Created
October 9, 2021 03:55
-
-
Save shawntan/91759af42399d9e6763320d6a1618ae4 to your computer and use it in GitHub Desktop.
PyTorchified Inside
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import torch\n", | |
"from torch import nn\n", | |
"from torch.nn import functional as F" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Inside class\n", | |
"\n", | |
"Encapsulating ideas from the blogpost into a single `Inside` class." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def start_end_idxs(sentence_length, span_length, device):\n", | |
" start = torch.arange(sentence_length - span_length + 1,\n", | |
" device=device)\n", | |
" end = start + span_length - 1\n", | |
" return start, end\n", | |
"\n", | |
"def split_idxs(sentence_length, span_length, device):\n", | |
" start = torch.arange(sentence_length - span_length + 1,\n", | |
" device=device)\n", | |
" end = start + span_length - 1\n", | |
" splits = torch.arange(span_length - 1, device=device)\n", | |
" split_idxs = start[:, None] + splits\n", | |
" return split_idxs\n", | |
"\n", | |
"class Inside(nn.Module):\n", | |
" def __init__(self, operator, hidden_size):\n", | |
" super(Inside, self).__init__()\n", | |
" self.op = operator\n", | |
" self.hidden_size = hidden_size\n", | |
"\n", | |
" def forward(self, X: torch.Tensor):\n", | |
" M = self.fill_table(X)\n", | |
" return M\n", | |
"\n", | |
" def fill_table(self, X: torch.Tensor):\n", | |
" # Setup\n", | |
" sentence_length = X.size(0)\n", | |
" batch_size = X.size(1)\n", | |
" idxs = torch.arange(sentence_length,\n", | |
" dtype=torch.long, device=X.device)\n", | |
" M = torch.zeros((sentence_length,\n", | |
" sentence_length,\n", | |
" batch_size, self.hidden_size))\n", | |
" # 1st level\n", | |
" M[idxs, idxs] = X\n", | |
" \n", | |
" # Fill the table\n", | |
" for span_length in range(2, sentence_length + 1):\n", | |
" start, end = start_end_idxs(sentence_length, span_length, \n", | |
" device=X.device)\n", | |
" split = split_idxs(sentence_length, span_length,\n", | |
" device=X.device)\n", | |
" l_vals = M[start[:, None], split]\n", | |
" r_vals = M[split + 1, end[:, None]]\n", | |
" M[start, end] = self.op(l_vals, r_vals)\n", | |
" return M" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Example `op` to be used within `Inside`\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 33, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"class MeanOp(nn.Module):\n", | |
" def __init__(self):\n", | |
" super(MeanOp, self).__init__()\n", | |
" def forward(self, a, b):\n", | |
" return torch.mean(a + b, dim=1)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": { | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"torch.Size([10, 1, 1])\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"tensor([[ 0., 1., 3., 6., 10., 15., 21., 28., 36., 45.],\n", | |
" [ 0., 1., 3., 6., 10., 15., 21., 28., 36., 45.],\n", | |
" [ 0., 0., 2., 5., 9., 14., 20., 27., 35., 44.],\n", | |
" [ 0., 0., 0., 3., 7., 12., 18., 25., 33., 42.],\n", | |
" [ 0., 0., 0., 0., 4., 9., 15., 22., 30., 39.],\n", | |
" [ 0., 0., 0., 0., 0., 5., 11., 18., 26., 35.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 6., 13., 21., 30.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 7., 15., 24.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0., 8., 17.],\n", | |
" [ 0., 0., 0., 0., 0., 0., 0., 0., 0., 9.]])" | |
] | |
}, | |
"execution_count": 35, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"mean_inside = Inside(MeanOp(), 1)\n", | |
"X = torch.arange(10, dtype=torch.float)[:, None, None]\n", | |
"M = mean_inside(X)\n", | |
"M[:, :, 0, 0]" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.9.7" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment