-
-
Save simrit1/43cc2b4710077a4172fc7ccc6e3faeed to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.8.5" | |
}, | |
"orig_nbformat": 2, | |
"kernelspec": { | |
"name": "ml", | |
"display_name": "ML", | |
"language": "python" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2, | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"Epoch 0: 100%|██████████| 12500/12500 [1:29:47<00:00, 2.32it/s, loss=0.358]\n", | |
"Epoch 1: 100%|██████████| 12500/12500 [1:22:20<00:00, 2.53it/s, loss=0.31]\n" | |
] | |
} | |
], | |
"source": [ | |
"epochs = 2\n", | |
"\n", | |
"for epoch in range(epochs):\n", | |
" # setup loop with TQDM and dataloader\n", | |
" loop = tqdm(loader, leave=True)\n", | |
" for batch in loop:\n", | |
" # initialize calculated gradients (from prev step)\n", | |
" optim.zero_grad()\n", | |
" # pull all tensor batches required for training\n", | |
" input_ids = batch['input_ids'].to(device)\n", | |
" attention_mask = batch['attention_mask'].to(device)\n", | |
" labels = batch['labels'].to(device)\n", | |
" # process\n", | |
" outputs = model(input_ids, attention_mask=attention_mask,\n", | |
" labels=labels)\n", | |
" # extract loss\n", | |
" loss = outputs.loss\n", | |
" # calculate loss for every parameter that needs grad update\n", | |
" loss.backward()\n", | |
" # update parameters\n", | |
" optim.step()\n", | |
" # print relevant info to progress bar\n", | |
" loop.set_description(f'Epoch {epoch}')\n", | |
" loop.set_postfix(loss=loss.item())" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"model.save_pretrained('./filiberto') # and don't forget to save filiBERTo!" | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment