Tensorflow: v0.11.0rc2 OS: CENTOS 6.8 (No root access)
- The
tensorboardSLURM.sh
can be run with the following command to start a tensorboard server on a SLURM cluster:
sbatch --array=0-0 tensorboardSLURM.sh
%% /** --------------------------------------------------------- | |
%% a file full of squeezing options | |
%% -- which you should try to avoid | |
%% ------------------------------------------------------------- | |
%% | |
%% from: | |
%% http://www.eng.cam.ac.uk/help/tpl/textprocessing/squeeze.html | |
%% ---------------------------------------------------------- */ | |
%% * Page Layout | |
%% o \columnsep: gap between columns |
// A simple quickref for Eigen. Add anything that's missing. | |
// Main author: Keir Mierle | |
#include <Eigen/Dense> | |
Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d. | |
Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols. | |
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd. | |
Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major. | |
Matrix3f P, Q, R; // 3x3 float matrix. |
import gym | |
import numpy as np | |
from keras.models import Sequential | |
from keras.layers import Dense | |
from keras.optimizers import Adam | |
from collections import deque | |
# Create the Cart-Pole game environment | |
env = gym.make('CartPole-v0') |
This gist contains out.tex
, a tex file that adds a PDF outline ("bookmarks") to the freely available pdf file of the book
The Elements of Statistical Learning (2nd ed), by Trevor Hastie, Robert Tibshirani, and Jerome Friedman
https://web.stanford.edu/~hastie/ElemStatLearn/
The bookmarks allow to navigate the contents of the book while reading it on a screen.