Created
April 12, 2019 11:37
-
-
Save shotahorii/96f50ee851ddcdb3b3ce019ae55a9f67 to your computer and use it in GitHub Desktop.
Derivative of Sigmoid Function
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Derivative of Sigmoid Function\n", | |
"- [シグモイド関数の微分](https://www.iwanttobeacat.com/entry/2018/07/18/195219)\n", | |
"\n", | |
"[分数関数の微分公式](https://gist.github.com/shotahorii/3ece437fefb60d978517bad8c86aea64)を使ってシグモイド関数の微分を計算する。" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"シグモイド関数は以下。\n", | |
"<br><br>\n", | |
"$$\\sigma(a) = \\frac{1}{1+exp(-a)}$$" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"シグモイド関数は以下。\n", | |
"<br><br>\n", | |
"$$\\sigma(a) = \\frac{1}{1+exp(-a)}$$" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/latex": [ | |
"$$\\frac{d\\sigma(a)}{da} = \\frac{(1)'(1+exp(-a))-1(1+exp(-a))'}{(1+exp(-a))^2}$$<br>\n", | |
"$$=\\frac{0-(-exp(-a))}{(1+exp(-a))^2}$$<br>\n", | |
"$$=\\frac{1}{1+exp(-a)}\\frac{exp(-a)}{1+exp(-a)}$$<br>\n", | |
"$$=\\sigma(a)\\frac{exp(-a)}{1+exp(-a)}$$<br>\n", | |
"$$=\\sigma(a)\\frac{1+exp(-a)-1}{1+exp(-a)}$$<br>\n", | |
"$$=\\sigma(a)(1-\\frac{1}{1+exp(-a)})$$<br>\n", | |
"$$=\\sigma(a)(1-\\sigma(a))$$" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Latex object>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"%%latex\n", | |
"$$\\frac{d\\sigma(a)}{da} = \\frac{(1)'(1+exp(-a))-1(1+exp(-a))'}{(1+exp(-a))^2}$$<br>\n", | |
"$$=\\frac{0-(-exp(-a))}{(1+exp(-a))^2}$$<br>\n", | |
"$$=\\frac{1}{1+exp(-a)}\\frac{exp(-a)}{1+exp(-a)}$$<br>\n", | |
"$$=\\sigma(a)\\frac{exp(-a)}{1+exp(-a)}$$<br>\n", | |
"$$=\\sigma(a)\\frac{1+exp(-a)-1}{1+exp(-a)}$$<br>\n", | |
"$$=\\sigma(a)(1-\\frac{1}{1+exp(-a)})$$<br>\n", | |
"$$=\\sigma(a)(1-\\sigma(a))$$" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment