Last active
March 5, 2022 04:31
-
-
Save shravankumar147/acdcd9799b008b96630afcba187bca46 to your computer and use it in GitHub Desktop.
GCN2_CORA.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "GCN2_CORA.ipynb", | |
"provenance": [], | |
"collapsed_sections": [], | |
"authorship_tag": "ABX9TyMAdGGnUE6Z7yL2oOMeEWYR", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
}, | |
"accelerator": "GPU" | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/shravankumar147/acdcd9799b008b96630afcba187bca46/gcn2_cora.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"# [GCN2_CORA](https://github.com/pyg-team/pytorch_geometric/blob/e18a897e8a63f78288426dc4e1574a9041d8ecae/torch_geometric/nn/conv/gcn2_conv.py)\n", | |
"\n", | |
"The graph convolutional operator with initial residual connections and\n", | |
" identity mapping (GCNII) from the `\"Simple and Deep Graph Convolutional\n", | |
" Networks\" <https://arxiv.org/abs/2007.02133>`_ paper\n", | |
"\n", | |
"$$X′ = ((1 − α)P̂X + αX(0))((1 − β)I + βΘ)$$\n", | |
"with $P̂ = D̂ − 1 ⁄ 2 ÂD̂ − 1 ⁄ 2 $, \n", | |
"where $Â = A + I $ denotes the adjacency matrix with inserted self-loops and $D̂ii = ∑j = 0Âij$ its diagonal degree matrix, and X(0) being the initial feature representation. Here, α models the strength of the initial residual connection, while β models the strength of the identity mapping. The adjacency matrix can include other values than 1 representing edge weights via the optional edge_weight tensor. " | |
], | |
"metadata": { | |
"id": "GE2UGP0xUEzr" | |
} | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"## Import Libraies" | |
], | |
"metadata": { | |
"id": "PM5B68YhTyNz" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!python -c \"import torch; print(torch.__version__)\"\n", | |
"!python -c \"import torch; print(torch.version.cuda)\"" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "cRq3CbXTRxiG", | |
"outputId": "66e42d58-63a5-4b94-b114-b74655ce8543" | |
}, | |
"execution_count": 1, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"1.10.0+cu111\n", | |
"11.1\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"import platform" | |
], | |
"metadata": { | |
"id": "5DvbeehVR3Qv" | |
}, | |
"execution_count": 2, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"print(platform.python_version())" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "phNgDPzwSLIu", | |
"outputId": "72b1b13b-f573-4602-a016-1de158177014" | |
}, | |
"execution_count": 3, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"3.7.12\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"print(platform.system())" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "XBEy4tHCSKB4", | |
"outputId": "22237894-b449-430c-ea17-57530c0a95e2" | |
}, | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Linux\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"%%time\n", | |
"# Install required packages.\n", | |
"!pip install -q torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cu111.html\n", | |
"!pip install -q torch-sparse -f https://data.pyg.org/whl/torch-1.10.0+cu111.html\n", | |
"!pip install -q git+https://github.com/pyg-team/pytorch_geometric.git" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "aLGb7dh_RyMv", | |
"outputId": "a3b03de8-558e-4c41-eca4-756faa781467" | |
}, | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"\u001b[K |████████████████████████████████| 7.9 MB 2.5 MB/s \n", | |
"\u001b[K |████████████████████████████████| 3.5 MB 4.0 MB/s \n", | |
"\u001b[?25h Building wheel for torch-geometric (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"CPU times: user 140 ms, sys: 41.5 ms, total: 181 ms\n", | |
"Wall time: 16.5 s\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"id": "j5ECCjrMRjD0" | |
}, | |
"outputs": [], | |
"source": [ | |
"# Ref: https://github.com/pyg-team/pytorch_geometric/blob/master/examples/gcn2_cora.py\n", | |
"\n", | |
"import os.path as osp\n", | |
"\n", | |
"import torch\n", | |
"import torch.nn.functional as F\n", | |
"from torch.nn import Linear\n", | |
"\n", | |
"import torch_geometric.transforms as T\n", | |
"from torch_geometric.datasets import Planetoid\n", | |
"from torch_geometric.nn import GCN2Conv\n", | |
"from torch_geometric.nn.conv.gcn_conv import gcn_norm\n" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"## Data" | |
], | |
"metadata": { | |
"id": "AVwghkinTvKM" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"\n", | |
"dataset_name = 'Cora'\n", | |
"# path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset)\n", | |
"\n", | |
"path = f\"/tmp/{dataset_name}\"\n", | |
"transform = T.Compose([T.NormalizeFeatures(), T.ToSparseTensor()])\n", | |
"dataset = Planetoid(path, dataset_name, transform=transform)\n", | |
"data = dataset[0]" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "lgtwHAaJRtuM", | |
"outputId": "681bd3c8-7e88-43bf-d17b-c21ffe13ba77" | |
}, | |
"execution_count": 9, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.x\n", | |
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.tx\n", | |
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.allx\n", | |
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.y\n", | |
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.ty\n", | |
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.ally\n", | |
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.graph\n", | |
"Downloading https://github.com/kimiyoung/planetoid/raw/master/data/ind.cora.test.index\n", | |
"Processing...\n", | |
"Done!\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"print(data)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "JbnTrlwwS2ko", | |
"outputId": "87ce9275-dcb4-4830-9e0d-fc91d65aeae5" | |
}, | |
"execution_count": 10, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Data(x=[2708, 1433], y=[2708], train_mask=[2708], val_mask=[2708], test_mask=[2708], adj_t=[2708, 2708, nnz=10556])\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"data.adj_t = gcn_norm(data.adj_t) # Pre-process GCN normalization." | |
], | |
"metadata": { | |
"id": "UYPXe2AGS0f8" | |
}, | |
"execution_count": 11, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"## Model " | |
], | |
"metadata": { | |
"id": "RSeD1M-oTsOS" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"class Net(torch.nn.Module):\n", | |
" def __init__(self, hidden_channels, num_layers, alpha, theta,\n", | |
" shared_weights=True, dropout=0.0):\n", | |
" super().__init__()\n", | |
"\n", | |
" self.lins = torch.nn.ModuleList()\n", | |
" self.lins.append(Linear(dataset.num_features, hidden_channels))\n", | |
" self.lins.append(Linear(hidden_channels, dataset.num_classes))\n", | |
"\n", | |
" self.convs = torch.nn.ModuleList()\n", | |
" for layer in range(num_layers):\n", | |
" self.convs.append(\n", | |
" GCN2Conv(hidden_channels, alpha, theta, layer + 1,\n", | |
" shared_weights, normalize=False))\n", | |
"\n", | |
" self.dropout = dropout\n", | |
"\n", | |
" def forward(self, x, adj_t):\n", | |
" x = F.dropout(x, self.dropout, training=self.training)\n", | |
" x = x_0 = self.lins[0](x).relu()\n", | |
"\n", | |
" for conv in self.convs:\n", | |
" x = F.dropout(x, self.dropout, training=self.training)\n", | |
" x = conv(x, x_0, adj_t)\n", | |
" x = x.relu()\n", | |
"\n", | |
" x = F.dropout(x, self.dropout, training=self.training)\n", | |
" x = self.lins[1](x)\n", | |
"\n", | |
" return x.log_softmax(dim=-1)\n", | |
"\n", | |
"\n", | |
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", | |
"model = Net(hidden_channels=64, num_layers=64, alpha=0.1, theta=0.5,\n", | |
" shared_weights=True, dropout=0.6).to(device)\n", | |
"data = data.to(device)\n", | |
"optimizer = torch.optim.Adam([\n", | |
" dict(params=model.convs.parameters(), weight_decay=0.01),\n", | |
" dict(params=model.lins.parameters(), weight_decay=5e-4)\n", | |
"], lr=0.01)" | |
], | |
"metadata": { | |
"id": "kf3vJZlzRsa3" | |
}, | |
"execution_count": 12, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"def train():\n", | |
" model.train()\n", | |
" optimizer.zero_grad()\n", | |
" out = model(data.x, data.adj_t)\n", | |
" loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])\n", | |
" loss.backward()\n", | |
" optimizer.step()\n", | |
" return float(loss)\n", | |
"\n", | |
"\n", | |
"@torch.no_grad()\n", | |
"def test():\n", | |
" model.eval()\n", | |
" pred, accs = model(data.x, data.adj_t).argmax(dim=-1), []\n", | |
" for _, mask in data('train_mask', 'val_mask', 'test_mask'):\n", | |
" accs.append(int((pred[mask] == data.y[mask]).sum()) / int(mask.sum()))\n", | |
" return accs" | |
], | |
"metadata": { | |
"id": "M4fK__AQRqTA" | |
}, | |
"execution_count": 13, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"## Train and Evaluate" | |
], | |
"metadata": { | |
"id": "ORIYE357T-vR" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"%%time\n", | |
"best_val_acc = test_acc = 0\n", | |
"for epoch in range(1, 1001):\n", | |
" loss = train()\n", | |
" train_acc, val_acc, tmp_test_acc = test()\n", | |
" if val_acc > best_val_acc:\n", | |
" best_val_acc = val_acc\n", | |
" test_acc = tmp_test_acc\n", | |
" print(f'Epoch: {epoch:04d}, Loss: {loss:.4f} Train: {train_acc:.4f}, '\n", | |
" f'Val: {val_acc:.4f}, Test: {tmp_test_acc:.4f}, '\n", | |
" f'Final Test: {test_acc:.4f}')" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "qZUT_TdsRrVV", | |
"outputId": "1906a0b5-82af-4aff-b8d3-880d1c24be35" | |
}, | |
"execution_count": 14, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Epoch: 0001, Loss: 1.9467 Train: 0.1429, Val: 0.0720, Test: 0.0910, Final Test: 0.0910\n", | |
"Epoch: 0002, Loss: 1.9434 Train: 0.1429, Val: 0.0700, Test: 0.0910, Final Test: 0.0910\n", | |
"Epoch: 0003, Loss: 1.9438 Train: 0.1786, Val: 0.0740, Test: 0.0970, Final Test: 0.0970\n", | |
"Epoch: 0004, Loss: 1.9408 Train: 0.2643, Val: 0.1140, Test: 0.1190, Final Test: 0.1190\n", | |
"Epoch: 0005, Loss: 1.9387 Train: 0.4714, Val: 0.2020, Test: 0.2300, Final Test: 0.2300\n", | |
"Epoch: 0006, Loss: 1.9392 Train: 0.6357, Val: 0.4080, Test: 0.4040, Final Test: 0.4040\n", | |
"Epoch: 0007, Loss: 1.9371 Train: 0.5286, Val: 0.4040, Test: 0.3970, Final Test: 0.4040\n", | |
"Epoch: 0008, Loss: 1.9328 Train: 0.4857, Val: 0.4260, Test: 0.4100, Final Test: 0.4100\n", | |
"Epoch: 0009, Loss: 1.9314 Train: 0.4714, Val: 0.4180, Test: 0.4040, Final Test: 0.4100\n", | |
"Epoch: 0010, Loss: 1.9259 Train: 0.4929, Val: 0.4180, Test: 0.4010, Final Test: 0.4100\n", | |
"Epoch: 0011, Loss: 1.9246 Train: 0.5214, Val: 0.4280, Test: 0.4140, Final Test: 0.4140\n", | |
"Epoch: 0012, Loss: 1.9188 Train: 0.6143, Val: 0.4560, Test: 0.4340, Final Test: 0.4340\n", | |
"Epoch: 0013, Loss: 1.9134 Train: 0.7071, Val: 0.5020, Test: 0.4950, Final Test: 0.4950\n", | |
"Epoch: 0014, Loss: 1.9164 Train: 0.8071, Val: 0.6040, Test: 0.6150, Final Test: 0.6150\n", | |
"Epoch: 0015, Loss: 1.9123 Train: 0.8571, Val: 0.6900, Test: 0.7040, Final Test: 0.7040\n", | |
"Epoch: 0016, Loss: 1.9056 Train: 0.8929, Val: 0.7580, Test: 0.7780, Final Test: 0.7780\n", | |
"Epoch: 0017, Loss: 1.8996 Train: 0.9286, Val: 0.7800, Test: 0.7990, Final Test: 0.7990\n", | |
"Epoch: 0018, Loss: 1.8857 Train: 0.9214, Val: 0.7740, Test: 0.8000, Final Test: 0.7990\n", | |
"Epoch: 0019, Loss: 1.8796 Train: 0.9214, Val: 0.7760, Test: 0.7950, Final Test: 0.7990\n", | |
"Epoch: 0020, Loss: 1.8900 Train: 0.9286, Val: 0.7840, Test: 0.8000, Final Test: 0.8000\n", | |
"Epoch: 0021, Loss: 1.8659 Train: 0.9357, Val: 0.7780, Test: 0.7920, Final Test: 0.8000\n", | |
"Epoch: 0022, Loss: 1.8812 Train: 0.9286, Val: 0.7840, Test: 0.7990, Final Test: 0.8000\n", | |
"Epoch: 0023, Loss: 1.8749 Train: 0.9286, Val: 0.7860, Test: 0.8130, Final Test: 0.8130\n", | |
"Epoch: 0024, Loss: 1.8777 Train: 0.9357, Val: 0.7900, Test: 0.8150, Final Test: 0.8150\n", | |
"Epoch: 0025, Loss: 1.8620 Train: 0.9357, Val: 0.7900, Test: 0.8280, Final Test: 0.8150\n", | |
"Epoch: 0026, Loss: 1.8413 Train: 0.9286, Val: 0.7880, Test: 0.8290, Final Test: 0.8150\n", | |
"Epoch: 0027, Loss: 1.8373 Train: 0.9286, Val: 0.7860, Test: 0.8290, Final Test: 0.8150\n", | |
"Epoch: 0028, Loss: 1.8336 Train: 0.9357, Val: 0.7800, Test: 0.8160, Final Test: 0.8150\n", | |
"Epoch: 0029, Loss: 1.8526 Train: 0.9071, Val: 0.7620, Test: 0.7730, Final Test: 0.8150\n", | |
"Epoch: 0030, Loss: 1.8254 Train: 0.8929, Val: 0.7200, Test: 0.7340, Final Test: 0.8150\n", | |
"Epoch: 0031, Loss: 1.7921 Train: 0.8714, Val: 0.6580, Test: 0.6780, Final Test: 0.8150\n", | |
"Epoch: 0032, Loss: 1.8169 Train: 0.8571, Val: 0.6360, Test: 0.6380, Final Test: 0.8150\n", | |
"Epoch: 0033, Loss: 1.7966 Train: 0.8357, Val: 0.6080, Test: 0.6210, Final Test: 0.8150\n", | |
"Epoch: 0034, Loss: 1.7743 Train: 0.8429, Val: 0.6060, Test: 0.6180, Final Test: 0.8150\n", | |
"Epoch: 0035, Loss: 1.8025 Train: 0.8429, Val: 0.6200, Test: 0.6220, Final Test: 0.8150\n", | |
"Epoch: 0036, Loss: 1.7687 Train: 0.8571, Val: 0.6280, Test: 0.6370, Final Test: 0.8150\n", | |
"Epoch: 0037, Loss: 1.8168 Train: 0.8786, Val: 0.6600, Test: 0.6850, Final Test: 0.8150\n", | |
"Epoch: 0038, Loss: 1.7781 Train: 0.9000, Val: 0.7040, Test: 0.7240, Final Test: 0.8150\n", | |
"Epoch: 0039, Loss: 1.7381 Train: 0.9000, Val: 0.7240, Test: 0.7450, Final Test: 0.8150\n", | |
"Epoch: 0040, Loss: 1.7527 Train: 0.9071, Val: 0.7360, Test: 0.7550, Final Test: 0.8150\n", | |
"Epoch: 0041, Loss: 1.7345 Train: 0.9143, Val: 0.7440, Test: 0.7670, Final Test: 0.8150\n", | |
"Epoch: 0042, Loss: 1.7951 Train: 0.9071, Val: 0.7460, Test: 0.7740, Final Test: 0.8150\n", | |
"Epoch: 0043, Loss: 1.6967 Train: 0.9071, Val: 0.7520, Test: 0.7770, Final Test: 0.8150\n", | |
"Epoch: 0044, Loss: 1.7267 Train: 0.9143, Val: 0.7740, Test: 0.7820, Final Test: 0.8150\n", | |
"Epoch: 0045, Loss: 1.7151 Train: 0.9143, Val: 0.7800, Test: 0.7930, Final Test: 0.8150\n", | |
"Epoch: 0046, Loss: 1.7346 Train: 0.9143, Val: 0.8000, Test: 0.8070, Final Test: 0.8070\n", | |
"Epoch: 0047, Loss: 1.6701 Train: 0.9071, Val: 0.8020, Test: 0.8100, Final Test: 0.8100\n", | |
"Epoch: 0048, Loss: 1.6680 Train: 0.9143, Val: 0.8120, Test: 0.8160, Final Test: 0.8160\n", | |
"Epoch: 0049, Loss: 1.6866 Train: 0.9286, Val: 0.8000, Test: 0.8190, Final Test: 0.8160\n", | |
"Epoch: 0050, Loss: 1.9452 Train: 0.9286, Val: 0.8020, Test: 0.8260, Final Test: 0.8160\n", | |
"Epoch: 0051, Loss: 1.5844 Train: 0.9214, Val: 0.8060, Test: 0.8260, Final Test: 0.8160\n", | |
"Epoch: 0052, Loss: 1.5701 Train: 0.9214, Val: 0.8100, Test: 0.8290, Final Test: 0.8160\n", | |
"Epoch: 0053, Loss: 1.6297 Train: 0.9214, Val: 0.7980, Test: 0.8200, Final Test: 0.8160\n", | |
"Epoch: 0054, Loss: 1.6528 Train: 0.9357, Val: 0.7860, Test: 0.8160, Final Test: 0.8160\n", | |
"Epoch: 0055, Loss: 1.6172 Train: 0.9286, Val: 0.7860, Test: 0.8130, Final Test: 0.8160\n", | |
"Epoch: 0056, Loss: 1.5894 Train: 0.9286, Val: 0.7820, Test: 0.8070, Final Test: 0.8160\n", | |
"Epoch: 0057, Loss: 1.5703 Train: 0.9214, Val: 0.7700, Test: 0.7900, Final Test: 0.8160\n", | |
"Epoch: 0058, Loss: 1.5349 Train: 0.9143, Val: 0.7620, Test: 0.7820, Final Test: 0.8160\n", | |
"Epoch: 0059, Loss: 1.5621 Train: 0.9143, Val: 0.7540, Test: 0.7760, Final Test: 0.8160\n", | |
"Epoch: 0060, Loss: 1.5115 Train: 0.9214, Val: 0.7620, Test: 0.7820, Final Test: 0.8160\n", | |
"Epoch: 0061, Loss: 1.5652 Train: 0.9214, Val: 0.7580, Test: 0.7850, Final Test: 0.8160\n", | |
"Epoch: 0062, Loss: 1.5814 Train: 0.9214, Val: 0.7700, Test: 0.7880, Final Test: 0.8160\n", | |
"Epoch: 0063, Loss: 1.5340 Train: 0.9286, Val: 0.7800, Test: 0.7950, Final Test: 0.8160\n", | |
"Epoch: 0064, Loss: 1.4907 Train: 0.9214, Val: 0.7840, Test: 0.8040, Final Test: 0.8160\n", | |
"Epoch: 0065, Loss: 1.5125 Train: 0.9286, Val: 0.7940, Test: 0.8080, Final Test: 0.8160\n", | |
"Epoch: 0066, Loss: 1.5077 Train: 0.9214, Val: 0.8000, Test: 0.8150, Final Test: 0.8160\n", | |
"Epoch: 0067, Loss: 1.4817 Train: 0.9214, Val: 0.8020, Test: 0.8210, Final Test: 0.8160\n", | |
"Epoch: 0068, Loss: 1.5050 Train: 0.9214, Val: 0.8020, Test: 0.8220, Final Test: 0.8160\n", | |
"Epoch: 0069, Loss: 1.5290 Train: 0.9214, Val: 0.8020, Test: 0.8210, Final Test: 0.8160\n", | |
"Epoch: 0070, Loss: 1.4782 Train: 0.9214, Val: 0.8040, Test: 0.8220, Final Test: 0.8160\n", | |
"Epoch: 0071, Loss: 1.4475 Train: 0.9214, Val: 0.8040, Test: 0.8240, Final Test: 0.8160\n", | |
"Epoch: 0072, Loss: 1.5063 Train: 0.9214, Val: 0.8040, Test: 0.8280, Final Test: 0.8160\n", | |
"Epoch: 0073, Loss: 1.4627 Train: 0.9143, Val: 0.8000, Test: 0.8300, Final Test: 0.8160\n", | |
"Epoch: 0074, Loss: 1.4214 Train: 0.9214, Val: 0.7900, Test: 0.8230, Final Test: 0.8160\n", | |
"Epoch: 0075, Loss: 1.4920 Train: 0.9286, Val: 0.7860, Test: 0.8200, Final Test: 0.8160\n", | |
"Epoch: 0076, Loss: 1.4716 Train: 0.9214, Val: 0.7840, Test: 0.8110, Final Test: 0.8160\n", | |
"Epoch: 0077, Loss: 1.3362 Train: 0.9214, Val: 0.7820, Test: 0.8030, Final Test: 0.8160\n", | |
"Epoch: 0078, Loss: 1.4022 Train: 0.9214, Val: 0.7780, Test: 0.7940, Final Test: 0.8160\n", | |
"Epoch: 0079, Loss: 1.4305 Train: 0.9286, Val: 0.7760, Test: 0.7920, Final Test: 0.8160\n", | |
"Epoch: 0080, Loss: 1.3740 Train: 0.9286, Val: 0.7760, Test: 0.7910, Final Test: 0.8160\n", | |
"Epoch: 0081, Loss: 1.3107 Train: 0.9214, Val: 0.7740, Test: 0.7880, Final Test: 0.8160\n", | |
"Epoch: 0082, Loss: 1.3553 Train: 0.9214, Val: 0.7780, Test: 0.7940, Final Test: 0.8160\n", | |
"Epoch: 0083, Loss: 1.3393 Train: 0.9286, Val: 0.7800, Test: 0.8050, Final Test: 0.8160\n", | |
"Epoch: 0084, Loss: 1.4097 Train: 0.9286, Val: 0.7860, Test: 0.8190, Final Test: 0.8160\n", | |
"Epoch: 0085, Loss: 1.3974 Train: 0.9357, Val: 0.7860, Test: 0.8260, Final Test: 0.8160\n", | |
"Epoch: 0086, Loss: 1.3414 Train: 0.9286, Val: 0.8000, Test: 0.8320, Final Test: 0.8160\n", | |
"Epoch: 0087, Loss: 1.3714 Train: 0.9357, Val: 0.7960, Test: 0.8310, Final Test: 0.8160\n", | |
"Epoch: 0088, Loss: 1.2895 Train: 0.9357, Val: 0.8020, Test: 0.8300, Final Test: 0.8160\n", | |
"Epoch: 0089, Loss: 1.2676 Train: 0.9429, Val: 0.8040, Test: 0.8300, Final Test: 0.8160\n", | |
"Epoch: 0090, Loss: 1.3662 Train: 0.9429, Val: 0.8000, Test: 0.8220, Final Test: 0.8160\n", | |
"Epoch: 0091, Loss: 1.3708 Train: 0.9357, Val: 0.7980, Test: 0.8250, Final Test: 0.8160\n", | |
"Epoch: 0092, Loss: 1.3161 Train: 0.9357, Val: 0.8000, Test: 0.8300, Final Test: 0.8160\n", | |
"Epoch: 0093, Loss: 1.3378 Train: 0.9286, Val: 0.8040, Test: 0.8310, Final Test: 0.8160\n", | |
"Epoch: 0094, Loss: 1.2848 Train: 0.9214, Val: 0.8120, Test: 0.8320, Final Test: 0.8160\n", | |
"Epoch: 0095, Loss: 1.2813 Train: 0.9286, Val: 0.8100, Test: 0.8330, Final Test: 0.8160\n", | |
"Epoch: 0096, Loss: 1.3304 Train: 0.9286, Val: 0.8080, Test: 0.8340, Final Test: 0.8160\n", | |
"Epoch: 0097, Loss: 1.2391 Train: 0.9357, Val: 0.8040, Test: 0.8380, Final Test: 0.8160\n", | |
"Epoch: 0098, Loss: 1.3002 Train: 0.9357, Val: 0.8080, Test: 0.8410, Final Test: 0.8160\n", | |
"Epoch: 0099, Loss: 1.2699 Train: 0.9357, Val: 0.8120, Test: 0.8400, Final Test: 0.8160\n", | |
"Epoch: 0100, Loss: 1.2380 Train: 0.9357, Val: 0.8120, Test: 0.8410, Final Test: 0.8160\n", | |
"Epoch: 0101, Loss: 1.2608 Train: 0.9357, Val: 0.8120, Test: 0.8390, Final Test: 0.8160\n", | |
"Epoch: 0102, Loss: 1.3270 Train: 0.9357, Val: 0.8120, Test: 0.8350, Final Test: 0.8160\n", | |
"Epoch: 0103, Loss: 1.2458 Train: 0.9357, Val: 0.8060, Test: 0.8320, Final Test: 0.8160\n", | |
"Epoch: 0104, Loss: 1.2871 Train: 0.9429, Val: 0.8080, Test: 0.8320, Final Test: 0.8160\n", | |
"Epoch: 0105, Loss: 1.2503 Train: 0.9429, Val: 0.8060, Test: 0.8270, Final Test: 0.8160\n", | |
"Epoch: 0106, Loss: 1.2537 Train: 0.9357, Val: 0.8060, Test: 0.8240, Final Test: 0.8160\n", | |
"Epoch: 0107, Loss: 1.1699 Train: 0.9357, Val: 0.8060, Test: 0.8200, Final Test: 0.8160\n", | |
"Epoch: 0108, Loss: 1.2063 Train: 0.9357, Val: 0.8040, Test: 0.8170, Final Test: 0.8160\n", | |
"Epoch: 0109, Loss: 1.2961 Train: 0.9357, Val: 0.8040, Test: 0.8200, Final Test: 0.8160\n", | |
"Epoch: 0110, Loss: 1.2194 Train: 0.9357, Val: 0.8060, Test: 0.8250, Final Test: 0.8160\n", | |
"Epoch: 0111, Loss: 1.2011 Train: 0.9357, Val: 0.8040, Test: 0.8260, Final Test: 0.8160\n", | |
"Epoch: 0112, Loss: 1.2678 Train: 0.9429, Val: 0.8120, Test: 0.8350, Final Test: 0.8160\n", | |
"Epoch: 0113, Loss: 1.2066 Train: 0.9357, Val: 0.8100, Test: 0.8330, Final Test: 0.8160\n", | |
"Epoch: 0114, Loss: 1.1874 Train: 0.9357, Val: 0.8120, Test: 0.8350, Final Test: 0.8160\n", | |
"Epoch: 0115, Loss: 1.2112 Train: 0.9357, Val: 0.8080, Test: 0.8350, Final Test: 0.8160\n", | |
"Epoch: 0116, Loss: 1.2332 Train: 0.9286, Val: 0.8060, Test: 0.8340, Final Test: 0.8160\n", | |
"Epoch: 0117, Loss: 1.1332 Train: 0.9286, Val: 0.8080, Test: 0.8330, Final Test: 0.8160\n", | |
"Epoch: 0118, Loss: 1.1985 Train: 0.9357, Val: 0.8120, Test: 0.8300, Final Test: 0.8160\n", | |
"Epoch: 0119, Loss: 1.1034 Train: 0.9286, Val: 0.8100, Test: 0.8280, Final Test: 0.8160\n", | |
"Epoch: 0120, Loss: 1.2234 Train: 0.9286, Val: 0.8040, Test: 0.8300, Final Test: 0.8160\n", | |
"Epoch: 0121, Loss: 1.1704 Train: 0.9286, Val: 0.8080, Test: 0.8340, Final Test: 0.8160\n", | |
"Epoch: 0122, Loss: 1.3507 Train: 0.9286, Val: 0.8120, Test: 0.8390, Final Test: 0.8160\n", | |
"Epoch: 0123, Loss: 1.1011 Train: 0.9286, Val: 0.8120, Test: 0.8400, Final Test: 0.8160\n", | |
"Epoch: 0124, Loss: 1.1917 Train: 0.9286, Val: 0.8140, Test: 0.8370, Final Test: 0.8370\n", | |
"Epoch: 0125, Loss: 1.2025 Train: 0.9286, Val: 0.8120, Test: 0.8360, Final Test: 0.8370\n", | |
"Epoch: 0126, Loss: 1.0910 Train: 0.9286, Val: 0.8060, Test: 0.8350, Final Test: 0.8370\n", | |
"Epoch: 0127, Loss: 1.0832 Train: 0.9429, Val: 0.8040, Test: 0.8370, Final Test: 0.8370\n", | |
"Epoch: 0128, Loss: 1.1303 Train: 0.9429, Val: 0.8100, Test: 0.8350, Final Test: 0.8370\n", | |
"Epoch: 0129, Loss: 1.2324 Train: 0.9429, Val: 0.8080, Test: 0.8340, Final Test: 0.8370\n", | |
"Epoch: 0130, Loss: 1.0995 Train: 0.9500, Val: 0.8060, Test: 0.8360, Final Test: 0.8370\n", | |
"Epoch: 0131, Loss: 1.1813 Train: 0.9571, Val: 0.8040, Test: 0.8340, Final Test: 0.8370\n", | |
"Epoch: 0132, Loss: 1.1694 Train: 0.9500, Val: 0.8060, Test: 0.8420, Final Test: 0.8370\n", | |
"Epoch: 0133, Loss: 1.1377 Train: 0.9500, Val: 0.8080, Test: 0.8430, Final Test: 0.8370\n", | |
"Epoch: 0134, Loss: 1.1486 Train: 0.9500, Val: 0.8120, Test: 0.8470, Final Test: 0.8370\n", | |
"Epoch: 0135, Loss: 1.1842 Train: 0.9429, Val: 0.8080, Test: 0.8470, Final Test: 0.8370\n", | |
"Epoch: 0136, Loss: 1.1524 Train: 0.9500, Val: 0.8120, Test: 0.8430, Final Test: 0.8370\n", | |
"Epoch: 0137, Loss: 1.1453 Train: 0.9500, Val: 0.8100, Test: 0.8380, Final Test: 0.8370\n", | |
"Epoch: 0138, Loss: 1.2056 Train: 0.9643, Val: 0.8040, Test: 0.8370, Final Test: 0.8370\n", | |
"Epoch: 0139, Loss: 1.1291 Train: 0.9571, Val: 0.8080, Test: 0.8320, Final Test: 0.8370\n", | |
"Epoch: 0140, Loss: 1.1361 Train: 0.9429, Val: 0.8080, Test: 0.8280, Final Test: 0.8370\n", | |
"Epoch: 0141, Loss: 1.1212 Train: 0.9429, Val: 0.7980, Test: 0.8270, Final Test: 0.8370\n", | |
"Epoch: 0142, Loss: 1.1521 Train: 0.9357, Val: 0.7980, Test: 0.8220, Final Test: 0.8370\n", | |
"Epoch: 0143, Loss: 1.0984 Train: 0.9429, Val: 0.7960, Test: 0.8220, Final Test: 0.8370\n", | |
"Epoch: 0144, Loss: 1.0836 Train: 0.9429, Val: 0.7960, Test: 0.8210, Final Test: 0.8370\n", | |
"Epoch: 0145, Loss: 1.0955 Train: 0.9429, Val: 0.7980, Test: 0.8200, Final Test: 0.8370\n", | |
"Epoch: 0146, Loss: 1.0361 Train: 0.9429, Val: 0.8060, Test: 0.8240, Final Test: 0.8370\n", | |
"Epoch: 0147, Loss: 1.1376 Train: 0.9429, Val: 0.8080, Test: 0.8320, Final Test: 0.8370\n", | |
"Epoch: 0148, Loss: 1.0928 Train: 0.9357, Val: 0.8080, Test: 0.8400, Final Test: 0.8370\n", | |
"Epoch: 0149, Loss: 1.1654 Train: 0.9357, Val: 0.8060, Test: 0.8390, Final Test: 0.8370\n", | |
"Epoch: 0150, Loss: 1.1203 Train: 0.9500, Val: 0.8040, Test: 0.8410, Final Test: 0.8370\n", | |
"Epoch: 0151, Loss: 1.1612 Train: 0.9500, Val: 0.8000, Test: 0.8390, Final Test: 0.8370\n", | |
"Epoch: 0152, Loss: 1.1225 Train: 0.9500, Val: 0.7980, Test: 0.8370, Final Test: 0.8370\n", | |
"Epoch: 0153, Loss: 1.0554 Train: 0.9500, Val: 0.8040, Test: 0.8330, Final Test: 0.8370\n", | |
"Epoch: 0154, Loss: 1.1232 Train: 0.9500, Val: 0.8020, Test: 0.8310, Final Test: 0.8370\n", | |
"Epoch: 0155, Loss: 1.0364 Train: 0.9429, Val: 0.8060, Test: 0.8310, Final Test: 0.8370\n", | |
"Epoch: 0156, Loss: 1.0133 Train: 0.9429, Val: 0.8080, Test: 0.8330, Final Test: 0.8370\n", | |
"Epoch: 0157, Loss: 1.1166 Train: 0.9500, Val: 0.8040, Test: 0.8360, Final Test: 0.8370\n", | |
"Epoch: 0158, Loss: 1.0719 Train: 0.9571, Val: 0.8060, Test: 0.8410, Final Test: 0.8370\n", | |
"Epoch: 0159, Loss: 1.0971 Train: 0.9571, Val: 0.8060, Test: 0.8460, Final Test: 0.8370\n", | |
"Epoch: 0160, Loss: 0.9990 Train: 0.9571, Val: 0.8000, Test: 0.8430, Final Test: 0.8370\n", | |
"Epoch: 0161, Loss: 1.0392 Train: 0.9429, Val: 0.8140, Test: 0.8410, Final Test: 0.8370\n", | |
"Epoch: 0162, Loss: 1.0615 Train: 0.9429, Val: 0.8180, Test: 0.8350, Final Test: 0.8350\n", | |
"Epoch: 0163, Loss: 1.1055 Train: 0.9429, Val: 0.8160, Test: 0.8320, Final Test: 0.8350\n", | |
"Epoch: 0164, Loss: 1.0703 Train: 0.9357, Val: 0.8140, Test: 0.8250, Final Test: 0.8350\n", | |
"Epoch: 0165, Loss: 1.0657 Train: 0.9357, Val: 0.8100, Test: 0.8260, Final Test: 0.8350\n", | |
"Epoch: 0166, Loss: 1.0047 Train: 0.9429, Val: 0.8120, Test: 0.8250, Final Test: 0.8350\n", | |
"Epoch: 0167, Loss: 1.1298 Train: 0.9429, Val: 0.8140, Test: 0.8250, Final Test: 0.8350\n", | |
"Epoch: 0168, Loss: 1.1080 Train: 0.9500, Val: 0.8120, Test: 0.8250, Final Test: 0.8350\n", | |
"Epoch: 0169, Loss: 1.0947 Train: 0.9571, Val: 0.8160, Test: 0.8270, Final Test: 0.8350\n", | |
"Epoch: 0170, Loss: 0.9786 Train: 0.9500, Val: 0.8160, Test: 0.8300, Final Test: 0.8350\n", | |
"Epoch: 0171, Loss: 1.0583 Train: 0.9500, Val: 0.8180, Test: 0.8370, Final Test: 0.8350\n", | |
"Epoch: 0172, Loss: 1.0910 Train: 0.9643, Val: 0.8160, Test: 0.8400, Final Test: 0.8350\n", | |
"Epoch: 0173, Loss: 1.0850 Train: 0.9643, Val: 0.8120, Test: 0.8440, Final Test: 0.8350\n", | |
"Epoch: 0174, Loss: 1.0299 Train: 0.9571, Val: 0.8120, Test: 0.8450, Final Test: 0.8350\n", | |
"Epoch: 0175, Loss: 0.9622 Train: 0.9571, Val: 0.8180, Test: 0.8470, Final Test: 0.8350\n", | |
"Epoch: 0176, Loss: 1.0259 Train: 0.9643, Val: 0.8180, Test: 0.8480, Final Test: 0.8350\n", | |
"Epoch: 0177, Loss: 1.1419 Train: 0.9643, Val: 0.8180, Test: 0.8460, Final Test: 0.8350\n", | |
"Epoch: 0178, Loss: 1.0607 Train: 0.9571, Val: 0.8120, Test: 0.8480, Final Test: 0.8350\n", | |
"Epoch: 0179, Loss: 0.9937 Train: 0.9571, Val: 0.8080, Test: 0.8410, Final Test: 0.8350\n", | |
"Epoch: 0180, Loss: 1.0018 Train: 0.9500, Val: 0.8020, Test: 0.8440, Final Test: 0.8350\n", | |
"Epoch: 0181, Loss: 0.9408 Train: 0.9500, Val: 0.8080, Test: 0.8400, Final Test: 0.8350\n", | |
"Epoch: 0182, Loss: 1.0836 Train: 0.9429, Val: 0.8060, Test: 0.8360, Final Test: 0.8350\n", | |
"Epoch: 0183, Loss: 0.9932 Train: 0.9429, Val: 0.8080, Test: 0.8340, Final Test: 0.8350\n", | |
"Epoch: 0184, Loss: 1.0171 Train: 0.9429, Val: 0.8120, Test: 0.8350, Final Test: 0.8350\n", | |
"Epoch: 0185, Loss: 1.0137 Train: 0.9429, Val: 0.8120, Test: 0.8310, Final Test: 0.8350\n", | |
"Epoch: 0186, Loss: 1.0509 Train: 0.9429, Val: 0.8100, Test: 0.8260, Final Test: 0.8350\n", | |
"Epoch: 0187, Loss: 1.0186 Train: 0.9429, Val: 0.8080, Test: 0.8290, Final Test: 0.8350\n", | |
"Epoch: 0188, Loss: 1.0322 Train: 0.9357, Val: 0.8080, Test: 0.8270, Final Test: 0.8350\n", | |
"Epoch: 0189, Loss: 1.0844 Train: 0.9429, Val: 0.8120, Test: 0.8270, Final Test: 0.8350\n", | |
"Epoch: 0190, Loss: 0.9555 Train: 0.9429, Val: 0.8140, Test: 0.8240, Final Test: 0.8350\n", | |
"Epoch: 0191, Loss: 1.0007 Train: 0.9429, Val: 0.8140, Test: 0.8300, Final Test: 0.8350\n", | |
"Epoch: 0192, Loss: 1.0208 Train: 0.9429, Val: 0.8120, Test: 0.8310, Final Test: 0.8350\n", | |
"Epoch: 0193, Loss: 1.0260 Train: 0.9429, Val: 0.8080, Test: 0.8320, Final Test: 0.8350\n", | |
"Epoch: 0194, Loss: 1.0353 Train: 0.9500, Val: 0.8100, Test: 0.8340, Final Test: 0.8350\n", | |
"Epoch: 0195, Loss: 0.9907 Train: 0.9571, Val: 0.8080, Test: 0.8340, Final Test: 0.8350\n", | |
"Epoch: 0196, Loss: 1.0123 Train: 0.9571, Val: 0.8060, Test: 0.8360, Final Test: 0.8350\n", | |
"Epoch: 0197, Loss: 0.9784 Train: 0.9571, Val: 0.8060, Test: 0.8410, Final Test: 0.8350\n", | |
"Epoch: 0198, Loss: 1.0541 Train: 0.9571, Val: 0.8040, Test: 0.8420, Final Test: 0.8350\n", | |
"Epoch: 0199, Loss: 0.9980 Train: 0.9571, Val: 0.8120, Test: 0.8450, Final Test: 0.8350\n", | |
"Epoch: 0200, Loss: 1.0216 Train: 0.9500, Val: 0.8120, Test: 0.8450, Final Test: 0.8350\n", | |
"Epoch: 0201, Loss: 1.0475 Train: 0.9500, Val: 0.8120, Test: 0.8480, Final Test: 0.8350\n", | |
"Epoch: 0202, Loss: 1.0101 Train: 0.9500, Val: 0.8160, Test: 0.8440, Final Test: 0.8350\n", | |
"Epoch: 0203, Loss: 1.2339 Train: 0.9429, Val: 0.8200, Test: 0.8330, Final Test: 0.8330\n", | |
"Epoch: 0204, Loss: 0.9972 Train: 0.9429, Val: 0.8180, Test: 0.8340, Final Test: 0.8330\n", | |
"Epoch: 0205, Loss: 1.0353 Train: 0.9571, Val: 0.8140, Test: 0.8310, Final Test: 0.8330\n", | |
"Epoch: 0206, Loss: 1.0271 Train: 0.9500, Val: 0.8100, Test: 0.8290, Final Test: 0.8330\n", | |
"Epoch: 0207, Loss: 0.9851 Train: 0.9500, Val: 0.8100, Test: 0.8320, Final Test: 0.8330\n", | |
"Epoch: 0208, Loss: 0.9429 Train: 0.9500, Val: 0.8140, Test: 0.8350, Final Test: 0.8330\n", | |
"Epoch: 0209, Loss: 0.9501 Train: 0.9500, Val: 0.8180, Test: 0.8370, Final Test: 0.8330\n", | |
"Epoch: 0210, Loss: 1.1267 Train: 0.9500, Val: 0.8180, Test: 0.8420, Final Test: 0.8330\n", | |
"Epoch: 0211, Loss: 1.0375 Train: 0.9500, Val: 0.8180, Test: 0.8480, Final Test: 0.8330\n", | |
"Epoch: 0212, Loss: 0.9986 Train: 0.9500, Val: 0.8220, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0213, Loss: 1.1109 Train: 0.9571, Val: 0.8240, Test: 0.8440, Final Test: 0.8440\n", | |
"Epoch: 0214, Loss: 1.1928 Train: 0.9571, Val: 0.8180, Test: 0.8470, Final Test: 0.8440\n", | |
"Epoch: 0215, Loss: 1.0493 Train: 0.9571, Val: 0.8160, Test: 0.8470, Final Test: 0.8440\n", | |
"Epoch: 0216, Loss: 0.9264 Train: 0.9429, Val: 0.8060, Test: 0.8430, Final Test: 0.8440\n", | |
"Epoch: 0217, Loss: 0.9971 Train: 0.9357, Val: 0.7960, Test: 0.8400, Final Test: 0.8440\n", | |
"Epoch: 0218, Loss: 0.9280 Train: 0.9429, Val: 0.7980, Test: 0.8400, Final Test: 0.8440\n", | |
"Epoch: 0219, Loss: 1.0218 Train: 0.9429, Val: 0.8020, Test: 0.8340, Final Test: 0.8440\n", | |
"Epoch: 0220, Loss: 0.9961 Train: 0.9429, Val: 0.8060, Test: 0.8390, Final Test: 0.8440\n", | |
"Epoch: 0221, Loss: 0.8922 Train: 0.9500, Val: 0.8040, Test: 0.8380, Final Test: 0.8440\n", | |
"Epoch: 0222, Loss: 1.3371 Train: 0.9571, Val: 0.8080, Test: 0.8350, Final Test: 0.8440\n", | |
"Epoch: 0223, Loss: 0.9842 Train: 0.9571, Val: 0.8100, Test: 0.8370, Final Test: 0.8440\n", | |
"Epoch: 0224, Loss: 0.9730 Train: 0.9571, Val: 0.8140, Test: 0.8380, Final Test: 0.8440\n", | |
"Epoch: 0225, Loss: 1.0050 Train: 0.9571, Val: 0.8200, Test: 0.8350, Final Test: 0.8440\n", | |
"Epoch: 0226, Loss: 0.9376 Train: 0.9571, Val: 0.8220, Test: 0.8380, Final Test: 0.8440\n", | |
"Epoch: 0227, Loss: 0.9561 Train: 0.9714, Val: 0.8140, Test: 0.8410, Final Test: 0.8440\n", | |
"Epoch: 0228, Loss: 1.0561 Train: 0.9714, Val: 0.8120, Test: 0.8450, Final Test: 0.8440\n", | |
"Epoch: 0229, Loss: 0.9139 Train: 0.9714, Val: 0.8160, Test: 0.8530, Final Test: 0.8440\n", | |
"Epoch: 0230, Loss: 1.0523 Train: 0.9714, Val: 0.8140, Test: 0.8570, Final Test: 0.8440\n", | |
"Epoch: 0231, Loss: 1.1802 Train: 0.9714, Val: 0.8160, Test: 0.8570, Final Test: 0.8440\n", | |
"Epoch: 0232, Loss: 1.0045 Train: 0.9714, Val: 0.8160, Test: 0.8560, Final Test: 0.8440\n", | |
"Epoch: 0233, Loss: 0.9725 Train: 0.9714, Val: 0.8160, Test: 0.8600, Final Test: 0.8440\n", | |
"Epoch: 0234, Loss: 0.9334 Train: 0.9714, Val: 0.8200, Test: 0.8570, Final Test: 0.8440\n", | |
"Epoch: 0235, Loss: 0.9252 Train: 0.9714, Val: 0.8200, Test: 0.8550, Final Test: 0.8440\n", | |
"Epoch: 0236, Loss: 0.9016 Train: 0.9714, Val: 0.8240, Test: 0.8510, Final Test: 0.8440\n", | |
"Epoch: 0237, Loss: 0.9425 Train: 0.9714, Val: 0.8300, Test: 0.8430, Final Test: 0.8430\n", | |
"Epoch: 0238, Loss: 1.0282 Train: 0.9714, Val: 0.8300, Test: 0.8420, Final Test: 0.8430\n", | |
"Epoch: 0239, Loss: 0.9524 Train: 0.9643, Val: 0.8140, Test: 0.8370, Final Test: 0.8430\n", | |
"Epoch: 0240, Loss: 0.8939 Train: 0.9571, Val: 0.8160, Test: 0.8370, Final Test: 0.8430\n", | |
"Epoch: 0241, Loss: 0.9873 Train: 0.9571, Val: 0.8180, Test: 0.8340, Final Test: 0.8430\n", | |
"Epoch: 0242, Loss: 0.9083 Train: 0.9571, Val: 0.8200, Test: 0.8340, Final Test: 0.8430\n", | |
"Epoch: 0243, Loss: 0.9001 Train: 0.9571, Val: 0.8220, Test: 0.8370, Final Test: 0.8430\n", | |
"Epoch: 0244, Loss: 0.9436 Train: 0.9643, Val: 0.8140, Test: 0.8370, Final Test: 0.8430\n", | |
"Epoch: 0245, Loss: 0.8496 Train: 0.9714, Val: 0.8100, Test: 0.8410, Final Test: 0.8430\n", | |
"Epoch: 0246, Loss: 1.4432 Train: 0.9714, Val: 0.8140, Test: 0.8430, Final Test: 0.8430\n", | |
"Epoch: 0247, Loss: 1.0360 Train: 0.9643, Val: 0.8100, Test: 0.8470, Final Test: 0.8430\n", | |
"Epoch: 0248, Loss: 0.8782 Train: 0.9714, Val: 0.8100, Test: 0.8510, Final Test: 0.8430\n", | |
"Epoch: 0249, Loss: 1.0033 Train: 0.9714, Val: 0.8120, Test: 0.8510, Final Test: 0.8430\n", | |
"Epoch: 0250, Loss: 1.0256 Train: 0.9714, Val: 0.8160, Test: 0.8430, Final Test: 0.8430\n", | |
"Epoch: 0251, Loss: 0.9763 Train: 0.9643, Val: 0.8180, Test: 0.8390, Final Test: 0.8430\n", | |
"Epoch: 0252, Loss: 0.9148 Train: 0.9571, Val: 0.8160, Test: 0.8400, Final Test: 0.8430\n", | |
"Epoch: 0253, Loss: 1.0270 Train: 0.9500, Val: 0.8160, Test: 0.8370, Final Test: 0.8430\n", | |
"Epoch: 0254, Loss: 0.9703 Train: 0.9500, Val: 0.8120, Test: 0.8340, Final Test: 0.8430\n", | |
"Epoch: 0255, Loss: 0.9336 Train: 0.9500, Val: 0.8040, Test: 0.8320, Final Test: 0.8430\n", | |
"Epoch: 0256, Loss: 0.8379 Train: 0.9500, Val: 0.8040, Test: 0.8330, Final Test: 0.8430\n", | |
"Epoch: 0257, Loss: 0.9327 Train: 0.9500, Val: 0.8040, Test: 0.8320, Final Test: 0.8430\n", | |
"Epoch: 0258, Loss: 0.9649 Train: 0.9500, Val: 0.8020, Test: 0.8310, Final Test: 0.8430\n", | |
"Epoch: 0259, Loss: 0.8717 Train: 0.9500, Val: 0.8040, Test: 0.8320, Final Test: 0.8430\n", | |
"Epoch: 0260, Loss: 0.8763 Train: 0.9571, Val: 0.8060, Test: 0.8360, Final Test: 0.8430\n", | |
"Epoch: 0261, Loss: 0.8919 Train: 0.9643, Val: 0.8060, Test: 0.8410, Final Test: 0.8430\n", | |
"Epoch: 0262, Loss: 0.8860 Train: 0.9643, Val: 0.8080, Test: 0.8430, Final Test: 0.8430\n", | |
"Epoch: 0263, Loss: 0.9011 Train: 0.9643, Val: 0.8140, Test: 0.8440, Final Test: 0.8430\n", | |
"Epoch: 0264, Loss: 0.9433 Train: 0.9643, Val: 0.8180, Test: 0.8470, Final Test: 0.8430\n", | |
"Epoch: 0265, Loss: 0.9170 Train: 0.9714, Val: 0.8200, Test: 0.8490, Final Test: 0.8430\n", | |
"Epoch: 0266, Loss: 0.9294 Train: 0.9714, Val: 0.8200, Test: 0.8440, Final Test: 0.8430\n", | |
"Epoch: 0267, Loss: 0.9229 Train: 0.9714, Val: 0.8200, Test: 0.8430, Final Test: 0.8430\n", | |
"Epoch: 0268, Loss: 0.8923 Train: 0.9714, Val: 0.8200, Test: 0.8420, Final Test: 0.8430\n", | |
"Epoch: 0269, Loss: 0.8947 Train: 0.9714, Val: 0.8200, Test: 0.8430, Final Test: 0.8430\n", | |
"Epoch: 0270, Loss: 0.8803 Train: 0.9714, Val: 0.8220, Test: 0.8450, Final Test: 0.8430\n", | |
"Epoch: 0271, Loss: 0.9180 Train: 0.9714, Val: 0.8200, Test: 0.8470, Final Test: 0.8430\n", | |
"Epoch: 0272, Loss: 0.8690 Train: 0.9714, Val: 0.8180, Test: 0.8460, Final Test: 0.8430\n", | |
"Epoch: 0273, Loss: 0.9811 Train: 0.9714, Val: 0.8160, Test: 0.8440, Final Test: 0.8430\n", | |
"Epoch: 0274, Loss: 0.9225 Train: 0.9714, Val: 0.8140, Test: 0.8450, Final Test: 0.8430\n", | |
"Epoch: 0275, Loss: 0.9615 Train: 0.9714, Val: 0.8160, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0276, Loss: 0.9357 Train: 0.9786, Val: 0.8180, Test: 0.8450, Final Test: 0.8430\n", | |
"Epoch: 0277, Loss: 1.0285 Train: 0.9786, Val: 0.8180, Test: 0.8470, Final Test: 0.8430\n", | |
"Epoch: 0278, Loss: 1.2738 Train: 0.9786, Val: 0.8140, Test: 0.8520, Final Test: 0.8430\n", | |
"Epoch: 0279, Loss: 0.9091 Train: 0.9786, Val: 0.8120, Test: 0.8500, Final Test: 0.8430\n", | |
"Epoch: 0280, Loss: 0.9446 Train: 0.9786, Val: 0.8160, Test: 0.8530, Final Test: 0.8430\n", | |
"Epoch: 0281, Loss: 0.8910 Train: 0.9643, Val: 0.8160, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0282, Loss: 0.9930 Train: 0.9643, Val: 0.8120, Test: 0.8470, Final Test: 0.8430\n", | |
"Epoch: 0283, Loss: 1.0465 Train: 0.9571, Val: 0.8100, Test: 0.8440, Final Test: 0.8430\n", | |
"Epoch: 0284, Loss: 0.8807 Train: 0.9571, Val: 0.8080, Test: 0.8410, Final Test: 0.8430\n", | |
"Epoch: 0285, Loss: 0.9013 Train: 0.9643, Val: 0.8120, Test: 0.8410, Final Test: 0.8430\n", | |
"Epoch: 0286, Loss: 0.9517 Train: 0.9643, Val: 0.8160, Test: 0.8370, Final Test: 0.8430\n", | |
"Epoch: 0287, Loss: 0.9282 Train: 0.9643, Val: 0.8200, Test: 0.8410, Final Test: 0.8430\n", | |
"Epoch: 0288, Loss: 0.8842 Train: 0.9714, Val: 0.8240, Test: 0.8430, Final Test: 0.8430\n", | |
"Epoch: 0289, Loss: 0.9477 Train: 0.9714, Val: 0.8220, Test: 0.8440, Final Test: 0.8430\n", | |
"Epoch: 0290, Loss: 0.9267 Train: 0.9714, Val: 0.8200, Test: 0.8450, Final Test: 0.8430\n", | |
"Epoch: 0291, Loss: 0.9288 Train: 0.9786, Val: 0.8240, Test: 0.8450, Final Test: 0.8430\n", | |
"Epoch: 0292, Loss: 0.8249 Train: 0.9786, Val: 0.8200, Test: 0.8490, Final Test: 0.8430\n", | |
"Epoch: 0293, Loss: 0.9213 Train: 0.9786, Val: 0.8160, Test: 0.8500, Final Test: 0.8430\n", | |
"Epoch: 0294, Loss: 0.9294 Train: 0.9786, Val: 0.8120, Test: 0.8570, Final Test: 0.8430\n", | |
"Epoch: 0295, Loss: 0.8483 Train: 0.9786, Val: 0.8180, Test: 0.8560, Final Test: 0.8430\n", | |
"Epoch: 0296, Loss: 0.9735 Train: 0.9786, Val: 0.8220, Test: 0.8520, Final Test: 0.8430\n", | |
"Epoch: 0297, Loss: 0.9152 Train: 0.9857, Val: 0.8280, Test: 0.8490, Final Test: 0.8430\n", | |
"Epoch: 0298, Loss: 0.8807 Train: 0.9857, Val: 0.8240, Test: 0.8490, Final Test: 0.8430\n", | |
"Epoch: 0299, Loss: 1.2930 Train: 0.9857, Val: 0.8280, Test: 0.8550, Final Test: 0.8430\n", | |
"Epoch: 0300, Loss: 0.9727 Train: 0.9714, Val: 0.8300, Test: 0.8530, Final Test: 0.8430\n", | |
"Epoch: 0301, Loss: 0.9381 Train: 0.9714, Val: 0.8280, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0302, Loss: 0.9046 Train: 0.9714, Val: 0.8260, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0303, Loss: 0.9381 Train: 0.9643, Val: 0.8260, Test: 0.8460, Final Test: 0.8430\n", | |
"Epoch: 0304, Loss: 0.9733 Train: 0.9643, Val: 0.8260, Test: 0.8450, Final Test: 0.8430\n", | |
"Epoch: 0305, Loss: 0.9470 Train: 0.9643, Val: 0.8280, Test: 0.8450, Final Test: 0.8430\n", | |
"Epoch: 0306, Loss: 0.9045 Train: 0.9643, Val: 0.8280, Test: 0.8420, Final Test: 0.8430\n", | |
"Epoch: 0307, Loss: 0.8821 Train: 0.9571, Val: 0.8260, Test: 0.8390, Final Test: 0.8430\n", | |
"Epoch: 0308, Loss: 0.8136 Train: 0.9571, Val: 0.8240, Test: 0.8440, Final Test: 0.8430\n", | |
"Epoch: 0309, Loss: 0.8884 Train: 0.9571, Val: 0.8240, Test: 0.8420, Final Test: 0.8430\n", | |
"Epoch: 0310, Loss: 0.9682 Train: 0.9571, Val: 0.8260, Test: 0.8440, Final Test: 0.8430\n", | |
"Epoch: 0311, Loss: 0.8817 Train: 0.9571, Val: 0.8260, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0312, Loss: 0.8477 Train: 0.9643, Val: 0.8260, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0313, Loss: 0.9541 Train: 0.9714, Val: 0.8300, Test: 0.8500, Final Test: 0.8430\n", | |
"Epoch: 0314, Loss: 0.8849 Train: 0.9714, Val: 0.8260, Test: 0.8520, Final Test: 0.8430\n", | |
"Epoch: 0315, Loss: 0.9296 Train: 0.9714, Val: 0.8200, Test: 0.8540, Final Test: 0.8430\n", | |
"Epoch: 0316, Loss: 0.9546 Train: 0.9786, Val: 0.8180, Test: 0.8530, Final Test: 0.8430\n", | |
"Epoch: 0317, Loss: 0.9825 Train: 0.9786, Val: 0.8160, Test: 0.8530, Final Test: 0.8430\n", | |
"Epoch: 0318, Loss: 0.8726 Train: 0.9786, Val: 0.8200, Test: 0.8520, Final Test: 0.8430\n", | |
"Epoch: 0319, Loss: 0.9199 Train: 0.9714, Val: 0.8240, Test: 0.8490, Final Test: 0.8430\n", | |
"Epoch: 0320, Loss: 0.8825 Train: 0.9714, Val: 0.8220, Test: 0.8500, Final Test: 0.8430\n", | |
"Epoch: 0321, Loss: 0.9425 Train: 0.9714, Val: 0.8260, Test: 0.8500, Final Test: 0.8430\n", | |
"Epoch: 0322, Loss: 0.9369 Train: 0.9714, Val: 0.8200, Test: 0.8530, Final Test: 0.8430\n", | |
"Epoch: 0323, Loss: 0.8965 Train: 0.9714, Val: 0.8220, Test: 0.8530, Final Test: 0.8430\n", | |
"Epoch: 0324, Loss: 0.9405 Train: 0.9714, Val: 0.8200, Test: 0.8530, Final Test: 0.8430\n", | |
"Epoch: 0325, Loss: 0.9288 Train: 0.9714, Val: 0.8240, Test: 0.8520, Final Test: 0.8430\n", | |
"Epoch: 0326, Loss: 1.0131 Train: 0.9714, Val: 0.8220, Test: 0.8520, Final Test: 0.8430\n", | |
"Epoch: 0327, Loss: 0.8734 Train: 0.9714, Val: 0.8220, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0328, Loss: 0.8546 Train: 0.9714, Val: 0.8220, Test: 0.8510, Final Test: 0.8430\n", | |
"Epoch: 0329, Loss: 0.8425 Train: 0.9714, Val: 0.8220, Test: 0.8560, Final Test: 0.8430\n", | |
"Epoch: 0330, Loss: 0.9020 Train: 0.9714, Val: 0.8180, Test: 0.8550, Final Test: 0.8430\n", | |
"Epoch: 0331, Loss: 0.8081 Train: 0.9714, Val: 0.8240, Test: 0.8560, Final Test: 0.8430\n", | |
"Epoch: 0332, Loss: 0.9260 Train: 0.9714, Val: 0.8240, Test: 0.8580, Final Test: 0.8430\n", | |
"Epoch: 0333, Loss: 1.0115 Train: 0.9786, Val: 0.8180, Test: 0.8560, Final Test: 0.8430\n", | |
"Epoch: 0334, Loss: 1.0361 Train: 0.9786, Val: 0.8120, Test: 0.8550, Final Test: 0.8430\n", | |
"Epoch: 0335, Loss: 1.0250 Train: 0.9786, Val: 0.8140, Test: 0.8560, Final Test: 0.8430\n", | |
"Epoch: 0336, Loss: 0.9239 Train: 0.9786, Val: 0.8120, Test: 0.8540, Final Test: 0.8430\n", | |
"Epoch: 0337, Loss: 0.8864 Train: 0.9857, Val: 0.8100, Test: 0.8530, Final Test: 0.8430\n", | |
"Epoch: 0338, Loss: 0.9487 Train: 0.9857, Val: 0.8140, Test: 0.8520, Final Test: 0.8430\n", | |
"Epoch: 0339, Loss: 1.0333 Train: 0.9857, Val: 0.8140, Test: 0.8510, Final Test: 0.8430\n", | |
"Epoch: 0340, Loss: 0.8890 Train: 0.9786, Val: 0.8200, Test: 0.8510, Final Test: 0.8430\n", | |
"Epoch: 0341, Loss: 0.8360 Train: 0.9786, Val: 0.8220, Test: 0.8450, Final Test: 0.8430\n", | |
"Epoch: 0342, Loss: 0.9248 Train: 0.9786, Val: 0.8240, Test: 0.8440, Final Test: 0.8430\n", | |
"Epoch: 0343, Loss: 0.8522 Train: 0.9786, Val: 0.8240, Test: 0.8410, Final Test: 0.8430\n", | |
"Epoch: 0344, Loss: 0.7925 Train: 0.9786, Val: 0.8220, Test: 0.8440, Final Test: 0.8430\n", | |
"Epoch: 0345, Loss: 0.8802 Train: 0.9714, Val: 0.8220, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0346, Loss: 0.8593 Train: 0.9714, Val: 0.8220, Test: 0.8510, Final Test: 0.8430\n", | |
"Epoch: 0347, Loss: 0.9431 Train: 0.9714, Val: 0.8200, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0348, Loss: 0.8651 Train: 0.9643, Val: 0.8200, Test: 0.8460, Final Test: 0.8430\n", | |
"Epoch: 0349, Loss: 0.9320 Train: 0.9643, Val: 0.8260, Test: 0.8460, Final Test: 0.8430\n", | |
"Epoch: 0350, Loss: 0.9708 Train: 0.9643, Val: 0.8300, Test: 0.8460, Final Test: 0.8430\n", | |
"Epoch: 0351, Loss: 0.8071 Train: 0.9643, Val: 0.8280, Test: 0.8460, Final Test: 0.8430\n", | |
"Epoch: 0352, Loss: 0.9295 Train: 0.9571, Val: 0.8260, Test: 0.8450, Final Test: 0.8430\n", | |
"Epoch: 0353, Loss: 0.8640 Train: 0.9643, Val: 0.8240, Test: 0.8440, Final Test: 0.8430\n", | |
"Epoch: 0354, Loss: 0.8147 Train: 0.9643, Val: 0.8220, Test: 0.8470, Final Test: 0.8430\n", | |
"Epoch: 0355, Loss: 0.9458 Train: 0.9714, Val: 0.8280, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0356, Loss: 0.8760 Train: 0.9714, Val: 0.8280, Test: 0.8490, Final Test: 0.8430\n", | |
"Epoch: 0357, Loss: 0.8947 Train: 0.9714, Val: 0.8280, Test: 0.8520, Final Test: 0.8430\n", | |
"Epoch: 0358, Loss: 0.8302 Train: 0.9714, Val: 0.8240, Test: 0.8520, Final Test: 0.8430\n", | |
"Epoch: 0359, Loss: 0.8724 Train: 0.9643, Val: 0.8160, Test: 0.8520, Final Test: 0.8430\n", | |
"Epoch: 0360, Loss: 0.9597 Train: 0.9714, Val: 0.8200, Test: 0.8510, Final Test: 0.8430\n", | |
"Epoch: 0361, Loss: 0.8439 Train: 0.9714, Val: 0.8180, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0362, Loss: 0.8774 Train: 0.9714, Val: 0.8120, Test: 0.8460, Final Test: 0.8430\n", | |
"Epoch: 0363, Loss: 0.9724 Train: 0.9714, Val: 0.8180, Test: 0.8480, Final Test: 0.8430\n", | |
"Epoch: 0364, Loss: 0.9150 Train: 0.9714, Val: 0.8180, Test: 0.8540, Final Test: 0.8430\n", | |
"Epoch: 0365, Loss: 0.8400 Train: 0.9714, Val: 0.8240, Test: 0.8560, Final Test: 0.8430\n", | |
"Epoch: 0366, Loss: 0.8702 Train: 0.9714, Val: 0.8300, Test: 0.8580, Final Test: 0.8430\n", | |
"Epoch: 0367, Loss: 0.8602 Train: 0.9643, Val: 0.8320, Test: 0.8570, Final Test: 0.8570\n", | |
"Epoch: 0368, Loss: 0.7996 Train: 0.9643, Val: 0.8300, Test: 0.8560, Final Test: 0.8570\n", | |
"Epoch: 0369, Loss: 0.8429 Train: 0.9643, Val: 0.8300, Test: 0.8550, Final Test: 0.8570\n", | |
"Epoch: 0370, Loss: 0.9029 Train: 0.9643, Val: 0.8240, Test: 0.8550, Final Test: 0.8570\n", | |
"Epoch: 0371, Loss: 0.8675 Train: 0.9714, Val: 0.8220, Test: 0.8580, Final Test: 0.8570\n", | |
"Epoch: 0372, Loss: 0.8863 Train: 0.9786, Val: 0.8240, Test: 0.8580, Final Test: 0.8570\n", | |
"Epoch: 0373, Loss: 0.8376 Train: 0.9786, Val: 0.8260, Test: 0.8580, Final Test: 0.8570\n", | |
"Epoch: 0374, Loss: 0.8671 Train: 0.9786, Val: 0.8280, Test: 0.8570, Final Test: 0.8570\n", | |
"Epoch: 0375, Loss: 0.7907 Train: 0.9714, Val: 0.8260, Test: 0.8550, Final Test: 0.8570\n", | |
"Epoch: 0376, Loss: 0.8154 Train: 0.9714, Val: 0.8220, Test: 0.8550, Final Test: 0.8570\n", | |
"Epoch: 0377, Loss: 0.9570 Train: 0.9714, Val: 0.8220, Test: 0.8530, Final Test: 0.8570\n", | |
"Epoch: 0378, Loss: 0.8546 Train: 0.9714, Val: 0.8260, Test: 0.8530, Final Test: 0.8570\n", | |
"Epoch: 0379, Loss: 0.8899 Train: 0.9714, Val: 0.8200, Test: 0.8490, Final Test: 0.8570\n", | |
"Epoch: 0380, Loss: 0.8818 Train: 0.9714, Val: 0.8200, Test: 0.8500, Final Test: 0.8570\n", | |
"Epoch: 0381, Loss: 0.7514 Train: 0.9643, Val: 0.8200, Test: 0.8520, Final Test: 0.8570\n", | |
"Epoch: 0382, Loss: 0.9321 Train: 0.9571, Val: 0.8100, Test: 0.8510, Final Test: 0.8570\n", | |
"Epoch: 0383, Loss: 0.8478 Train: 0.9714, Val: 0.8140, Test: 0.8480, Final Test: 0.8570\n", | |
"Epoch: 0384, Loss: 0.8036 Train: 0.9714, Val: 0.8200, Test: 0.8500, Final Test: 0.8570\n", | |
"Epoch: 0385, Loss: 0.8431 Train: 0.9714, Val: 0.8300, Test: 0.8510, Final Test: 0.8570\n", | |
"Epoch: 0386, Loss: 0.8024 Train: 0.9714, Val: 0.8300, Test: 0.8490, Final Test: 0.8570\n", | |
"Epoch: 0387, Loss: 0.8896 Train: 0.9714, Val: 0.8380, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0388, Loss: 0.7929 Train: 0.9643, Val: 0.8360, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0389, Loss: 0.9242 Train: 0.9643, Val: 0.8380, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0390, Loss: 0.8745 Train: 0.9714, Val: 0.8320, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0391, Loss: 0.9870 Train: 0.9786, Val: 0.8280, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0392, Loss: 0.9419 Train: 0.9786, Val: 0.8260, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0393, Loss: 0.8447 Train: 0.9786, Val: 0.8200, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0394, Loss: 0.9472 Train: 0.9786, Val: 0.8240, Test: 0.8440, Final Test: 0.8460\n", | |
"Epoch: 0395, Loss: 0.8500 Train: 0.9714, Val: 0.8200, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0396, Loss: 0.8033 Train: 0.9714, Val: 0.8240, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0397, Loss: 0.8986 Train: 0.9714, Val: 0.8200, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0398, Loss: 1.0511 Train: 0.9714, Val: 0.8240, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0399, Loss: 0.9164 Train: 0.9714, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0400, Loss: 0.9661 Train: 0.9714, Val: 0.8160, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0401, Loss: 0.8784 Train: 0.9714, Val: 0.8140, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0402, Loss: 0.8418 Train: 0.9714, Val: 0.8160, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0403, Loss: 0.8502 Train: 0.9714, Val: 0.8160, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0404, Loss: 0.7990 Train: 0.9714, Val: 0.8200, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0405, Loss: 0.8957 Train: 0.9714, Val: 0.8280, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0406, Loss: 0.9187 Train: 0.9714, Val: 0.8260, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0407, Loss: 0.8550 Train: 0.9714, Val: 0.8240, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0408, Loss: 0.8590 Train: 0.9786, Val: 0.8280, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0409, Loss: 0.8596 Train: 0.9786, Val: 0.8200, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0410, Loss: 0.7993 Train: 0.9714, Val: 0.8220, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0411, Loss: 0.9184 Train: 0.9714, Val: 0.8180, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0412, Loss: 0.8727 Train: 0.9643, Val: 0.8140, Test: 0.8450, Final Test: 0.8460\n", | |
"Epoch: 0413, Loss: 0.9266 Train: 0.9643, Val: 0.8160, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0414, Loss: 0.7438 Train: 0.9643, Val: 0.8160, Test: 0.8470, Final Test: 0.8460\n", | |
"Epoch: 0415, Loss: 0.8132 Train: 0.9714, Val: 0.8160, Test: 0.8470, Final Test: 0.8460\n", | |
"Epoch: 0416, Loss: 0.8372 Train: 0.9714, Val: 0.8120, Test: 0.8470, Final Test: 0.8460\n", | |
"Epoch: 0417, Loss: 0.8459 Train: 0.9714, Val: 0.8100, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0418, Loss: 0.9017 Train: 0.9714, Val: 0.8120, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0419, Loss: 0.9180 Train: 0.9786, Val: 0.8140, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0420, Loss: 0.9135 Train: 0.9786, Val: 0.8220, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0421, Loss: 0.8469 Train: 0.9786, Val: 0.8200, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0422, Loss: 0.8333 Train: 0.9786, Val: 0.8200, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0423, Loss: 0.8655 Train: 0.9714, Val: 0.8220, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0424, Loss: 0.9376 Train: 0.9643, Val: 0.8260, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0425, Loss: 0.9261 Train: 0.9643, Val: 0.8240, Test: 0.8440, Final Test: 0.8460\n", | |
"Epoch: 0426, Loss: 0.8571 Train: 0.9643, Val: 0.8200, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0427, Loss: 0.8902 Train: 0.9643, Val: 0.8220, Test: 0.8420, Final Test: 0.8460\n", | |
"Epoch: 0428, Loss: 0.8596 Train: 0.9643, Val: 0.8220, Test: 0.8380, Final Test: 0.8460\n", | |
"Epoch: 0429, Loss: 0.9028 Train: 0.9643, Val: 0.8280, Test: 0.8400, Final Test: 0.8460\n", | |
"Epoch: 0430, Loss: 0.8117 Train: 0.9714, Val: 0.8320, Test: 0.8430, Final Test: 0.8460\n", | |
"Epoch: 0431, Loss: 0.8595 Train: 0.9714, Val: 0.8300, Test: 0.8430, Final Test: 0.8460\n", | |
"Epoch: 0432, Loss: 0.8528 Train: 0.9714, Val: 0.8300, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0433, Loss: 0.9284 Train: 0.9714, Val: 0.8280, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0434, Loss: 0.9028 Train: 0.9714, Val: 0.8300, Test: 0.8470, Final Test: 0.8460\n", | |
"Epoch: 0435, Loss: 0.7448 Train: 0.9714, Val: 0.8320, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0436, Loss: 0.7764 Train: 0.9786, Val: 0.8260, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0437, Loss: 0.7423 Train: 0.9714, Val: 0.8180, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0438, Loss: 0.8408 Train: 0.9643, Val: 0.8080, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0439, Loss: 0.8787 Train: 0.9714, Val: 0.8140, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0440, Loss: 0.8019 Train: 0.9714, Val: 0.8100, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0441, Loss: 0.9706 Train: 0.9714, Val: 0.8180, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0442, Loss: 0.8047 Train: 0.9714, Val: 0.8220, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0443, Loss: 0.7968 Train: 0.9714, Val: 0.8200, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0444, Loss: 0.7832 Train: 0.9786, Val: 0.8240, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0445, Loss: 0.8591 Train: 0.9786, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0446, Loss: 0.8288 Train: 0.9786, Val: 0.8300, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0447, Loss: 0.8797 Train: 0.9786, Val: 0.8240, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0448, Loss: 0.8992 Train: 0.9786, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0449, Loss: 0.8988 Train: 0.9786, Val: 0.8260, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0450, Loss: 0.8705 Train: 0.9786, Val: 0.8280, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0451, Loss: 0.9503 Train: 0.9714, Val: 0.8260, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0452, Loss: 0.8543 Train: 0.9786, Val: 0.8300, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0453, Loss: 0.8019 Train: 0.9786, Val: 0.8300, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0454, Loss: 0.8696 Train: 0.9786, Val: 0.8280, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0455, Loss: 0.8261 Train: 0.9714, Val: 0.8180, Test: 0.8440, Final Test: 0.8460\n", | |
"Epoch: 0456, Loss: 0.7876 Train: 0.9714, Val: 0.8200, Test: 0.8430, Final Test: 0.8460\n", | |
"Epoch: 0457, Loss: 0.7697 Train: 0.9714, Val: 0.8140, Test: 0.8470, Final Test: 0.8460\n", | |
"Epoch: 0458, Loss: 0.8388 Train: 0.9643, Val: 0.8160, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0459, Loss: 0.8829 Train: 0.9643, Val: 0.8180, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0460, Loss: 0.7712 Train: 0.9643, Val: 0.8220, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0461, Loss: 0.8822 Train: 0.9643, Val: 0.8220, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0462, Loss: 0.8220 Train: 0.9714, Val: 0.8200, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0463, Loss: 0.8202 Train: 0.9643, Val: 0.8200, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0464, Loss: 0.9055 Train: 0.9643, Val: 0.8120, Test: 0.8440, Final Test: 0.8460\n", | |
"Epoch: 0465, Loss: 0.8934 Train: 0.9643, Val: 0.8100, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0466, Loss: 0.8811 Train: 0.9714, Val: 0.8120, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0467, Loss: 0.7742 Train: 0.9643, Val: 0.8140, Test: 0.8420, Final Test: 0.8460\n", | |
"Epoch: 0468, Loss: 0.8170 Train: 0.9643, Val: 0.8080, Test: 0.8420, Final Test: 0.8460\n", | |
"Epoch: 0469, Loss: 0.8599 Train: 0.9643, Val: 0.8100, Test: 0.8410, Final Test: 0.8460\n", | |
"Epoch: 0470, Loss: 0.9247 Train: 0.9714, Val: 0.8140, Test: 0.8440, Final Test: 0.8460\n", | |
"Epoch: 0471, Loss: 0.7842 Train: 0.9714, Val: 0.8160, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0472, Loss: 0.7386 Train: 0.9786, Val: 0.8200, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0473, Loss: 0.8234 Train: 0.9786, Val: 0.8180, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0474, Loss: 0.7849 Train: 0.9786, Val: 0.8320, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0475, Loss: 0.8797 Train: 0.9786, Val: 0.8340, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0476, Loss: 0.7919 Train: 0.9857, Val: 0.8380, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0477, Loss: 0.9064 Train: 0.9857, Val: 0.8360, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0478, Loss: 0.8399 Train: 0.9857, Val: 0.8320, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0479, Loss: 0.8438 Train: 0.9857, Val: 0.8340, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0480, Loss: 0.8844 Train: 0.9786, Val: 0.8340, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0481, Loss: 1.1576 Train: 0.9857, Val: 0.8280, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0482, Loss: 0.8215 Train: 0.9857, Val: 0.8240, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0483, Loss: 0.8285 Train: 0.9857, Val: 0.8220, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0484, Loss: 0.8546 Train: 0.9857, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0485, Loss: 0.8226 Train: 0.9857, Val: 0.8140, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0486, Loss: 0.8099 Train: 0.9857, Val: 0.8120, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0487, Loss: 0.8495 Train: 0.9857, Val: 0.8140, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0488, Loss: 0.7798 Train: 0.9857, Val: 0.8140, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0489, Loss: 0.8571 Train: 0.9857, Val: 0.8100, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0490, Loss: 0.9137 Train: 0.9857, Val: 0.8100, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0491, Loss: 0.8118 Train: 0.9857, Val: 0.8100, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0492, Loss: 0.8269 Train: 0.9857, Val: 0.8080, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0493, Loss: 0.8110 Train: 0.9786, Val: 0.8100, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0494, Loss: 0.8545 Train: 0.9786, Val: 0.8120, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0495, Loss: 0.8804 Train: 0.9786, Val: 0.8200, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0496, Loss: 0.8429 Train: 0.9786, Val: 0.8220, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0497, Loss: 0.8500 Train: 0.9786, Val: 0.8220, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0498, Loss: 0.7634 Train: 0.9786, Val: 0.8240, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0499, Loss: 0.9066 Train: 0.9786, Val: 0.8200, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0500, Loss: 0.8394 Train: 0.9786, Val: 0.8200, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0501, Loss: 0.8720 Train: 0.9857, Val: 0.8200, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0502, Loss: 0.8022 Train: 0.9857, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0503, Loss: 0.8284 Train: 0.9857, Val: 0.8200, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0504, Loss: 0.7392 Train: 0.9786, Val: 0.8200, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0505, Loss: 0.8013 Train: 0.9786, Val: 0.8240, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0506, Loss: 0.8331 Train: 0.9714, Val: 0.8200, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0507, Loss: 0.9428 Train: 0.9643, Val: 0.8160, Test: 0.8450, Final Test: 0.8460\n", | |
"Epoch: 0508, Loss: 0.7554 Train: 0.9643, Val: 0.8160, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0509, Loss: 0.7543 Train: 0.9643, Val: 0.8160, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0510, Loss: 0.7968 Train: 0.9857, Val: 0.8220, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0511, Loss: 0.8360 Train: 0.9857, Val: 0.8200, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0512, Loss: 0.8173 Train: 0.9857, Val: 0.8180, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0513, Loss: 0.7200 Train: 0.9857, Val: 0.8220, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0514, Loss: 0.8164 Train: 0.9857, Val: 0.8280, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0515, Loss: 0.8054 Train: 0.9857, Val: 0.8280, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0516, Loss: 0.7896 Train: 0.9857, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0517, Loss: 0.8713 Train: 0.9857, Val: 0.8240, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0518, Loss: 0.8315 Train: 0.9786, Val: 0.8240, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0519, Loss: 0.7982 Train: 0.9786, Val: 0.8220, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0520, Loss: 0.7951 Train: 0.9786, Val: 0.8240, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0521, Loss: 0.8485 Train: 0.9714, Val: 0.8200, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0522, Loss: 0.6961 Train: 0.9714, Val: 0.8180, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0523, Loss: 0.8082 Train: 0.9714, Val: 0.8180, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0524, Loss: 0.7986 Train: 0.9643, Val: 0.8180, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0525, Loss: 0.7892 Train: 0.9643, Val: 0.8220, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0526, Loss: 0.8231 Train: 0.9643, Val: 0.8260, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0527, Loss: 0.8297 Train: 0.9643, Val: 0.8240, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0528, Loss: 0.8097 Train: 0.9643, Val: 0.8200, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0529, Loss: 0.8310 Train: 0.9643, Val: 0.8220, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0530, Loss: 0.8603 Train: 0.9643, Val: 0.8220, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0531, Loss: 0.8026 Train: 0.9714, Val: 0.8240, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0532, Loss: 0.8027 Train: 0.9714, Val: 0.8260, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0533, Loss: 0.7921 Train: 0.9714, Val: 0.8280, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0534, Loss: 0.7663 Train: 0.9714, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0535, Loss: 0.8090 Train: 0.9714, Val: 0.8260, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0536, Loss: 0.7125 Train: 0.9714, Val: 0.8300, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0537, Loss: 0.8001 Train: 0.9714, Val: 0.8300, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0538, Loss: 0.7815 Train: 0.9786, Val: 0.8260, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0539, Loss: 0.8570 Train: 0.9786, Val: 0.8260, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0540, Loss: 0.7758 Train: 0.9786, Val: 0.8240, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0541, Loss: 0.7745 Train: 0.9786, Val: 0.8240, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0542, Loss: 0.6751 Train: 0.9786, Val: 0.8220, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0543, Loss: 0.7423 Train: 0.9786, Val: 0.8160, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0544, Loss: 0.8875 Train: 0.9714, Val: 0.8160, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0545, Loss: 0.8601 Train: 0.9714, Val: 0.8200, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0546, Loss: 0.7449 Train: 0.9714, Val: 0.8280, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0547, Loss: 0.9113 Train: 0.9714, Val: 0.8260, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0548, Loss: 0.7872 Train: 0.9714, Val: 0.8260, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0549, Loss: 0.8719 Train: 0.9714, Val: 0.8260, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0550, Loss: 0.8010 Train: 0.9714, Val: 0.8260, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0551, Loss: 0.8557 Train: 0.9786, Val: 0.8220, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0552, Loss: 0.7609 Train: 0.9857, Val: 0.8260, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0553, Loss: 0.7760 Train: 0.9857, Val: 0.8280, Test: 0.8640, Final Test: 0.8460\n", | |
"Epoch: 0554, Loss: 0.7783 Train: 0.9857, Val: 0.8280, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0555, Loss: 0.7433 Train: 0.9857, Val: 0.8280, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0556, Loss: 0.8483 Train: 0.9857, Val: 0.8340, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0557, Loss: 0.8190 Train: 0.9857, Val: 0.8320, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0558, Loss: 0.7493 Train: 0.9857, Val: 0.8220, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0559, Loss: 0.7424 Train: 0.9857, Val: 0.8240, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0560, Loss: 0.7546 Train: 0.9857, Val: 0.8240, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0561, Loss: 0.8109 Train: 0.9857, Val: 0.8240, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0562, Loss: 0.8559 Train: 0.9857, Val: 0.8180, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0563, Loss: 0.9093 Train: 0.9857, Val: 0.8220, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0564, Loss: 0.8063 Train: 0.9857, Val: 0.8260, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0565, Loss: 0.7652 Train: 0.9857, Val: 0.8340, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0566, Loss: 0.7899 Train: 0.9857, Val: 0.8240, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0567, Loss: 0.8577 Train: 0.9786, Val: 0.8260, Test: 0.8450, Final Test: 0.8460\n", | |
"Epoch: 0568, Loss: 0.8359 Train: 0.9786, Val: 0.8280, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0569, Loss: 0.7815 Train: 0.9714, Val: 0.8300, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0570, Loss: 0.8144 Train: 0.9714, Val: 0.8280, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0571, Loss: 0.7481 Train: 0.9714, Val: 0.8260, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0572, Loss: 0.7681 Train: 0.9714, Val: 0.8300, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0573, Loss: 0.7674 Train: 0.9714, Val: 0.8240, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0574, Loss: 0.7088 Train: 0.9714, Val: 0.8240, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0575, Loss: 0.8322 Train: 0.9643, Val: 0.8220, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0576, Loss: 0.7642 Train: 0.9643, Val: 0.8200, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0577, Loss: 0.8030 Train: 0.9643, Val: 0.8200, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0578, Loss: 0.7716 Train: 0.9643, Val: 0.8240, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0579, Loss: 0.7989 Train: 0.9714, Val: 0.8240, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0580, Loss: 0.7668 Train: 0.9714, Val: 0.8320, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0581, Loss: 0.7635 Train: 0.9714, Val: 0.8300, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0582, Loss: 0.8365 Train: 0.9714, Val: 0.8300, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0583, Loss: 0.8324 Train: 0.9786, Val: 0.8340, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0584, Loss: 0.8413 Train: 0.9857, Val: 0.8320, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0585, Loss: 0.8543 Train: 0.9786, Val: 0.8220, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0586, Loss: 0.8684 Train: 0.9714, Val: 0.8160, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0587, Loss: 0.7368 Train: 0.9714, Val: 0.8140, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0588, Loss: 0.7368 Train: 0.9857, Val: 0.8200, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0589, Loss: 0.7950 Train: 0.9857, Val: 0.8220, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0590, Loss: 0.7483 Train: 0.9786, Val: 0.8260, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0591, Loss: 0.8109 Train: 0.9786, Val: 0.8280, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0592, Loss: 0.8305 Train: 0.9786, Val: 0.8320, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0593, Loss: 0.7356 Train: 0.9786, Val: 0.8300, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0594, Loss: 0.7595 Train: 0.9786, Val: 0.8320, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0595, Loss: 0.7014 Train: 0.9786, Val: 0.8320, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0596, Loss: 0.9535 Train: 0.9786, Val: 0.8260, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0597, Loss: 0.8612 Train: 0.9786, Val: 0.8260, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0598, Loss: 0.7822 Train: 0.9714, Val: 0.8260, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0599, Loss: 0.7478 Train: 0.9714, Val: 0.8260, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0600, Loss: 0.8044 Train: 0.9643, Val: 0.8200, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0601, Loss: 0.9017 Train: 0.9643, Val: 0.8200, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0602, Loss: 0.7398 Train: 0.9714, Val: 0.8160, Test: 0.8470, Final Test: 0.8460\n", | |
"Epoch: 0603, Loss: 0.8423 Train: 0.9786, Val: 0.8200, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0604, Loss: 1.0300 Train: 0.9786, Val: 0.8180, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0605, Loss: 0.8502 Train: 0.9714, Val: 0.8180, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0606, Loss: 0.8095 Train: 0.9714, Val: 0.8240, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0607, Loss: 0.8998 Train: 0.9714, Val: 0.8300, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0608, Loss: 0.7138 Train: 0.9714, Val: 0.8300, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0609, Loss: 0.8431 Train: 0.9714, Val: 0.8300, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0610, Loss: 0.8079 Train: 0.9714, Val: 0.8360, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0611, Loss: 0.8194 Train: 0.9714, Val: 0.8380, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0612, Loss: 0.8297 Train: 0.9786, Val: 0.8360, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0613, Loss: 0.7177 Train: 0.9786, Val: 0.8340, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0614, Loss: 0.7796 Train: 0.9786, Val: 0.8340, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0615, Loss: 0.7818 Train: 0.9786, Val: 0.8340, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0616, Loss: 0.8213 Train: 0.9786, Val: 0.8340, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0617, Loss: 0.8401 Train: 0.9786, Val: 0.8320, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0618, Loss: 0.8161 Train: 0.9786, Val: 0.8340, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0619, Loss: 0.8688 Train: 0.9786, Val: 0.8360, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0620, Loss: 0.6842 Train: 0.9786, Val: 0.8360, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0621, Loss: 0.7166 Train: 0.9786, Val: 0.8360, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0622, Loss: 0.8489 Train: 0.9786, Val: 0.8340, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0623, Loss: 0.7535 Train: 0.9786, Val: 0.8300, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0624, Loss: 0.8730 Train: 0.9786, Val: 0.8260, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0625, Loss: 0.7717 Train: 0.9786, Val: 0.8260, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0626, Loss: 0.8859 Train: 0.9786, Val: 0.8260, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0627, Loss: 0.9420 Train: 0.9786, Val: 0.8280, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0628, Loss: 0.8017 Train: 0.9786, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0629, Loss: 0.7708 Train: 0.9786, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0630, Loss: 0.7531 Train: 0.9786, Val: 0.8180, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0631, Loss: 0.7476 Train: 0.9786, Val: 0.8160, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0632, Loss: 0.8459 Train: 0.9714, Val: 0.8200, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0633, Loss: 0.7607 Train: 0.9714, Val: 0.8140, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0634, Loss: 0.7917 Train: 0.9714, Val: 0.8120, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0635, Loss: 0.8150 Train: 0.9714, Val: 0.8140, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0636, Loss: 0.8646 Train: 0.9714, Val: 0.8120, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0637, Loss: 0.8207 Train: 0.9714, Val: 0.8100, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0638, Loss: 0.8526 Train: 0.9786, Val: 0.8180, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0639, Loss: 0.7714 Train: 0.9786, Val: 0.8260, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0640, Loss: 0.7796 Train: 0.9714, Val: 0.8320, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0641, Loss: 0.8392 Train: 0.9714, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0642, Loss: 0.8303 Train: 0.9714, Val: 0.8200, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0643, Loss: 0.9450 Train: 0.9714, Val: 0.8220, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0644, Loss: 0.8306 Train: 0.9786, Val: 0.8300, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0645, Loss: 1.0067 Train: 0.9714, Val: 0.8360, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0646, Loss: 0.7438 Train: 0.9786, Val: 0.8360, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0647, Loss: 0.8551 Train: 0.9786, Val: 0.8320, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0648, Loss: 0.7824 Train: 0.9857, Val: 0.8300, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0649, Loss: 0.8598 Train: 0.9857, Val: 0.8320, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0650, Loss: 0.7855 Train: 0.9857, Val: 0.8300, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0651, Loss: 0.8303 Train: 0.9857, Val: 0.8260, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0652, Loss: 0.7857 Train: 0.9857, Val: 0.8220, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0653, Loss: 0.8057 Train: 0.9857, Val: 0.8260, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0654, Loss: 0.8289 Train: 0.9857, Val: 0.8240, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0655, Loss: 0.8204 Train: 0.9857, Val: 0.8240, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0656, Loss: 0.7179 Train: 0.9857, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0657, Loss: 0.7040 Train: 0.9857, Val: 0.8240, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0658, Loss: 0.7901 Train: 0.9786, Val: 0.8280, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0659, Loss: 0.8100 Train: 0.9786, Val: 0.8280, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0660, Loss: 0.8614 Train: 0.9786, Val: 0.8260, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0661, Loss: 0.7911 Train: 0.9786, Val: 0.8240, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0662, Loss: 0.7222 Train: 0.9786, Val: 0.8220, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0663, Loss: 0.8608 Train: 0.9786, Val: 0.8200, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0664, Loss: 0.8586 Train: 0.9786, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0665, Loss: 0.7878 Train: 0.9714, Val: 0.8240, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0666, Loss: 0.7323 Train: 0.9714, Val: 0.8240, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0667, Loss: 0.7623 Train: 0.9714, Val: 0.8240, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0668, Loss: 0.8756 Train: 0.9786, Val: 0.8240, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0669, Loss: 0.7740 Train: 0.9786, Val: 0.8200, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0670, Loss: 0.9374 Train: 0.9786, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0671, Loss: 0.7736 Train: 0.9714, Val: 0.8220, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0672, Loss: 0.7372 Train: 0.9643, Val: 0.8240, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0673, Loss: 0.7954 Train: 0.9643, Val: 0.8220, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0674, Loss: 0.7913 Train: 0.9714, Val: 0.8280, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0675, Loss: 0.9338 Train: 0.9714, Val: 0.8300, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0676, Loss: 0.8463 Train: 0.9714, Val: 0.8300, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0677, Loss: 0.7733 Train: 0.9786, Val: 0.8300, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0678, Loss: 0.7627 Train: 0.9786, Val: 0.8300, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0679, Loss: 0.8369 Train: 0.9786, Val: 0.8260, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0680, Loss: 0.8792 Train: 0.9786, Val: 0.8240, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0681, Loss: 0.7713 Train: 0.9786, Val: 0.8220, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0682, Loss: 0.8288 Train: 0.9786, Val: 0.8240, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0683, Loss: 0.8347 Train: 0.9786, Val: 0.8240, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0684, Loss: 0.7827 Train: 0.9786, Val: 0.8300, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0685, Loss: 0.7346 Train: 0.9786, Val: 0.8300, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0686, Loss: 0.7115 Train: 0.9786, Val: 0.8300, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0687, Loss: 0.9057 Train: 0.9857, Val: 0.8240, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0688, Loss: 0.7973 Train: 0.9786, Val: 0.8220, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0689, Loss: 0.8335 Train: 0.9786, Val: 0.8200, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0690, Loss: 0.8630 Train: 0.9786, Val: 0.8160, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0691, Loss: 0.6806 Train: 0.9786, Val: 0.8160, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0692, Loss: 0.8711 Train: 0.9786, Val: 0.8180, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0693, Loss: 0.7843 Train: 0.9786, Val: 0.8200, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0694, Loss: 0.8128 Train: 0.9786, Val: 0.8260, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0695, Loss: 0.7607 Train: 0.9786, Val: 0.8260, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0696, Loss: 0.8644 Train: 0.9786, Val: 0.8260, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0697, Loss: 0.7537 Train: 0.9786, Val: 0.8320, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0698, Loss: 0.7893 Train: 0.9786, Val: 0.8360, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0699, Loss: 0.7656 Train: 0.9857, Val: 0.8320, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0700, Loss: 0.8128 Train: 0.9857, Val: 0.8320, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0701, Loss: 0.8188 Train: 0.9857, Val: 0.8260, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0702, Loss: 0.7492 Train: 0.9786, Val: 0.8340, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0703, Loss: 0.8260 Train: 0.9786, Val: 0.8300, Test: 0.8640, Final Test: 0.8460\n", | |
"Epoch: 0704, Loss: 0.7023 Train: 0.9786, Val: 0.8260, Test: 0.8650, Final Test: 0.8460\n", | |
"Epoch: 0705, Loss: 0.7612 Train: 0.9786, Val: 0.8260, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0706, Loss: 0.6992 Train: 0.9786, Val: 0.8220, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0707, Loss: 0.7655 Train: 0.9786, Val: 0.8240, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0708, Loss: 0.9245 Train: 0.9786, Val: 0.8240, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0709, Loss: 0.7355 Train: 0.9786, Val: 0.8280, Test: 0.8650, Final Test: 0.8460\n", | |
"Epoch: 0710, Loss: 0.8108 Train: 0.9786, Val: 0.8280, Test: 0.8640, Final Test: 0.8460\n", | |
"Epoch: 0711, Loss: 0.7820 Train: 0.9786, Val: 0.8240, Test: 0.8650, Final Test: 0.8460\n", | |
"Epoch: 0712, Loss: 0.7739 Train: 0.9857, Val: 0.8280, Test: 0.8630, Final Test: 0.8460\n", | |
"Epoch: 0713, Loss: 0.7897 Train: 0.9857, Val: 0.8260, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0714, Loss: 0.7886 Train: 0.9857, Val: 0.8280, Test: 0.8630, Final Test: 0.8460\n", | |
"Epoch: 0715, Loss: 0.8092 Train: 0.9786, Val: 0.8300, Test: 0.8650, Final Test: 0.8460\n", | |
"Epoch: 0716, Loss: 0.7435 Train: 0.9786, Val: 0.8320, Test: 0.8630, Final Test: 0.8460\n", | |
"Epoch: 0717, Loss: 0.8522 Train: 0.9786, Val: 0.8280, Test: 0.8630, Final Test: 0.8460\n", | |
"Epoch: 0718, Loss: 0.7488 Train: 0.9786, Val: 0.8260, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0719, Loss: 0.7633 Train: 0.9786, Val: 0.8260, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0720, Loss: 0.8920 Train: 0.9786, Val: 0.8280, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0721, Loss: 0.7867 Train: 0.9786, Val: 0.8280, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0722, Loss: 0.6924 Train: 0.9786, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0723, Loss: 0.7997 Train: 0.9786, Val: 0.8240, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0724, Loss: 0.8958 Train: 0.9857, Val: 0.8240, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0725, Loss: 0.7449 Train: 0.9786, Val: 0.8200, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0726, Loss: 0.7516 Train: 0.9786, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0727, Loss: 0.8092 Train: 0.9786, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0728, Loss: 0.7689 Train: 0.9786, Val: 0.8220, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0729, Loss: 0.7731 Train: 0.9786, Val: 0.8220, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0730, Loss: 0.7614 Train: 0.9786, Val: 0.8180, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0731, Loss: 0.7913 Train: 0.9786, Val: 0.8220, Test: 0.8630, Final Test: 0.8460\n", | |
