Created
September 14, 2020 17:21
-
-
Save shaan-shah/402b3aa94de66e463e96cc2f5ebfe714 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from datetime import date\n", | |
"from nsepy import get_history\n", | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def obtain_data(ticker,start,end):\n", | |
"# Enter the start and end dates using the method date(yyyy,m,dd) \n", | |
" stock=get_history(symbol=ticker,start=start,end=end)\n", | |
" df=stock.copy()\n", | |
" df=df.reset_index()\n", | |
" df=df.drop(['Series','Prev Close','Last','Turnover','%Deliverble','Trades'],axis=1)\n", | |
" df=df.rename({'Open':'open_price','Close':'close_price','High':'high','Low':'low','Volume':'volume'},axis='columns')\n", | |
" df.index=df.Date\n", | |
" return df" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"import pandas as pd" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"\"\"\"This cell defineds the plot_candles function\"\"\"\n", | |
"\n", | |
"def plot_candles(pricing, title=None, volume_bars=False, color_function=None, technicals=None):\n", | |
" \"\"\" Plots a candlestick chart using quantopian pricing data.\n", | |
" \n", | |
" Author: Daniel Treiman\n", | |
" \n", | |
" Args:\n", | |
" pricing: A pandas dataframe with columns ['open_price', 'close_price', 'high', 'low', 'volume']\n", | |
" title: An optional title for the chart\n", | |
" volume_bars: If True, plots volume bars\n", | |
" color_function: A function which, given a row index and price series, returns a candle color.\n", | |
" technicals: A list of additional data series to add to the chart. Must be the same length as pricing.\n", | |
" \"\"\"\n", | |
" def default_color(index, open_price, close_price, low, high):\n", | |
" return 'r' if open_price[index] > close_price[index] else 'g'\n", | |
" color_function = color_function or default_color\n", | |
" technicals = technicals or []\n", | |
" open_price = pricing['open_price']\n", | |
" close_price = pricing['close_price']\n", | |
" low = pricing['low']\n", | |
" high = pricing['high']\n", | |
" oc_min = pd.concat([open_price, close_price], axis=1).min(axis=1)\n", | |
" oc_max = pd.concat([open_price, close_price], axis=1).max(axis=1)\n", | |
" \n", | |
" if volume_bars:\n", | |
" fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, gridspec_kw={'height_ratios': [3,1]},figsize=(7,7))\n", | |
" else:\n", | |
" fig, ax1 = plt.subplots(1, 1)\n", | |
" if title:\n", | |
" ax1.set_title(title)\n", | |
" fig.tight_layout()\n", | |
" x = np.arange(len(pricing))\n", | |
" candle_colors = [color_function(i, open_price, close_price, low, high) for i in x]\n", | |
" candles = ax1.bar(x, oc_max-oc_min, bottom=oc_min, color=candle_colors, linewidth=0)\n", | |
" lines = ax1.vlines(x , low, high, color=candle_colors, linewidth=1)\n", | |
" ax1.xaxis.grid(True)\n", | |
" ax1.yaxis.grid(True)\n", | |
" ax1.xaxis.set_tick_params(which='major', length=3.0, direction='in', top='off')\n", | |
" ax1.set_yticklabels([])\n", | |
" # Assume minute frequency if first two bars are in the same day.\n", | |
" frequency = 'minute' if (pricing.index[1] - pricing.index[0]).days == 0 else 'day'\n", | |
" time_format = '%d-%m-%Y'\n", | |
" if frequency == 'minute':\n", | |
" time_format = '%H:%M'\n", | |
" # Set X axis tick labels.\n", | |
" #plt.xticks(x, [date.strftime(time_format) for date in pricing.index], rotation='vertical')\n", | |
" for indicator in technicals:\n", | |
" ax1.plot(x, indicator)\n", | |
" \n", | |
" if volume_bars:\n", | |
" volume = pricing['volume']\n", | |
" volume_scale = None\n", | |
" scaled_volume = volume\n", | |
" if volume.max() > 1000000:\n", | |
" volume_scale = 'M'\n", | |
" scaled_volume = volume / 1000000\n", | |
" elif volume.max() > 1000:\n", | |
" volume_scale = 'K'\n", | |
" scaled_volume = volume / 1000\n", | |
" ax2.bar(x, scaled_volume, color=candle_colors)\n", | |
" volume_title = 'Volume'\n", | |
" if volume_scale:\n", | |
" volume_title = 'Volume (%s)' % volume_scale\n", | |
" #ax2.set_title(volume_title)\n", | |
" ax2.xaxis.grid(True)\n", | |
" ax2.set_yticklabels([])\n", | |
" ax2.set_xticklabels([])\n", | |
" return fig " | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.1" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment