Example Flow:
apiVersion: v1 | |
kind: ConfigMap | |
metadata: | |
name: ipfs-env | |
labels: | |
app: ipfs | |
data: | |
IPFS_ENABLE_S3: "true" | |
IPFS_S3_REGION: "us-east-1" | |
IPFS_S3_BUCKET_NAME: "**" |
type Book { | |
name: String! @string(maxLength: 255) | |
editor: Person @relation | |
description: String! @string(maxLength: 1000) | |
inLanguage: String! @string(maxLength: 50) | |
keywords: [String!]! @list(maxLength: 20) | |
isbn: [String!]! @list(maxLength: 5) | |
publisher: Publisher @relation | |
datePublished: Date | |
locationCreated: Place @relation |
type EmbeddingContext { | |
# context is the transformed representation of a node before obtaining embeddings. | |
# This can include the node's content with added context information for embedding tasks like summaries, etc. | |
# Raw document is used if it's null. | |
context: String @string(maxLength:100000000) | |
# contextDescription is a human-readable description of the context. | |
contextDescription: String! @string(maxLength:600) | |
# category is the category or namespace for the embedding. |
//Thank you ChatGPT | |
function jsonSchemaToGraphQLFragment(schema, typeName, setPrefix = false) { | |
// Helper function to resolve $ref references within the schema | |
function resolveRef(ref, defs) { | |
const refPath = ref.replace(/^#\/\$defs\//, ''); | |
return defs[refPath]; | |
} | |
// Helper function to process each field in the schema |
import os | |
from langchain.agents import Tool | |
from langchain.tools.retriever import create_retriever_tool | |
from langchain_openai import OpenAIEmbeddings | |
from indexclient import IndexChroma | |
from crewai import Agent, Task, Crew, Process | |
# TODO | |
# I had to install langchain_chroma seperately. It should be included in the requirements |