Skip to content

Instantly share code, notes, and snippets.

View simon-mo's full-sized avatar
:shipit:

Simon Mo simon-mo

:shipit:
View GitHub Profile
@simon-mo
simon-mo / 0.7.3-Release-Note.md
Last active July 31, 2019 18:12
Release note draft

Ray 0.7.3 Release Note

Highlights

  • RLlib ModelV2 API is ready to use. It improves support for Keras and RNN models, as well as allowing object-oriented reuse of variables. ModelV1 API is deprecated. No migration is needed.

  • ray.experimental.sgd.pytorch.PyTorchTrainer is ready for early adopters. Checkout the doc here and we welcome your feedback!

model_creator = lambda config: YourPyTorchModel()
data_creator = lambda config: YourTrainingSet(), YourValidationSet()
@app.route('/imageclassifier/predict/', methods=['POST'])
def image_classifier():
# Decoding and pre-processing base64 image
img = image.img_to_array(
image.load_img(
# Request from base 64!
BytesIO(base64.b64decode(request.form['b64'])),
# Need to resize it and normalize to 0-1
target_size=(224, 224))) / 255.
# Type casting!

ModelZoo

Python package to query ModelZoo.Live

API

For more specific API details, please check out the docs within the files.

Examples

Initialization

# Connects to a ModelZoo instance running at http://modelzoo.url/
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

modelzoo

service ModelzooService (services.proto)
Method Request Type Response Type Description
Inference Payload Payload Inference
GetImage ImageDownloadRequest ImageDownloadResponse Website utils
GetMetrics Empty MetricItems
This file has been truncated, but you can view the full file.
Fatbin elf code:
================
arch = sm_30
code version = [1,7]
producer = cuda
host = linux
compile_size = 64bit
compressed
@simon-mo
simon-mo / cudnn7.global.kernel
Last active August 15, 2022 02:01
All cuDNN compute kernels
STT_FUNC STB_GLOBAL STO_ENTRY cudnn_maxwell_gcgemm_32x32_cc
STT_FUNC STB_GLOBAL STO_ENTRY cudnn_maxwell_gcgemm_32x32_cc_batched
STT_FUNC STB_GLOBAL STO_ENTRY cudnn_maxwell_gcgemm_32x32_cn
STT_FUNC STB_GLOBAL STO_ENTRY cudnn_maxwell_gcgemm_32x32_cn_batched
STT_FUNC STB_GLOBAL STO_ENTRY cudnn_maxwell_gcgemm_32x32_ct
STT_FUNC STB_GLOBAL STO_ENTRY cudnn_maxwell_gcgemm_32x32_ct_batched
STT_FUNC STB_GLOBAL STO_ENTRY cudnn_maxwell_gcgemm_32x32_lower_cn
STT_FUNC STB_GLOBAL STO_ENTRY cudnn_maxwell_gcgemm_32x32_lower_cn_batched
STT_FUNC STB_GLOBAL STO_ENTRY cudnn_maxwell_gcgemm_32x32_lower_nc
STT_FUNC STB_GLOBAL STO_ENTRY cudnn_maxwell_gcgemm_32x32_lower_nc_batched
import logging
from collections import namedtuple
from enum import Enum
from metis.common import init_log
init_log()
resource_info = namedtuple("ResourceInfo", "node, cores, id")

Deployment notes:

  • Dev container: any regular ubuntu container should do but requires (1) docker socket (2) host network
set -x

docker run -d \
       --name mantis-dev \
       --network=host \
 -v /var/run/docker.sock:/var/run/docker.sock \
client server sent_bts rcvd_bts
r4.millennium.berkeley.edu r4.millennium.berkeley.edu 17433800000.0 17433800000.0
r4.millennium.berkeley.edu r6.millennium.berkeley.edu 940432000.0 937859000.0
r4.millennium.berkeley.edu r8.millennium.berkeley.edu 938764000.0 936398000.0
r4.millennium.berkeley.edu r10.millennium.berkeley.edu 940010000.0 937501000.0
r6.millennium.berkeley.edu r4.millennium.berkeley.edu 940074000.0 937273000.0
r6.millennium.berkeley.edu r6.millennium.berkeley.edu 17340800000.0 17340800000.0
r6.millennium.berkeley.edu r8.millennium.berkeley.edu 940107000.0 937258000.0
r6.millennium.berkeley.edu r10.millennium.berkeley.edu 940214000.0 937265000.0
r8.millennium.berkeley.edu r4.millennium.berkeley.edu 939848000.0 937092000.0