Created
September 2, 2021 08:13
-
-
Save sigmaroles/bea20c06c4636bbaab3fd5df449064a8 to your computer and use it in GitHub Desktop.
Anderson_EZ_diffusion_
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "Anderson_EZ_diffusion_", | |
"provenance": [], | |
"collapsed_sections": [], | |
"authorship_tag": "ABX9TyOqrD1OVRO7ibluVFmPnJAS", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/sigmaroles/bea20c06c4636bbaab3fd5df449064a8/anderson_ez_diffusion_.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "1ETyY7UaW5Vy" | |
}, | |
"source": [ | |
"import numpy as np" | |
], | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "Kzy0AuHUW8Y2" | |
}, | |
"source": [ | |
"**Given the percent correct and variance in RT, fit the EZ diffusion model** <br>\n", | |
"(Britt Anderson book, page 134)\n", | |
"\n", | |
"parameters: <br>\n", | |
"pc : proportion correct <br>\n", | |
"vrt : variance in RT\n", | |
"\n", | |
"return values: <br>\n", | |
"v : drift rate <br>\n", | |
"a : the separation of our two decision boundaries from the starting point" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "QbUYBA63XCRV" | |
}, | |
"source": [ | |
"def logit(pc):\n", | |
" return np.log((pc/(1-pc)))" | |
], | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "is-vvH-QXq11", | |
"outputId": "826457a7-ea76-4543-b1c7-26edfc53de6d" | |
}, | |
"source": [ | |
"logit(0.5)" | |
], | |
"execution_count": 23, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"0.0" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 23 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "YM4GNLmpXsCX" | |
}, | |
"source": [ | |
"def fit_EZ_parameters(pc, vrt, s=0.1):\n", | |
" # first term\n", | |
" # sign function: https://numpy.org/doc/stable/reference/generated/numpy.sign.html\n", | |
" t1 = np.sign(pc-0.5) * s\n", | |
" # second term\n", | |
" t2_num = logit(pc) * (pc**2 * logit(pc) - pc*logit(pc) + pc - 0.5)\n", | |
" t2 = (t2_num/vrt)**0.25\n", | |
" # calculate the drift rate\n", | |
" v = t1*t2\n", | |
" # using drift rate, calculate separation\n", | |
" a = ((s**2) * logit(pc)) / v\n", | |
" # done. return results\n", | |
" return v,a" | |
], | |
"execution_count": 19, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "istmZypMYaSI", | |
"outputId": "4e113258-40ad-4c82-c7dd-ec097e77f819" | |
}, | |
"source": [ | |
"v1, a1 = fit_EZ_parameters(0.8, 5.83)\n", | |
"v1, a1" | |
], | |
"execution_count": 20, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(0.03692653509562729, 0.37541956144270117)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 20 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "A_YKwnjSgGZd", | |
"outputId": "f37ebfee-e5f8-4aff-8dbd-f2209fd25ade" | |
}, | |
"source": [ | |
"v2, a2 = fit_EZ_parameters(0.6, 10.1)\n", | |
"v2, a2" | |
], | |
"execution_count": 21, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"(0.010192493712627454, 0.39780756264370776)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 21 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "TeKC7klKhGH8" | |
}, | |
"source": [ | |
"" | |
], | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment