Last active
December 29, 2023 21:37
-
-
Save sekstini/545075684ff08ad644ff1e295735d55a to your computer and use it in GitHub Desktop.
Per token logits
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"id": "39e6dc62-c060-4cc4-9313-27020feb16e7", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/home/fluffy/git/transformers/src/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", | |
" _torch_pytree._register_pytree_node(\n" | |
] | |
} | |
], | |
"source": [ | |
"import torch\n", | |
"from transformers import AutoModelForCausalLM, AutoTokenizer" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"id": "84443917-ad82-4357-a3f3-7a5c561f982d", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"tokenizer = AutoTokenizer.from_pretrained(\"mistralai/Mistral-7B-Instruct-v0.2\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"id": "3f92998a-98aa-492d-9225-dc50b48aa1ae", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stderr", | |
"output_type": "stream", | |
"text": [ | |
"/home/fluffy/git/transformers/src/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", | |
" _torch_pytree._register_pytree_node(\n", | |
"/home/fluffy/git/transformers/src/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", | |
" _torch_pytree._register_pytree_node(\n" | |
] | |
}, | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "5a61999ab8a849f793549c3bd76dcb69", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"model = AutoModelForCausalLM.from_pretrained(\"mistralai/Mistral-7B-Instruct-v0.2\", device_map=0, torch_dtype=\"auto\")" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"id": "c645e902-2116-492d-83bc-7da9858ea7a3", | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"with torch.inference_mode():\n", | |
" inputs = tokenizer(\"The quick brown fox jumps over the lazy\", return_tensors=\"pt\")\n", | |
" outputs = model(**inputs.to(model.device), use_cache=False)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"id": "11589c6f-e173-4410-a047-e8f9d6eee02b", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(torch.Size([1, 11]), torch.Size([1, 11, 32000]))" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"inputs.input_ids.shape, outputs.logits.shape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"id": "ffc8326e-6337-4669-a53b-6b9cc5b7f03e", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<s>\n", | |
" 45.57%: ▁Question\n", | |
" 37.78%: ▁Q\n", | |
" 8.43%: ▁#\n", | |
" 5.44%: ▁User\n", | |
"\n", | |
"▁The\n", | |
" 1.74%: ▁first\n", | |
" 1.63%: ▁\n", | |
" 1.58%: ▁following\n", | |
" 0.99%: ▁new\n", | |
"\n", | |
"▁quick\n", | |
" 40.03%: est\n", | |
" 35.33%: ▁answer\n", | |
" 8.93%: ▁and\n", | |
" 1.99%: -\n", | |
"\n", | |
"▁brown\n", | |
" 98.40%: ▁f\n", | |
" 0.43%: ▁j\n", | |
" 0.33%: ▁dog\n", | |
" 0.11%: ▁Fox\n", | |
"\n", | |
"▁f\n", | |
" 99.99%: ox\n", | |
" 0.00%: ▁Fox\n", | |
" 0.00%: fox\n", | |
" 0.00%: oxy\n", | |
"\n", | |
"ox\n", | |
" 91.65%: ▁j\n", | |
" 5.86%: ▁jumped\n", | |
" 0.45%: <0x0A>\n", | |
" 0.45%: ▁is\n", | |
"\n", | |
"▁j\n", | |
" 99.98%: umps\n", | |
" 0.01%: umped\n", | |
" 0.00%: umper\n", | |
" 0.00%: umbled\n", | |
"\n", | |
"umps\n", | |
" 99.40%: ▁over\n", | |
" 0.12%: <0x0A>\n", | |
" 0.07%: ▁\n", | |
" 0.03%: ▁on\n", | |
"\n", | |
"▁over\n", | |
" 93.97%: ▁the\n", | |
" 5.64%: ▁a\n", | |
" 0.06%: ▁lazy\n", | |
" 0.05%: <0x0A>\n", | |
"\n", | |
"▁the\n", | |
" 99.05%: ▁lazy\n", | |
" 0.22%: ▁L\n", | |
" 0.20%: ▁la\n", | |
" 0.05%: ▁l\n", | |
"\n", | |
"▁lazy\n", | |
" 99.11%: ▁dog\n", | |
" 0.19%: ▁red\n", | |
" 0.14%: ,\n", | |
" 0.11%: ▁dogs\n", | |
"\n" | |
] | |
} | |
], | |
"source": [ | |
"n = inputs.input_ids.shape[1]\n", | |
"\n", | |
"for input_id, input_id_logits in zip(inputs.input_ids[0], outputs.logits[0]):\n", | |
" probabilities = torch.softmax(input_id_logits, dim=-1)\n", | |
" top_probabilities, top_indices = torch.topk(probabilities, k=5)\n", | |
"\n", | |
" print(tokenizer.convert_ids_to_tokens(input_id.item()))\n", | |
" for p, index in zip(top_probabilities, top_indices):\n", | |
" print(f\"{p.item():10.2%}: {tokenizer.convert_ids_to_tokens(index.item())}\")\n", | |
" print()" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3 (ipykernel)", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.11.6" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 5 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment