Download the package form Robo3t or using wget
wget https://download.robomongo.org/1.2.1/linux/robo3t-1.2.1-linux-x86_64-3e50a65.tar.gz
tar -xvzf robo3t-1.2.1-linux-x86_64-3e50a65.tar.gz
wget
wget https://download.robomongo.org/1.2.1/linux/robo3t-1.2.1-linux-x86_64-3e50a65.tar.gz
tar -xvzf robo3t-1.2.1-linux-x86_64-3e50a65.tar.gz
class XGBQuantile(XGBRegressor): | |
def __init__(self,quant_alpha=0.95,quant_delta = 1.0,quant_thres=1.0,quant_var =1.0,base_score=0.5, booster='gbtree', colsample_bylevel=1, | |
colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0,max_depth=3, min_child_weight=1, missing=None, n_estimators=100, | |
n_jobs=1, nthread=None, objective='reg:linear', random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,silent=True, subsample=1): | |
self.quant_alpha = quant_alpha | |
self.quant_delta = quant_delta | |
self.quant_thres = quant_thres | |
self.quant_var = quant_var | |
super().__init__(base_score=base_score, booster=booster, colsample_bylevel=colsample_bylevel, |
import time | |
import boto3 | |
import pprint | |
# setup pprint | |
pp = pprint.PrettyPrinter(indent=1) | |
# define the connection | |
client = boto3.client('organizations') |
# One liner | |
wget --recursive --page-requisites --adjust-extension --span-hosts --convert-links --restrict-file-names=windows --domains yoursite.com --no-parent yoursite.com | |
# Explained | |
wget \ | |
--recursive \ # Download the whole site. | |
--page-requisites \ # Get all assets/elements (CSS/JS/images). | |
--adjust-extension \ # Save files with .html on the end. | |
--span-hosts \ # Include necessary assets from offsite as well. | |
--convert-links \ # Update links to still work in the static version. |
Collection of License badges for your Project's README file.
This list includes the most common open source and open data licenses.
Easily copy and paste the code under the badges into your Markdown files.
Translations: (No guarantee that the translations are up-to-date)
############################################################################# | |
# Full Imports | |
from __future__ import division | |
import math | |
import random | |
""" | |
This is a pure Python implementation of the K-means Clustering algorithmn. The | |
original can be found here: |