"Epoch: 0732, Loss: 0.7940 Train: 0.9786, Val: 0.8280, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0733, Loss: 0.9978 Train: 0.9857, Val: 0.8300, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0734, Loss: 0.8053 Train: 0.9786, Val: 0.8300, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0735, Loss: 0.7629 Train: 0.9786, Val: 0.8300, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0736, Loss: 0.7132 Train: 0.9786, Val: 0.8300, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0737, Loss: 0.8145 Train: 0.9786, Val: 0.8220, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0738, Loss: 0.7296 Train: 0.9786, Val: 0.8220, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0739, Loss: 0.8305 Train: 0.9786, Val: 0.8200, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0740, Loss: 0.8129 Train: 0.9786, Val: 0.8260, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0741, Loss: 0.7990 Train: 0.9714, Val: 0.8280, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0742, Loss: 0.8259 Train: 0.9714, Val: 0.8300, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0743, Loss: 0.7739 Train: 0.9786, Val: 0.8200, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0744, Loss: 0.8409 Train: 0.9786, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0745, Loss: 0.7679 Train: 0.9786, Val: 0.8220, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0746, Loss: 0.7449 Train: 0.9786, Val: 0.8200, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0747, Loss: 0.9164 Train: 0.9786, Val: 0.8200, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0748, Loss: 0.8361 Train: 0.9786, Val: 0.8220, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0749, Loss: 0.7770 Train: 0.9714, Val: 0.8220, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0750, Loss: 0.7649 Train: 0.9714, Val: 0.8260, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0751, Loss: 0.7099 Train: 0.9714, Val: 0.8220, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0752, Loss: 0.8081 Train: 0.9714, Val: 0.8180, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0753, Loss: 0.8469 Train: 0.9714, Val: 0.8220, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0754, Loss: 0.7931 Train: 0.9714, Val: 0.8220, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0755, Loss: 0.7657 Train: 0.9714, Val: 0.8240, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0756, Loss: 0.8173 Train: 0.9714, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0757, Loss: 0.8342 Train: 0.9714, Val: 0.8260, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0758, Loss: 0.7337 Train: 0.9714, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0759, Loss: 0.7534 Train: 0.9714, Val: 0.8280, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0760, Loss: 0.7882 Train: 0.9714, Val: 0.8260, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0761, Loss: 0.8915 Train: 0.9714, Val: 0.8240, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0762, Loss: 0.7995 Train: 0.9714, Val: 0.8240, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0763, Loss: 0.7513 Train: 0.9714, Val: 0.8240, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0764, Loss: 0.7512 Train: 0.9714, Val: 0.8220, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0765, Loss: 0.8412 Train: 0.9714, Val: 0.8180, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0766, Loss: 0.8262 Train: 0.9714, Val: 0.8160, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0767, Loss: 0.7228 Train: 0.9714, Val: 0.8200, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0768, Loss: 0.7107 Train: 0.9714, Val: 0.8220, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0769, Loss: 0.8222 Train: 0.9786, Val: 0.8220, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0770, Loss: 0.7457 Train: 0.9786, Val: 0.8240, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0771, Loss: 0.7237 Train: 0.9786, Val: 0.8240, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0772, Loss: 0.7994 Train: 0.9786, Val: 0.8240, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0773, Loss: 0.6802 Train: 0.9786, Val: 0.8140, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0774, Loss: 0.8135 Train: 0.9786, Val: 0.8120, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0775, Loss: 0.7402 Train: 0.9786, Val: 0.8140, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0776, Loss: 0.7866 Train: 0.9786, Val: 0.8140, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0777, Loss: 0.8460 Train: 0.9786, Val: 0.8160, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0778, Loss: 0.7715 Train: 0.9786, Val: 0.8240, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0779, Loss: 0.7382 Train: 0.9714, Val: 0.8260, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0780, Loss: 0.6941 Train: 0.9643, Val: 0.8260, Test: 0.8490, Final Test: 0.8460\n", | |
"Epoch: 0781, Loss: 0.8333 Train: 0.9714, Val: 0.8280, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0782, Loss: 0.8281 Train: 0.9643, Val: 0.8220, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0783, Loss: 0.7483 Train: 0.9643, Val: 0.8240, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0784, Loss: 0.7514 Train: 0.9714, Val: 0.8200, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0785, Loss: 0.8037 Train: 0.9714, Val: 0.8200, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0786, Loss: 0.9263 Train: 0.9714, Val: 0.8240, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0787, Loss: 0.7517 Train: 0.9714, Val: 0.8260, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0788, Loss: 0.8048 Train: 0.9714, Val: 0.8180, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0789, Loss: 0.8255 Train: 0.9714, Val: 0.8140, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0790, Loss: 0.8268 Train: 0.9714, Val: 0.8100, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0791, Loss: 0.7975 Train: 0.9714, Val: 0.8200, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0792, Loss: 0.8309 Train: 0.9714, Val: 0.8220, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0793, Loss: 0.7877 Train: 0.9714, Val: 0.8140, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0794, Loss: 0.8399 Train: 0.9714, Val: 0.8240, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0795, Loss: 0.6668 Train: 0.9714, Val: 0.8200, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0796, Loss: 0.6957 Train: 0.9857, Val: 0.8160, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0797, Loss: 0.7469 Train: 0.9857, Val: 0.8140, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0798, Loss: 0.7874 Train: 0.9857, Val: 0.8200, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0799, Loss: 0.8129 Train: 0.9857, Val: 0.8240, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0800, Loss: 0.7762 Train: 0.9786, Val: 0.8280, Test: 0.8630, Final Test: 0.8460\n", | |
"Epoch: 0801, Loss: 0.8856 Train: 0.9786, Val: 0.8300, Test: 0.8640, Final Test: 0.8460\n", | |
"Epoch: 0802, Loss: 0.6339 Train: 0.9786, Val: 0.8280, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0803, Loss: 0.6870 Train: 0.9714, Val: 0.8280, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0804, Loss: 0.7882 Train: 0.9714, Val: 0.8280, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0805, Loss: 0.7408 Train: 0.9714, Val: 0.8280, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0806, Loss: 0.8111 Train: 0.9786, Val: 0.8260, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0807, Loss: 0.8000 Train: 0.9786, Val: 0.8180, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0808, Loss: 0.7497 Train: 0.9786, Val: 0.8220, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0809, Loss: 0.7907 Train: 0.9786, Val: 0.8220, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0810, Loss: 0.7618 Train: 0.9786, Val: 0.8240, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0811, Loss: 0.7426 Train: 0.9786, Val: 0.8240, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0812, Loss: 0.7620 Train: 0.9786, Val: 0.8180, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0813, Loss: 0.7728 Train: 0.9786, Val: 0.8200, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0814, Loss: 0.8457 Train: 0.9786, Val: 0.8160, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0815, Loss: 0.7933 Train: 0.9786, Val: 0.8160, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0816, Loss: 0.7356 Train: 0.9786, Val: 0.8180, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0817, Loss: 0.7269 Train: 0.9786, Val: 0.8180, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0818, Loss: 0.9172 Train: 0.9786, Val: 0.8180, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0819, Loss: 0.7765 Train: 0.9786, Val: 0.8180, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0820, Loss: 0.8859 Train: 0.9786, Val: 0.8260, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0821, Loss: 0.7400 Train: 0.9786, Val: 0.8280, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0822, Loss: 0.7770 Train: 0.9786, Val: 0.8260, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0823, Loss: 0.7471 Train: 0.9786, Val: 0.8360, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0824, Loss: 0.7852 Train: 0.9714, Val: 0.8280, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0825, Loss: 0.7256 Train: 0.9714, Val: 0.8340, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0826, Loss: 0.7622 Train: 0.9714, Val: 0.8340, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0827, Loss: 0.7843 Train: 0.9714, Val: 0.8320, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0828, Loss: 0.7462 Train: 0.9786, Val: 0.8280, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0829, Loss: 0.7657 Train: 0.9786, Val: 0.8280, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0830, Loss: 0.7290 Train: 0.9786, Val: 0.8240, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0831, Loss: 0.8552 Train: 0.9786, Val: 0.8220, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0832, Loss: 0.7643 Train: 0.9786, Val: 0.8220, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0833, Loss: 0.7566 Train: 0.9786, Val: 0.8180, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0834, Loss: 0.7718 Train: 0.9786, Val: 0.8200, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0835, Loss: 0.7800 Train: 0.9786, Val: 0.8200, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0836, Loss: 0.7224 Train: 0.9786, Val: 0.8280, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0837, Loss: 0.8878 Train: 0.9714, Val: 0.8240, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0838, Loss: 0.7512 Train: 0.9714, Val: 0.8280, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0839, Loss: 0.7812 Train: 0.9714, Val: 0.8260, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0840, Loss: 0.8135 Train: 0.9714, Val: 0.8260, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0841, Loss: 0.8537 Train: 0.9714, Val: 0.8280, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0842, Loss: 0.8084 Train: 0.9714, Val: 0.8260, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0843, Loss: 0.7341 Train: 0.9714, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0844, Loss: 0.7216 Train: 0.9714, Val: 0.8240, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0845, Loss: 0.8142 Train: 0.9714, Val: 0.8260, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0846, Loss: 0.7430 Train: 0.9714, Val: 0.8300, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0847, Loss: 0.9429 Train: 0.9714, Val: 0.8280, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0848, Loss: 0.8023 Train: 0.9714, Val: 0.8280, Test: 0.8530, Final Test: 0.8460\n", | |
"Epoch: 0849, Loss: 0.7681 Train: 0.9714, Val: 0.8260, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0850, Loss: 0.7976 Train: 0.9714, Val: 0.8240, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0851, Loss: 0.8061 Train: 0.9714, Val: 0.8280, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0852, Loss: 0.7416 Train: 0.9714, Val: 0.8260, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0853, Loss: 0.7646 Train: 0.9714, Val: 0.8340, Test: 0.8540, Final Test: 0.8460\n", | |
"Epoch: 0854, Loss: 0.7490 Train: 0.9714, Val: 0.8320, Test: 0.8550, Final Test: 0.8460\n", | |
"Epoch: 0855, Loss: 0.7934 Train: 0.9714, Val: 0.8320, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0856, Loss: 0.8532 Train: 0.9714, Val: 0.8280, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0857, Loss: 0.7620 Train: 0.9714, Val: 0.8320, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0858, Loss: 0.7481 Train: 0.9714, Val: 0.8340, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0859, Loss: 0.9292 Train: 0.9714, Val: 0.8300, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0860, Loss: 0.7924 Train: 0.9714, Val: 0.8320, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0861, Loss: 0.6909 Train: 0.9714, Val: 0.8320, Test: 0.8460, Final Test: 0.8460\n", | |
"Epoch: 0862, Loss: 0.7772 Train: 0.9714, Val: 0.8320, Test: 0.8450, Final Test: 0.8460\n", | |
"Epoch: 0863, Loss: 0.6778 Train: 0.9714, Val: 0.8320, Test: 0.8440, Final Test: 0.8460\n", | |
"Epoch: 0864, Loss: 0.7570 Train: 0.9714, Val: 0.8320, Test: 0.8470, Final Test: 0.8460\n", | |
"Epoch: 0865, Loss: 0.7621 Train: 0.9714, Val: 0.8360, Test: 0.8480, Final Test: 0.8460\n", | |
"Epoch: 0866, Loss: 0.7644 Train: 0.9714, Val: 0.8340, Test: 0.8500, Final Test: 0.8460\n", | |
"Epoch: 0867, Loss: 0.7585 Train: 0.9714, Val: 0.8340, Test: 0.8520, Final Test: 0.8460\n", | |
"Epoch: 0868, Loss: 0.7721 Train: 0.9714, Val: 0.8300, Test: 0.8510, Final Test: 0.8460\n", | |
"Epoch: 0869, Loss: 0.7174 Train: 0.9714, Val: 0.8300, Test: 0.8560, Final Test: 0.8460\n", | |
"Epoch: 0870, Loss: 0.7429 Train: 0.9714, Val: 0.8300, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0871, Loss: 0.7807 Train: 0.9714, Val: 0.8260, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0872, Loss: 0.6733 Train: 0.9714, Val: 0.8280, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0873, Loss: 0.7525 Train: 0.9714, Val: 0.8260, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0874, Loss: 0.7787 Train: 0.9714, Val: 0.8240, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0875, Loss: 0.6832 Train: 0.9714, Val: 0.8280, Test: 0.8620, Final Test: 0.8460\n", | |
"Epoch: 0876, Loss: 0.7952 Train: 0.9714, Val: 0.8280, Test: 0.8630, Final Test: 0.8460\n", | |
"Epoch: 0877, Loss: 0.6858 Train: 0.9714, Val: 0.8260, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0878, Loss: 0.6546 Train: 0.9714, Val: 0.8240, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0879, Loss: 0.7435 Train: 0.9714, Val: 0.8260, Test: 0.8610, Final Test: 0.8460\n", | |
"Epoch: 0880, Loss: 0.7055 Train: 0.9786, Val: 0.8280, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0881, Loss: 0.7264 Train: 0.9857, Val: 0.8300, Test: 0.8600, Final Test: 0.8460\n", | |
"Epoch: 0882, Loss: 0.7906 Train: 0.9857, Val: 0.8260, Test: 0.8570, Final Test: 0.8460\n", | |
"Epoch: 0883, Loss: 0.9476 Train: 0.9857, Val: 0.8280, Test: 0.8580, Final Test: 0.8460\n", | |
"Epoch: 0884, Loss: 1.3359 Train: 0.9857, Val: 0.8320, Test: 0.8590, Final Test: 0.8460\n", | |
"Epoch: 0885, Loss: 0.7516 Train: 0.9786, Val: 0.8340, Test: 0.8630, Final Test: 0.8460\n", | |
"Epoch: 0886, Loss: 0.7547 Train: 0.9786, Val: 0.8400, Test: 0.8610, Final Test: 0.8610\n", | |
"Epoch: 0887, Loss: 0.8893 Train: 0.9786, Val: 0.8420, Test: 0.8610, Final Test: 0.8610\n", | |
"Epoch: 0888, Loss: 0.8257 Train: 0.9786, Val: 0.8320, Test: 0.8600, Final Test: 0.8610\n", | |
"Epoch: 0889, Loss: 0.7234 Train: 0.9786, Val: 0.8320, Test: 0.8610, Final Test: 0.8610\n", | |
"Epoch: 0890, Loss: 0.7820 Train: 0.9786, Val: 0.8280, Test: 0.8600, Final Test: 0.8610\n", | |
"Epoch: 0891, Loss: 0.7591 Train: 0.9786, Val: 0.8280, Test: 0.8580, Final Test: 0.8610\n", | |
"Epoch: 0892, Loss: 0.8116 Train: 0.9786, Val: 0.8280, Test: 0.8550, Final Test: 0.8610\n", | |
"Epoch: 0893, Loss: 0.7138 Train: 0.9786, Val: 0.8260, Test: 0.8550, Final Test: 0.8610\n", | |
"Epoch: 0894, Loss: 0.7296 Train: 0.9786, Val: 0.8280, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0895, Loss: 0.7800 Train: 0.9786, Val: 0.8280, Test: 0.8540, Final Test: 0.8610\n", | |
"Epoch: 0896, Loss: 0.7616 Train: 0.9786, Val: 0.8280, Test: 0.8540, Final Test: 0.8610\n", | |
"Epoch: 0897, Loss: 0.7564 Train: 0.9786, Val: 0.8300, Test: 0.8550, Final Test: 0.8610\n", | |
"Epoch: 0898, Loss: 0.7910 Train: 0.9786, Val: 0.8300, Test: 0.8570, Final Test: 0.8610\n", | |
"Epoch: 0899, Loss: 0.7664 Train: 0.9786, Val: 0.8320, Test: 0.8580, Final Test: 0.8610\n", | |
"Epoch: 0900, Loss: 0.8204 Train: 0.9786, Val: 0.8340, Test: 0.8620, Final Test: 0.8610\n", | |
"Epoch: 0901, Loss: 0.6911 Train: 0.9786, Val: 0.8340, Test: 0.8600, Final Test: 0.8610\n", | |
"Epoch: 0902, Loss: 0.7677 Train: 0.9786, Val: 0.8320, Test: 0.8590, Final Test: 0.8610\n", | |
"Epoch: 0903, Loss: 0.7609 Train: 0.9786, Val: 0.8260, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0904, Loss: 0.6986 Train: 0.9786, Val: 0.8300, Test: 0.8570, Final Test: 0.8610\n", | |
"Epoch: 0905, Loss: 0.8179 Train: 0.9786, Val: 0.8220, Test: 0.8580, Final Test: 0.8610\n", | |
"Epoch: 0906, Loss: 0.7210 Train: 0.9786, Val: 0.8280, Test: 0.8580, Final Test: 0.8610\n", | |
"Epoch: 0907, Loss: 0.7987 Train: 0.9786, Val: 0.8280, Test: 0.8600, Final Test: 0.8610\n", | |
"Epoch: 0908, Loss: 0.8916 Train: 0.9786, Val: 0.8240, Test: 0.8610, Final Test: 0.8610\n", | |
"Epoch: 0909, Loss: 0.7364 Train: 0.9786, Val: 0.8280, Test: 0.8590, Final Test: 0.8610\n", | |
"Epoch: 0910, Loss: 0.7862 Train: 0.9786, Val: 0.8280, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0911, Loss: 0.7608 Train: 0.9786, Val: 0.8300, Test: 0.8570, Final Test: 0.8610\n", | |
"Epoch: 0912, Loss: 0.7472 Train: 0.9786, Val: 0.8240, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0913, Loss: 0.7003 Train: 0.9786, Val: 0.8260, Test: 0.8580, Final Test: 0.8610\n", | |
"Epoch: 0914, Loss: 0.7020 Train: 0.9786, Val: 0.8260, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0915, Loss: 0.8001 Train: 0.9786, Val: 0.8240, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0916, Loss: 0.7462 Train: 0.9786, Val: 0.8180, Test: 0.8540, Final Test: 0.8610\n", | |
"Epoch: 0917, Loss: 0.9884 Train: 0.9786, Val: 0.8220, Test: 0.8530, Final Test: 0.8610\n", | |
"Epoch: 0918, Loss: 0.7307 Train: 0.9786, Val: 0.8220, Test: 0.8510, Final Test: 0.8610\n", | |
"Epoch: 0919, Loss: 0.7638 Train: 0.9786, Val: 0.8180, Test: 0.8550, Final Test: 0.8610\n", | |
"Epoch: 0920, Loss: 0.7534 Train: 0.9786, Val: 0.8140, Test: 0.8570, Final Test: 0.8610\n", | |
"Epoch: 0921, Loss: 0.7497 Train: 0.9786, Val: 0.8220, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0922, Loss: 0.8384 Train: 0.9786, Val: 0.8240, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0923, Loss: 0.8422 Train: 0.9786, Val: 0.8260, Test: 0.8490, Final Test: 0.8610\n", | |
"Epoch: 0924, Loss: 0.7389 Train: 0.9714, Val: 0.8220, Test: 0.8440, Final Test: 0.8610\n", | |
"Epoch: 0925, Loss: 0.7256 Train: 0.9714, Val: 0.8220, Test: 0.8400, Final Test: 0.8610\n", | |
"Epoch: 0926, Loss: 0.7992 Train: 0.9786, Val: 0.8220, Test: 0.8400, Final Test: 0.8610\n", | |
"Epoch: 0927, Loss: 0.8505 Train: 0.9786, Val: 0.8220, Test: 0.8410, Final Test: 0.8610\n", | |
"Epoch: 0928, Loss: 0.8296 Train: 0.9786, Val: 0.8220, Test: 0.8440, Final Test: 0.8610\n", | |
"Epoch: 0929, Loss: 0.8660 Train: 0.9786, Val: 0.8260, Test: 0.8480, Final Test: 0.8610\n", | |
"Epoch: 0930, Loss: 0.6306 Train: 0.9786, Val: 0.8280, Test: 0.8510, Final Test: 0.8610\n", | |
"Epoch: 0931, Loss: 0.7496 Train: 0.9786, Val: 0.8220, Test: 0.8540, Final Test: 0.8610\n", | |
"Epoch: 0932, Loss: 0.8062 Train: 0.9786, Val: 0.8220, Test: 0.8550, Final Test: 0.8610\n", | |
"Epoch: 0933, Loss: 0.7259 Train: 0.9786, Val: 0.8240, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0934, Loss: 0.8215 Train: 0.9857, Val: 0.8220, Test: 0.8570, Final Test: 0.8610\n", | |
"Epoch: 0935, Loss: 0.7315 Train: 0.9857, Val: 0.8180, Test: 0.8590, Final Test: 0.8610\n", | |
"Epoch: 0936, Loss: 0.7760 Train: 0.9857, Val: 0.8180, Test: 0.8570, Final Test: 0.8610\n", | |
"Epoch: 0937, Loss: 0.7674 Train: 0.9857, Val: 0.8220, Test: 0.8610, Final Test: 0.8610\n", | |
"Epoch: 0938, Loss: 0.7856 Train: 0.9857, Val: 0.8280, Test: 0.8590, Final Test: 0.8610\n", | |
"Epoch: 0939, Loss: 0.7508 Train: 0.9857, Val: 0.8280, Test: 0.8580, Final Test: 0.8610\n", | |
"Epoch: 0940, Loss: 0.7365 Train: 0.9857, Val: 0.8240, Test: 0.8600, Final Test: 0.8610\n", | |
"Epoch: 0941, Loss: 0.8835 Train: 0.9857, Val: 0.8260, Test: 0.8620, Final Test: 0.8610\n", | |
"Epoch: 0942, Loss: 0.8380 Train: 0.9857, Val: 0.8260, Test: 0.8610, Final Test: 0.8610\n", | |
"Epoch: 0943, Loss: 0.9064 Train: 0.9857, Val: 0.8260, Test: 0.8600, Final Test: 0.8610\n", | |
"Epoch: 0944, Loss: 0.7587 Train: 0.9857, Val: 0.8260, Test: 0.8600, Final Test: 0.8610\n", | |
"Epoch: 0945, Loss: 0.8160 Train: 0.9857, Val: 0.8260, Test: 0.8570, Final Test: 0.8610\n", | |
"Epoch: 0946, Loss: 0.8342 Train: 0.9857, Val: 0.8220, Test: 0.8550, Final Test: 0.8610\n", | |
"Epoch: 0947, Loss: 0.7998 Train: 0.9857, Val: 0.8240, Test: 0.8540, Final Test: 0.8610\n", | |
"Epoch: 0948, Loss: 0.7898 Train: 0.9857, Val: 0.8260, Test: 0.8510, Final Test: 0.8610\n", | |
"Epoch: 0949, Loss: 0.8209 Train: 0.9786, Val: 0.8280, Test: 0.8480, Final Test: 0.8610\n", | |
"Epoch: 0950, Loss: 0.7304 Train: 0.9786, Val: 0.8320, Test: 0.8490, Final Test: 0.8610\n", | |
"Epoch: 0951, Loss: 0.7146 Train: 0.9786, Val: 0.8340, Test: 0.8500, Final Test: 0.8610\n", | |
"Epoch: 0952, Loss: 0.7516 Train: 0.9786, Val: 0.8340, Test: 0.8490, Final Test: 0.8610\n", | |
"Epoch: 0953, Loss: 0.7577 Train: 0.9786, Val: 0.8320, Test: 0.8490, Final Test: 0.8610\n", | |
"Epoch: 0954, Loss: 0.7249 Train: 0.9786, Val: 0.8320, Test: 0.8510, Final Test: 0.8610\n", | |
"Epoch: 0955, Loss: 0.8455 Train: 0.9786, Val: 0.8380, Test: 0.8510, Final Test: 0.8610\n", | |
"Epoch: 0956, Loss: 0.8390 Train: 0.9786, Val: 0.8380, Test: 0.8550, Final Test: 0.8610\n", | |
"Epoch: 0957, Loss: 0.7508 Train: 0.9786, Val: 0.8380, Test: 0.8580, Final Test: 0.8610\n", | |
"Epoch: 0958, Loss: 0.7328 Train: 0.9786, Val: 0.8400, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0959, Loss: 0.7524 Train: 0.9786, Val: 0.8360, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0960, Loss: 0.9062 Train: 0.9857, Val: 0.8320, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0961, Loss: 0.8332 Train: 0.9786, Val: 0.8280, Test: 0.8540, Final Test: 0.8610\n", | |
"Epoch: 0962, Loss: 0.7729 Train: 0.9786, Val: 0.8220, Test: 0.8530, Final Test: 0.8610\n", | |
"Epoch: 0963, Loss: 0.7170 Train: 0.9786, Val: 0.8240, Test: 0.8520, Final Test: 0.8610\n", | |
"Epoch: 0964, Loss: 0.7140 Train: 0.9786, Val: 0.8220, Test: 0.8500, Final Test: 0.8610\n", | |
"Epoch: 0965, Loss: 0.8222 Train: 0.9786, Val: 0.8240, Test: 0.8520, Final Test: 0.8610\n", | |
"Epoch: 0966, Loss: 0.7765 Train: 0.9714, Val: 0.8180, Test: 0.8540, Final Test: 0.8610\n", | |
"Epoch: 0967, Loss: 0.7350 Train: 0.9714, Val: 0.8200, Test: 0.8530, Final Test: 0.8610\n", | |
"Epoch: 0968, Loss: 0.7587 Train: 0.9714, Val: 0.8200, Test: 0.8540, Final Test: 0.8610\n", | |
"Epoch: 0969, Loss: 0.7366 Train: 0.9714, Val: 0.8140, Test: 0.8550, Final Test: 0.8610\n", | |
"Epoch: 0970, Loss: 0.7815 Train: 0.9714, Val: 0.8160, Test: 0.8530, Final Test: 0.8610\n", | |
"Epoch: 0971, Loss: 0.7004 Train: 0.9786, Val: 0.8180, Test: 0.8530, Final Test: 0.8610\n", | |
"Epoch: 0972, Loss: 0.7962 Train: 0.9786, Val: 0.8160, Test: 0.8530, Final Test: 0.8610\n", | |
"Epoch: 0973, Loss: 0.7910 Train: 0.9786, Val: 0.8140, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0974, Loss: 0.7041 Train: 0.9786, Val: 0.8120, Test: 0.8550, Final Test: 0.8610\n", | |
"Epoch: 0975, Loss: 0.7209 Train: 0.9786, Val: 0.8200, Test: 0.8580, Final Test: 0.8610\n", | |
"Epoch: 0976, Loss: 0.6438 Train: 0.9786, Val: 0.8240, Test: 0.8610, Final Test: 0.8610\n", | |
"Epoch: 0977, Loss: 0.7732 Train: 0.9786, Val: 0.8240, Test: 0.8610, Final Test: 0.8610\n", | |
"Epoch: 0978, Loss: 0.7421 Train: 0.9786, Val: 0.8320, Test: 0.8620, Final Test: 0.8610\n", | |
"Epoch: 0979, Loss: 0.7616 Train: 0.9786, Val: 0.8320, Test: 0.8580, Final Test: 0.8610\n", | |
"Epoch: 0980, Loss: 0.7865 Train: 0.9786, Val: 0.8260, Test: 0.8530, Final Test: 0.8610\n", | |
"Epoch: 0981, Loss: 0.7989 Train: 0.9786, Val: 0.8280, Test: 0.8460, Final Test: 0.8610\n", | |
"Epoch: 0982, Loss: 0.7485 Train: 0.9786, Val: 0.8260, Test: 0.8430, Final Test: 0.8610\n", | |
"Epoch: 0983, Loss: 0.7651 Train: 0.9857, Val: 0.8280, Test: 0.8460, Final Test: 0.8610\n", | |
"Epoch: 0984, Loss: 0.7157 Train: 0.9857, Val: 0.8280, Test: 0.8470, Final Test: 0.8610\n", | |
"Epoch: 0985, Loss: 0.7292 Train: 0.9857, Val: 0.8240, Test: 0.8490, Final Test: 0.8610\n", | |
"Epoch: 0986, Loss: 0.7714 Train: 0.9857, Val: 0.8260, Test: 0.8530, Final Test: 0.8610\n", | |
"Epoch: 0987, Loss: 0.7175 Train: 0.9857, Val: 0.8220, Test: 0.8560, Final Test: 0.8610\n", | |
"Epoch: 0988, Loss: 0.7104 Train: 0.9857, Val: 0.8160, Test: 0.8600, Final Test: 0.8610\n", | |
"Epoch: 0989, Loss: 0.8381 Train: 0.9857, Val: 0.8180, Test: 0.8590, Final Test: 0.8610\n", | |
"Epoch: 0990, Loss: 0.7424 Train: 0.9857, Val: 0.8180, Test: 0.8590, Final Test: 0.8610\n", | |
"Epoch: 0991, Loss: 0.7286 Train: 0.9857, Val: 0.8220, Test: 0.8600, Final Test: 0.8610\n", | |
"Epoch: 0992, Loss: 0.6973 Train: 0.9857, Val: 0.8200, Test: 0.8600, Final Test: 0.8610\n", | |
"Epoch: 0993, Loss: 0.8375 Train: 0.9857, Val: 0.8280, Test: 0.8610, Final Test: 0.8610\n", | |
"Epoch: 0994, Loss: 0.7316 Train: 0.9786, Val: 0.8260, Test: 0.8610, Final Test: 0.8610\n", | |
"Epoch: 0995, Loss: 0.7491 Train: 0.9786, Val: 0.8240, Test: 0.8630, Final Test: 0.8610\n", | |
"Epoch: 0996, Loss: 0.7430 Train: 0.9714, Val: 0.8200, Test: 0.8620, Final Test: 0.8610\n", | |
"Epoch: 0997, Loss: 0.7419 Train: 0.9714, Val: 0.8200, Test: 0.8630, Final Test: 0.8610\n", | |
"Epoch: 0998, Loss: 0.7173 Train: 0.9714, Val: 0.8220, Test: 0.8620, Final Test: 0.8610\n", | |
"Epoch: 0999, Loss: 0.8858 Train: 0.9714, Val: 0.8220, Test: 0.8630, Final Test: 0.8610\n", | |
"Epoch: 1000, Loss: 0.7241 Train: 0.9714, Val: 0.8240, Test: 0.8570, Final Test: 0.8610\n", | |
"CPU times: user 1min 16s, sys: 761 ms, total: 1min 17s\n", | |
"Wall time: 1min 18s\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"" | |
], | |
"metadata": { | |
"id": "kguVinK_TEUn" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment