Address
Address Area
Address Building
Address City
Address Country
Address
Address Area
Address Building
Address City
Address Country
import streamlit as st | |
import cv2 | |
vid = cv2.VideoCapture( 'http://<network_ip_Address>:8080/video' ) | |
st.title( 'Using Mobile Camera with Streamlit' ) | |
frame_window = st.image( [] ) | |
take_picture_button = st.button( 'Take Picture' ) | |
while True: |
import streamlit as st | |
import cv2 | |
import numpy as np | |
import requests | |
st.title( 'Mobile Camera Preview in Streamlit' ) | |
frame_window = st.image( [] ) | |
take_picture_button = st.button( 'Take Picture' ) | |
while True: |
while True: | |
# Request the image from the server | |
response = requests.get(url="http://<network_ip_address>:<port>/photo.jpg") | |
imgNp = np.array(bytearray(response.content), dtype=np.uint8) | |
frame = cv2.imdecode(imgNp, cv2.IMREAD_UNCHANGED ) | |
# As OpenCV decodes images in BGR format, we'd convert it to the RGB format | |
frame = cv2.cvtColor( frame , cv2.COLOR_BGR2RGB ) | |
frame_window.image(frame) |
import streamlit as st | |
import cv2 | |
import numpy as np | |
import requests | |
# Title of the app | |
st.title( 'Mobile Camera Preview in Streamlit' ) | |
# An empty image container that will hold the frames we'll fetch from the server | |
frame_window = st.image( [] ) |
import random | |
a = 0 | |
b = 1 | |
N = 1000 | |
def f( x ): | |
return 2 * x**5 | |
def uniform(): |
// ML Model to detect the age of a person, hosted on Heroku | |
class AgeDetectionModel { | |
private val herokuModelPredictURL = "https://age-detection-tf-app.herokuapp.com/predict" | |
private val mediaType = "application/json".toMediaType() | |
private val okHttpClient = OkHttpClient() | |
interface PredictionCallback { | |
fun onResult( age : Int ) | |
fun onError( error : String ) |
// Detect faces in the given image and crop them. | |
// Pass the cropped faces to the AgeDetectionModel | |
private fun detectFaces(image: Bitmap) { | |
val inputImage = InputImage.fromBitmap(image, 0) | |
firebaseFaceDetector.process(inputImage) | |
.addOnSuccessListener { faces -> | |
if ( faces.size != 0 ) { | |
progressDialog.apply { | |
dismiss() | |
setMessage( "📍 Posting to server ...") |