weight *= (1-alpha)\n", | |
" weighted_avg = ((old_weight * weighted_avg) + (new_weight * v)) / (old_weight + new_weight)\n", | |
" old_weight += new_weight\n", | |
" output[i] = weighted_avg\n", | |
" \n", | |
"def numba(s): \n", | |
" output = np.empty(len(s),dtype='float64')\n", | |
" f(s.values, output)\n", | |
" return Series(output)\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"True" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"result1 = python(s)\n", | |
"result2 = cython(s)\n", | |
"result3 = numba(s)\n", | |
"result1.equals(result2) and result1.equals(result3)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1 loops, best of 3: 1.73 s per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit python(s)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"100 loops, best of 3: 4.82 ms per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit cython(s)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"1000 loops, best of 3: 1.01 ms per loop\n" | |
] | |
} | |
], | |
"source": [ | |
"%timeit numba(s)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 2", | |
"language": "python", | |
"name": "python2" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 2 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython2", | |
"version": "2.7.10" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment