Skip to content

Instantly share code, notes, and snippets.

View shashankg7's full-sized avatar

Shashank Gupta shashankg7

View GitHub Profile
- character2vec http://arxiv.org/pdf/1508.02096v2.pdf
- word2vec https://arxiv.org/abs/1310.4546
- sentenc2vec, paragraph2vec, doc2vec https://cs.stanford.edu/~quocle/paragraph_vector.pdf
- tweet2vec http://arxiv.org/abs/1605.03481
- tweet2vec http://socialmachines.media.mit.edu/wp-content/uploads/sites/27/2016/05/tweet2vec_vvr.pdf
- author2vec http://dl.acm.org/citation.cfm?id=2889382
- item2vec http://arxiv.org/abs/1603.04259
- lda2vec https://arxiv.org/abs/1605.02019
- illustration2vec http://dl.acm.org/citation.cfm?id=2820907
- tag2vec http://ktsaurabh.weebly.com/uploads/3/1/7/8/31783965/distributed_representations_for_content-based_and_personalized_tag_recommendation.pdf
@shashankg7
shashankg7 / word_embeddings.py
Last active March 31, 2016 08:15
Word Embedding models (only theano code, for reference)
import numpy as np
import theano
from theano import tensor as T
rng = np.random
class Autoencoder(object):
def __init__(self, maxnum, reduced_dims, learnrate=0.4):