Created
July 30, 2019 15:19
-
-
Save sirex/5074304e13310563d12fe698bba34d46 to your computer and use it in GitHub Desktop.
Registrų centro nekilnojamojo turto atvirų duomenų apžvalga
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Registrų centras atveria duomenis\n", | |
"\n", | |
"[2019-07-30 Registrtų centras atvėrė primuosius duomenų rinkinius](https://www.registrucentras.lt/naujienos/index.php?mod=news&act=view&id=41765).\n", | |
"\n", | |
"Nursprendžiau peržiūrėti kokius duomenis registrų centras atvėrė. Atvirų duomenų katalogą galima rasti čia:\n", | |
"\n", | |
"https://www.registrucentras.lt/atviri_duomenys/\n", | |
"\n", | |
"Kol kas kataloge yra tik Nekilnojamojo turto įregistruoti objektai. Kartu su duomenimis pateikiama duomenų apžvalga ir statistika, tačiau mane labiausiai domina pirminiai „žali duomenys“. Turėdamas žalius duomenis visas mane dominančias statistikas galėsiu susiskaičiuoti pats. Pirminių duomenų skyriuje galima rasti duomenis apie žemės sklypus ir pastatus. Bandau žiūrėti į pastatų duomenis:\n", | |
"\n", | |
"https://www.registrucentras.lt/p/1091\n", | |
"\n", | |
"Deja nėra galimybės atsisiųsti visų duomenų vienu kartu, duomenys suskaidyti į atskirus failus, pagal savivaldybes. Iš esmės skaidymas nėra labai blogas dalykas, su sąlyga, jei yra pateiktas atskiras savivaldybių sąrašas iš kurio galėčiau susigeneruoti nuorodas į visus kitus duomenų failus, bet to nėra.\n", | |
"\n", | |
"Registrų centras kviečia visas problemas pranešti el. paštu [email protected], tačiau man labiau patinka atviras bendravimas, todėl visas problemas pirmiausiai registruosiu į atvirų duomenų bendruomenės užduočių sąrašą, o tada parašysiu laišką Registrų centrui su nuorodomis į užduotis. Gali būti, kad su tomis pačiomis problemomis susiduria ir kiti žmonės, todėl visada geriau turėti bendrai naudojamą ir visiems matomą užduočių sąrašą.\n", | |
"\n", | |
"Pirmoji problema apie sunkiai prieinamas nuorodas užregistruota čia:\n", | |
"\n", | |
"https://gitlab.com/atviriduomenys/manifest/issues/766\n", | |
"\n", | |
"Kadangi atskiro sąrašo su nurodomis į visus duomenų failus nėra, teks jas traukti iš registrų centro svetainės HTML kodo, kas yra labai nepatogu. Kaip tai daroma galite matyti žemiau:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"%matplotlib inline" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 106, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import requests\n", | |
"import lxml.html\n", | |
"import re" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 175, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[\n", | |
" 'https://www.registrucentras.lt/aduomenys/?byla=statiniai_Akmenes_r_sav.csv',\n", | |
" 'https://www.registrucentras.lt/aduomenys/?byla=statiniai_Alytaus_m_sav.csv',\n", | |
" 'https://www.registrucentras.lt/aduomenys/?byla=statiniai_Alytaus_r_sav.csv',\n", | |
"]" | |
] | |
}, | |
"execution_count": 175, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"resp = requests.get('https://www.registrucentras.lt/p/1091')\n", | |
"ns = {'re': 'http://exslt.org/regular-expressions'}\n", | |
"html = lxml.html.fromstring(resp.content)\n", | |
"html.make_links_absolute(resp.url)\n", | |
"nuorodos = html.xpath('//a[re:match(@href, \"statiniai_.*_sav.csv\")]/@href', namespaces=ns)\n", | |
"nuorodos[:3]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Tikiuosi Registrų Centras nesugalvos atnaujinti savo svetainės, nes tada toks duomenų paėmimas nustos veikti.\n", | |
"\n", | |
"Kai jau yra visos nuorodos galima atsisiųsti visus duomenis ir juos sujungti:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 177, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df = pd.concat([\n", | |
" pd.read_csv(nuoroda, encoding='UTF-16', decimal=',', low_memory=False)\n", | |
" for nuoroda in nuorodos\n", | |
"])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 178, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Eilučių skaičius: 2,579,668\n", | |
"Stulpelių skaičius: 42\n", | |
"Naudojama atmintis: 846 MB\n" | |
] | |
} | |
], | |
"source": [ | |
"print(f'Eilučių skaičius: {df.shape[0]:>10,}')\n", | |
"print(f'Stulpelių skaičius: {df.shape[1]:>10}')\n", | |
"print('Naudojama atmintis: %10s MB' % f'{df.memory_usage().sum() / 1024 / 1024:.0f}')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Štai, turiu visų savivaldybiu failus apjungtus į vieną duomenų lentelę. Viso lentelėje yra daugiau kaip 2 milijonai įrašų ir tai užima 846 MB atmintis.\n", | |
"\n", | |
"Tačiau užkrauti duomenis nebuvo taip paprasta, pasirodo atiduodant CSV failus nurodyta bloga koduotė, teko spėlioti kokia yra teisinga koduotė, kol galiausiai pavyko išsiaiškinti, kad tai yra `UTF-16`. Įdomu kodėl naudojam `UTF-16`, o ne `UTF-8`? Bet kokiu atveju, užregistravau klaidos pranešimą:\n", | |
"\n", | |
"https://gitlab.com/atviriduomenys/manifest/issues/767\n", | |
"\n", | |
"Dar kilo problemų dėl kablelių. Duomenyse sveikoji nuo trupmeninės atskirata kableliais, nors Python Pandas pagal nutylėjimą tikise, kad trupmeninė dalis bus atskirta tašku.\n", | |
"\n", | |
"Toliau bandom žiūrėti pirmiausia į duomenų sturktūrą:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 135, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"Int64Index: 2579668 entries, 0 to 33864\n", | |
"Data columns (total 42 columns):\n", | |
"sav_pavadinimas 2579668 non-null object\n", | |
"seniunijos_pavad 2579668 non-null object\n", | |
"statinio_kategorija 286067 non-null float64\n", | |
"obje_tipas 2579668 non-null int64\n", | |
"pask_tipas 2579668 non-null int64\n", | |
"atr_uzstatytas_plotas 2579668 non-null float64\n", | |
"bendras_plotas 2579668 non-null float64\n", | |
"naudingas_plotas 576600 non-null object\n", | |
"gyv_plotas 2579668 non-null float64\n", | |
"verslo_plotas 9387 non-null object\n", | |
"pagalb_nenaud_plotas 306195 non-null object\n", | |
"pagalb_naud_plotas 565333 non-null object\n", | |
"rusiu_plotas 193165 non-null object\n", | |
"garazu_plotas 88736 non-null object\n", | |
"patalpu_kaip_atsir_nt_skaicius 2952 non-null float64\n", | |
"gyv_pask_patalpu_sk 362983 non-null float64\n", | |
"pastato_energ_naud_klase 97868 non-null float64\n", | |
"aukstu_skaicius 2579668 non-null int64\n", | |
"stat_pradzios_metai 930452 non-null float64\n", | |
"stat_pabaigos_metai 2579487 non-null float64\n", | |
"modern_pradzios_metai 846 non-null float64\n", | |
"modern_pabaigos_metai 834 non-null float64\n", | |
"sildymas 1779132 non-null float64\n", | |
"vandentiekis 1615672 non-null float64\n", | |
"nuoteku_salinimas 1610198 non-null float64\n", | |
"dujos 1529442 non-null float64\n", | |
"karstas_vanduo 557379 non-null float64\n", | |
"elektra 1988474 non-null float64\n", | |
"virykle 634133 non-null float64\n", | |
"vonios_kambarys 507900 non-null float64\n", | |
"vedin_kondicionav 426791 non-null float64\n", | |
"pamatai 2467065 non-null float64\n", | |
"sienos 2577453 non-null float64\n", | |
"stogo_konstrukcija 2122247 non-null float64\n", | |
"stogo_danga 2564187 non-null float64\n", | |
"perdanga 1968841 non-null float64\n", | |
"isores_apdaila 1401392 non-null float64\n", | |
"vidaus_apdaila 692296 non-null float64\n", | |
"pertvaros 1649423 non-null float64\n", | |
"grindys 1870926 non-null float64\n", | |
"langai 1718073 non-null float64\n", | |
"durys 2155202 non-null float64\n", | |
"dtypes: float64(31), int64(3), object(8)\n", | |
"memory usage: 846.3+ MB\n" | |
] | |
} | |
], | |
"source": [ | |
"df.info(null_counts=True)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Deje nėra globalaus identifikatoriaus. Kadangi tai yra oficialus NTR registras, tai yra vienintelis tiesos šaltinis, į kurį turėtų rodyti visi kiti duomenų rinkiniai. Tačiau jei nepateikiamas oficialus kiekvieno pastato identifikatorius, tai šie duomenys praranda daug vertės.\n", | |
"\n", | |
"Greičiausiai identifikatorius nepateikiamas dėl to, kad pastatas gali būti susijęs su asmens duomenimis. Nors jei imti atskirą lentelę, kurioje būtų pastato globalus identifikatorius ir tarkim koordinatės, tai neturėtų niekaip sietis su asmeniu.\n", | |
"\n", | |
"Užregistravau šį pageidavimą/pasiteiravimą:\n", | |
"\n", | |
"https://gitlab.com/atviriduomenys/manifest/issues/768\n", | |
"\n", | |
"Taip pat nėra savivaldybės ir seniūnijos identifikatorių. Registrų centras valdo adresų registrą, todėl turi tiek savivaldybių, tiek seniūnijų identifikatorius, kurie galėtų būti įtraukti į šią lentelę. Užregistravau pageidavimą:\n", | |
"\n", | |
"https://gitlab.com/atviriduomenys/manifest/issues/769\n", | |
"\n", | |
"Yra pateiktos instrukcijos, kaip atsidaryti duomenis skaičiuoklės programoje, bet nepaaiškinta kaip sujungti duomenis su klasifikatoriais. Pavyzdžiui, kaip sužinoti, ką reiškai `obje_tipas` skaičiai?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 179, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"28 1763610\n", | |
"20 561100\n", | |
"22 170858\n", | |
"26 66112\n", | |
"24 17988\n", | |
"Name: obje_tipas, dtype: int64" | |
] | |
}, | |
"execution_count": 179, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df['obje_tipas'].value_counts()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Turiu įtarimą, kad tie skaičiai ateina iš šios lentelės (kuri pateikta [atskirai](https://www.registrucentras.lt/p/92)):" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 145, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"tipai = pd.read_csv('https://www.registrucentras.lt/aduomenys/?byla=klas_NTR_objektu_tipai.csv', index_col='obje_tipas', encoding='UTF-16')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 160, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>obje_pav</th>\n", | |
" <th>viso</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>28</th>\n", | |
" <td>Pagalbinis pastatas</td>\n", | |
" <td>1763610</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>20</th>\n", | |
" <td>Gyvenamas pastatas</td>\n", | |
" <td>561100</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>22</th>\n", | |
" <td>Negyvenamas pastatas</td>\n", | |
" <td>170858</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>26</th>\n", | |
" <td>Sodo pastatas</td>\n", | |
" <td>66112</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>24</th>\n", | |
" <td>Mišrus pastatas</td>\n", | |
" <td>17988</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" obje_pav viso\n", | |
"28 Pagalbinis pastatas 1763610\n", | |
"20 Gyvenamas pastatas 561100\n", | |
"22 Negyvenamas pastatas 170858\n", | |
"26 Sodo pastatas 66112\n", | |
"24 Mišrus pastatas 17988" | |
] | |
}, | |
"execution_count": 160, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pd.concat([df['obje_tipas'].value_counts().rename('viso'), tipai], axis=1, join='inner')[['obje_pav', 'viso']]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 166, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBYAAACMCAYAAADIkCqcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deZhU1bnv8e9PRBsFcYBLFFRE9HhNHECimKOmzeSAGTROiVclJnL0mBCHRDkxR0lujheTo0nU4zGYGJQ4jxhJHJLYTseBQSZFxBhMUKOCRkEFEd77x15ttp2q7qqymqJ3/z7PU0/vWnvtvd6qtwutt9deWxGBmZmZmZmZmVkt1mt0AGZmZmZmZmbWdbmwYGZmZmZmZmY1c2HBzMzMzMzMzGrmwoKZmZmZmZmZ1cyFBTMzMzMzMzOrmQsLZmZmZmZmZlaz9RsdgBXDpptuGkOHDm10GNaJ3nzzTTbeeONGh2GdyDkuNue3+JzjYnN+i885LrYi5HfGjBlLIqJ/qX0uLFhdDBgwgOnTpzc6DOtELS0tNDc3NzoM60TOcbE5v8XnHBeb81t8znGxFSG/kp4rt8+XQpiZmZmZmZlZzVxYMDMzMzMzM7OaubBgZmZmZmZmZjXzGgtmZmZmZmZmVVi1ahWLFy9mxYoVFfXv27cv8+fP7+So6qOpqYlBgwbRs2fPio9xYaECkjYB9gEeBkZGxG8bHNI65+1Vqxk8bmq7fRZNGLWWojEzMzMzM+s8ixcvpk+fPgwePBhJHfZftmwZffr0WQuRfTARwdKlS1m8eDHbbbddxcd120shJIWkX+Wery/pFUl3pOefkzQOICLeAEYAVwMzGxJwBSSdKmmjevUzMzMzMzOzf7RixQq22GKLiooKXYkktthii4pnYrTqtoUF4E3gI5J6peefBp5v3RkRt0fEhNzz70fEwRHxUtsTSVpXZn6cClRSMKi0n5mZmZmZmZVQtKJCq1peV3cuLAD8Bmidn/8l4NrWHZJGS7okbR8haZ6k2ZLuz+2/XdIfgN9Lam6d7ZD2XyJpdNqeIOlJSXMk/WfbICSNlzRZ0sOSFko6MbX3lvR7STMlzZX0+dS+saSpKZ55ko6SNBbYCrhX0r2p339Lmi7pCUnfS20V9askbjMzMzMzM1t3vPDCCxx++OFrfdx15S/tjXIdcE4qCOwKXAHsW6LfOcABEfG8pE1z7cOBXSPiVUnNpQaQtAVwKLBTRESb4/N2BUYCGwOPS5oKvAwcGhFvSOoHPCLpduBA4IWIGJXG6BsRr0s6Hdg/Ipakc56dYutBVvzYNSIuqqQf2eyNSuI2MzMzMzPr1jpab65ata5Pt9VWW3HTTTfVNZZKdOvCQkTMkTSYbLbCb9rp+hAwSdINwC259nsi4tUOhnkdWAH8IhUw7ijTb0pEvA28nWYS7AlMBc6TtB+wBhgIDADmAhdIOh+4IyIeKHPOIyWNIcvzlsDOwJwK+z3ZUdzpmDEA/fr155xd3m33jWhpaWl3v63bli9f7hwWnHNcbM5v8TnHxeb8Fp9z3LX07duXZcuWddr5Kzn3ueeey8CBAxkzZgwA5513Hr179+bqq6/m0UcfZf78+Zx88smsWrWKNWvWMHnyZIYOHcoll1zC5MmTATjuuOM45ZRT/uHcK1asqOr3sVsXFpLbgf8EmoEtSnWIiJMk7UV22cQMSXukXW/mur3L+y8taUrHvitpT+CTwOHA14FPlBqmxPNjgP7AHhGxStIioCkinpY0HDgY+IGk30fE9/MHS9oO+Bbw0Yh4TdKk1pgq6VdJ3BExEZgIsM2QoXHB3PZ/nRYd09zuflu3tbS00Nzc3OgwrBM5x8Xm/Bafc1xszm/xOcddy/z58zv1Lg+VnPvYY4/l1FNP5YwzzgBgypQp/OxnP+Paa6+lT58+TJ48mdNPP51jjjmGd955h9WrV/Pkk09yzTXXMG3aNCKCvfbaiwMOOIBhw4a979xNTU3/0Nae7r7GAmSXP3wvIuaW6yBp+4h4NCLOAV4Bti7R7TlgZ0kbpssGPpmO7Q30jYjfAKcBu5UZ5vOSmtKlE83ANKAv8HIqKuwPbJvOuRXwVkT8CvgR2SUZAMuA1t/ATcgKH69LGgAclBurw35VxG1mZmZmZmZr2bBhw3j55Zd54YUXmD17Npttthlbb/33r6p777035513Hueffz7PPfccvXr14sEHH+TQQw9l4403pnfv3hx22GE88EC5CfCV6/YzFiJiMXBRB91+JGkHQMDvgdnA7m3O85d0qcQ84E/A42lXH2CKpKZ0/OllxpgD3Av0A/5vRLwg6Wrg15LmAtOBp1LfXVJMa4BVwMmpfSJwp6QXImJ/SY+nY/5CdjkHVfSrNG4zMzMzMzNrgCOOOIKbbrqJv/71rxx11FHv2/flL3+Zvfbai6lTp3LwwQfzs5/9rNPi6LaFhYjoXaKtBWhJ25OASWn7sBKneG9/7vgzgTNL9N2zgpDmRMRxbc63BNi7RN9FwF1tGyPiYuDi3PPRpQaqtB+VxW1mZmZmZmYNcNRRR3HiiSeyZMkS7rvvPlauXPnevmeffZYhQ4YwduxY/vznPzNnzhz2228/Ro8ezbhx44gIbr311vfWW/ggum1hweqrV88eLKhx5VIzMzMzMzOr3oc//GGWLVvGwIED2XLLLVm0aNF7+2644QYmT55Mz549+dCHPsR3vvMdNt98c0aPHs2ee2Z/Q/7a175W1VoK5biwsA6IiPGNjsHMzMzMzMxq09HtIZctW9Zpiz3Onfv35QIHDx7MvHnzABg3bhzjxo37h/6nn346p59e3yvdvXijmZmZmZmZmdXMhQUzMzMzMzMzq5kLC2ZmZmZmZmZWMxcWzMzMzMzMzKoUEY0OoVPU8rpcWDAzMzMzMzOrQlNTE0uXLi1ccSEiWLp0KU1NTVUd57tCmJmZmZmZmVVh0KBBLF68mFdeeaWi/itWrKj6y3qjNDU1MWjQoKqOcWHBzMzMzMzMrAo9e/Zku+22q7h/S0sLw4YN68SIGsuXQpiZmZmZmZlZzVxYMDMzMzMzM7Oa+VIIq4u3V61m8LipDRt/0YRRDRvbzMzMzMysO/OMBTMzMzMzMzOrmQsLZUg6W9ITkuZImiVpryqObZZ0R2fGV2bc0ZK2qlc/MzMzMzMzs474UogSJO0NHAIMj4iVkvoBGzQ4rEqMBuYBL9Spn5mZmZmZmVm7PGOhtC2BJRGxEiAilkTECwCSPinpcUlzJV0hacPUfqCkpyTNBA5rPZGkzSXdlmY+PCJp17aDpRkEUyS1SFoo6dzcvtskzUizJ8akth6SJkmal+I4TdLhwAjg6jTDopekcyRNS/0mKlNRvzTOWElPptiv66w328zMzMzMzLouFxZKuxvYWtLTki6V9HEASU3AJOCoiNiFbMbHyan9cuCzwB7Ah3Ln+h7weETsCnwHuKrMmHsCXwR2BY6QNCK1nxARe5AVA8ZK2gLYHRgYER9JcfwyIm4CpgPHRMTuEfE2cElEfDQiPgL0Ag6ptF8aexwwLMV+Uo3vpZmZmZmZmRWYL4UoISKWS9oD2BfYH7he0jjgceBPEfF06nolcArQktoXAkj6FTAm9dmHrGBARPxB0haSNomIN9oMe09ELE3H35KOm05WTDg09dka2AFYAAyRdDEwlawQUsr+ks4ENgI2B54Afl1FvzlkMxtuA25re1CaQTEGoF+//pyzy7tlwuh8LS0tDRu7u1i+fLnf54JzjovN+S0+57jYnN/ic46Lrej5rbiwIKl/RLzSmcGsSyJiNVnBoEXSXOB4ssJCpw3Z9rmkZuBTwN4R8ZakFqApIl6TtBtwANlMgiOBE/IHp1kUlwIjIuIvksYDTW0H7aDfKGA/spkYZ0vaJSLeqx5ExERgIsA2Q4bGBXMbV6dadExzw8buLlpaWmhubm50GNaJnONic36LzzkuNue3+JzjYit6fqu5FOIhSXdL+qqkzTotonWApH+StEOuaXfgObKZAoMlDU3txwL3AU+l9u1T+5dyxz4AHJPO20y2dkPb2QoAn07rMfQCvgA8BPQFXktFhZ2Akek8/YD1IuJm4LvA8HSOZUCftN1aHFgiqTdweG6sDvtJWg/YOiLuBc5KsfQu9X6ZmZmZmZlZ91Xxn5gjYkdJewJHk/31+knguoj4VadF1zi9gYslbQq8CzwDjImIFZK+AtwoaX1gGnBZunPEGGCqpLfIigmtX9zHA1dImgO8RTbzoZTHgJuBQcCvImJ6milxkqT5ZEWNR1LfgcAv05d/gH9LPycBl0l6G9ibbN2HecBfU6xU0a8H8CtJfQEBF0XE3yp698zMzMzMzKzbqGruekQ8Bjwm6TzgQrI1BgpXWIiIGcDHyuz7PTCsRPudwE4l2l8lm4HQkcUR8b5+6a4UB5XpP7xtQ5rBcHOu6bvpUVM/snUezMzMzMzMzMqqZo2FTYBDyWYsbA/cSnYnAzN69ezBggmjGh2GmZmZmZmZrWXVzFiYTXZngO9HxMOdFE+3FBGTyC5PMDMzMzMzM+tSqiksDImItncuMDMzMzMzM7NurJrCQj9JZwIfJnfbwoj4RN2jMjMzMzMzM7MuoZrbTV5NdlvF7YDvAYt4/50GzMzMzMzMzKybqaawsEVE/AJYFRH3RcQJgGcrmJmZmZmZmXVj1VwKsSr9fFHSKOAFYPP6h2RmZmZmZmZmXUU1hYUfSOoLnAFcDGwCnNYpUZmZmZmZmZlZl1BxYSEi7kibrwP7d044ZmZmZmZmZtaVVLzGgqQhkn4taYmklyVNkTSkM4MzMzMzMzMzs3VbNYs3XgPcAHwI2Aq4Ebi2M4IyMzMzMzMzs66hmjUWNoqIybnnv5L07XoHZF3T26tWM3jc1EaHUQiLJoxqdAhmZmZmZmYVq6aw8FtJ44DrgACOAn4jaXOAiHi1E+IzMzMzMzMzs3VYNZdCHAn8C3Av0AKcDBwNzACmlzpAUki6IPf8W5LG1xqstU/Sd+rZz8zMzMzMzKwjFRcWImK7dh5DJH26xGErgcMk9atfyNaOSgsGLiyYmZmZmZlZXVQzY6Ej55doexeYCJzWdoek/pJuljQtPf45136PpCck/VzSc5L6Sfq+pFNzx/+HpG9Kuk7SqFz7JEmHS+oh6Ufp3HMk/Uva3yypRdJNkp6SdLUkpX3npP7zJE3MtbdI+rGk6ZLmS/qopFskLZT0g9zYt0makWIfk9p6pJjmSZorqdR7MUnSZen8T0s6JLUPlvSApJnp8bHUvqWk+yXNSufdV9IEoFdqu7qdeCrt12HcZmZmZmZmZoqI+pxIejwihrVpW052B4k5wG7AiUDviBgv6Rrg0oh4UNI2wF0R8b8lXQI8HxH/T9KBwG+B/kBv4JaIGC5pPWAhsCewH/CFiDhe0gbAH4EdgWOB/xURP5C0IfAQcASwLTAF+DDwQmr/dopj89a1IiRNBm6IiF9LagEejYizJH0TOAvYA3g1jbdbRCxtPV5SL2Aa8HFgMDAhIj6dzrtpRPytzfs0iexuGwcD25NdbjKUrPCzJiJWSNoBuDYiRkg6A2iKiP+Q1INsYc1lkpZHRO/cef8hnhRnh/0qjHsMMAagX7/+e5zzk8tL/WpYlXYZ2LfRIZS0fPlyevfu3XFH67Kc42JzfovPOS4257f4nONiK0J+999//xkRMaLUvmoWb+xIyQpFRLwh6SpgLPB2btengJ3TpACATST1BvYBDk3H3inptbS9SNJSScOAAcDj6Uvyb4GfpuLBgcD9EfG2pM8Au0o6PJ2/L7AD8A7wWEQsBpA0i+xL9IPA/pLOBDYCNgeeAH6djr89/ZwLPBERL6bjnwW2BpYCYyUdmvptncZbAAyRdDEwFbi7zPt3Q0SsARamc+4E/Am4RNLuwGqygglkX/6vkNQTuC0iZpU5Z6l4llbYr8O4I2Ii2YwUthkyNC6YW89fp+5r0THNjQ6hpJaWFpqbmxsdhnUi57jYnN/ic46LzfktPue42Iqe37X1TfAnwEzgl7m29YCREbEi3zFXaCjl58Bosr/uXwGQ/prfAhxAdqeK61pPBXwjIu5qc/5msrUfWq0G1pfUBFwKjIiIvyhbZLIp16/1mDVtjl+Tjm8mK5bsHRFvpZiaIuI1Sbul+E4iWwTzhBKvrW1hJsguIXmJbLbHesCK9Jrvl7QfMAqYJOnCiLiqxOv8h3jaDlqHuM3MzMzMzKwbq+caC4vK7UiXF9wAfDXXfDfwjdYn6a/ykF2acGRq+wywWe6YW8lmJXwUyBcMrge+AuwL3Jna7gJOTn/VR9KOkjZuJ/7WL91L0syJw9vpW0pf4LX05XwnYGQatx+wXkTcDHwXGF7m+CMkrSdpe2AI2YyBvsCLaSbDsUCPdM5tgZci4nKyYkvrOVe1vt5y8VTar4q4zczMzMzMrBureMaCpI2AM4BtIuLEdM3/P0XEHQARcVgHp7gA+Hru+VjgvyTNSXHcT/aX8e8B10o6FngY+CuwLI3xjqR7gb9FxOrcue4GJgNTIuKd1PZzskscZiqbBvEK8IVywUXE3yRdDsxLY07r4PW0dSdwkqT5ZEWBR1L7QOCXaV0IgH8rc/yfgceATYCT0kyMS4GbJR2Xzv9m6tsMfFvSKmA5cFxqnwjMkTSTbHZBqXgq7Vdp3GZmZmZmZtaNVXMpxC+BGcDe6fnzwI3AHeUOyC8QGBEvka1d0Pp8CdmlC229DhwQEe9K2hv4aESsBEhfckeSLcKYH2cV2ZoI+bY1ZLdVbHtrxZb0aO339dz2d8n+Ot/2dTTnttse35zrelCJ1wOV/bX/dxFxUptxFwK75prOSu1XAleWiPOs1j7txVNpPzxLwczMzMzMzDpQTWFh+4g4StKXANLU+XYXRKjRNsANqYjwDtmdJJC0M1kR49b0hdvWIb169mDBhFEddzQzMzMzM7NCqaaw8E66HWEApLUAVrZ/SPVS0WBYifYnydYeKJyIGN3oGMzMzMzMzMxqUU1h4Vyy6/y3lnQ18M9kd2gwMzMzMzMzs26q4sJCRNyTFvsbSXYrx2+mdRLMzMzMzMzMrJvqsLAgaaeIeEpS60J+L6af20jaGng1Ip7rtAjNzMzMzMzMbJ1VyYyF04ExZLeLLGULSbMj4tj6hWVmZmZmZmZmXUGHhYWIGJN+7l+uj6S76xmUmZmZmZmZmXUNFa+xIKkJ+FdgH7I7QzwAXBYRKyLiM50Un5mZmZmZmZmtw6q5K8RVwDLg4vT8y8Bk4Ih6B2VmZmZmZmZmXUM1hYWPRMTOuef3Snqy3gGZmZmZmZmZWdexXhV9Z0oa2fpE0l7A9PqHZGZmZmZmZmZdRSW3m5xLtqZCT+B/JP05Pd8WeKpzw7Ou4u1Vqxk8bmqjw7BOdMYu7zLaOS60RuR40YRRa3U8MzMzM6u/Si6FOCS3vRmwb9q+H/hbPYORNAD4MTASeA14B/hhRNxaz3GKSNJg4GMRcU09+pmZmZmZmZlVosNLISLiuYh4DvgC2WKN/YD+aftz9QpEkoDbgPsjYkhE7AEcDQyq1xgFN5hsQc169TMzMzMzMzPrUDVrLHwVGBkR50bEOcDewIl1jOUTwDsRcVlrQypqXAwg6X5Ju7fuk/SgpN0kLZK0aa59oaQBkvpLulnStPT457R/vKQrJLVIelbS2Nyxt0maIekJSWNy7csl/Si1/07SnrnjP5f6DJb0gKSZ6fGx1L5lin2WpHmSWmd8kDv/Ikk/lDRX0mOShqb2z0p6VNLjadwBqf3j6Xyz0r4+wARg39R2Wrl4Ku1XSdxmZmZmZmZm1RQWBKzOPV+d2urlw8DMdvb/AhgNIGlHoCkiZgNTgENT+17AcxHxEvBT4McR8VHgi8DPc+faCTgA2BM4V1LP1H5CmikxAhgraYvUvjHwh4j4MNktN38AfDqN+/3U52Xg0xExHDgKuCi1fxm4KyJ2B3YDZpV5fa9HxC7AJcBPUtuDZMWcYcB1wJmp/VvAKemc+wJvA+OAByJi94j4cTvxVNqv0rjNzMzMzMysG6vmdpO/BB6V1LrewRfIvux3Ckn/BexDNovho8CNwL9L+jZwAjApdb0eOCfFd3R6DvApYOfsCgsANpHUO21PjYiVwEpJLwMDgMVkxYRDU5+tgR2ApWRrPdyZ2ucCKyNiVVrYcnBq7wlckmZVrAZ2TO3TgCtS8eK2iCj3Bf3a3M8fp+1BwPWStgQ2AP6U2h8CLpR0NXBLRCzOvc5W5eKptF+HcadZHWMA+vXrzzm7vFtmCCuCAb2yxf2suBqR45aWlrU6Xne2fPlyv98F5xwXm/NbfM5xsRU9vxUXFiLiQkktZF/2Ab4SEY/XMZYnyGYWtI53iqR+pFtaRsRbku4BPg8cCeyRuj4MDJXUn6zY8YPUvh7ZX/tX5AdJX8BX5ppWA+tLaiYrRuydxmoBmlKfVRERaXtN6/ERsUZS63t4GvAS2V/31wNWpD73S9oPGAVMknRhRFxV4vVHie2LgQsj4vYU3/h0zgmSpgIHAw9JOqDE+UrGU2m/SuKOiInARIBthgyNC+ZWU6eyruaMXd7FOS62RuR40THNa3W87qylpYXm5uZGh2GdyDkuNue3+JzjYit6fqu5FIKImBkRF6VHPYsKAH8AmiSdnGvbqE2fn5NN1Z8WEa+lmAK4FbgQmB8RS1Pfu4FvtB6YX5+hjL7Aa6mosBPZnSmq0Rd4MSLWAMcCPdK42wIvRcTlKf7hZY4/Kvfz4dw5n0/bx+dey/YRMTciziebWbAT2SUafTqKp9J+VcRtZmZmZmZm3VhVhYXOlAoEXwA+LulPkh4DrgTOyvWZAbxBdtlD3vXA/+Hvl0EAjAVGSJoj6UngpA5CuJNs5sJ8sgUOH6nyJVwKHC9pNtkX/TdTezMwW9LjZEWDn5Y5fjNJc4Bvks0igGyGwo2SZgBLcn1PTQsqzgFWAb8F5gCrJc2WdFo78VTar9K4zczMzMzMrBtbp+Y1R8SLZOsklCRpK7JiyN1tjptOm4UkI2IJf58FkG8f3+b5R3JPDyoTV+/cdtvje6efC4Fdc7vOSu1XkhVIOvKjiDgr3xARU8gWp2wbzzfatiWfaPO8VDyrKuxXadxmZmZmZmbWja0zMxY6Iuk44FHg7DRt38zMzMzMzMwabJ2asdCetHBgqUUPu7yIGNzoGD6oXj17sGDCqEaHYZ2opaXFC+0VnHNsZmZmZrXoMjMWzMzMzMzMzGzd48KCmZmZmZmZmdXMhQUzMzMzMzMzq5kLC2ZmZmZmZmZWMxcWzMzMzMzMzKxmLiyYmZmZmZmZWc1cWDAzMzMzMzOzmrmwYGZmZmZmZmY1c2HBzMzMzMzMzGqmiGh0DFYA2wwZGusd+dNGh2Gd6Ixd3uWCues3OgzrRM5xsTm/xeccF5vzW3zOcbG1l99FE0at5WhqI2lGRIwotc8zFszMzMzMzMysZl2qsCBptaRZkuZJulHSRnU+/2hJl6TtSZIOL9FnhKSLKjjX/9QztgrGGyzpy/XqZ2ZmZmZmZlaJLlVYAN6OiN0j4iPAO8BJazuAiJgeEWMr6PextRFPzmCgkoJBpf3MzMzMzMzMOtTVCgt5DwBDASTdJmmGpCckjWntIOmrkp6W9Jiky3OzET4r6VFJj0v6naQBZcb4lKTp6RyHpGObJd2RtsdLukJSi6RnJb1XcJC0PP3cUtL9uZkW+7YdRNIiST+UNDfF2vq6SsYp6ePpfLPSvj7ABGDf1HZampnwgKSZ6dFa6KioXyVxm5mZmZmZmXXJ1UEkrQ8cBNyZmk6IiFcl9QKmSboZ2BD4d2A4sAz4AzA79X8QGBkRIelrwJnAGSWGGgzsCWwP3Nv6hb+NnYD9gT7AAkn/HRGrcvu/DNwVEf8hqQdQ7vKN1yNiF0nHAT8BDmknzm8Bp0TEQ5J6AyuAccC3IqK1ALIR8OmIWCFpB+BaYEQV/SqN28zMzMzMzLqxrlZY6CVpVtp+APhF2h4r6dC0vTWwA/Ah4L6IeBVA0o3AjqnPIOB6SVsCGwB/KjPeDRGxBlgo6VmyIkJbUyNiJbBS0svAAGBxbv804ApJPYHbImJWiXNA9oW+9eePO4jzIeBCSVcDt0TEYkltz9cTuETS7sDq3GuvtF+HcafZIWMA+vXrzzm7vFtmCCuCAb2y1WytuJzjYnN+i885Ljbnt/ic42JrL78tLS1rN5hO0NUKC29HxO75BknNwKeAvSPiLUktQFMH57kYuDAibk/Hjy/Tr+29OEvdm3Nlbns1bd7TiLhf0n7AKGCSpAsj4qoOxmrdLhlnREyQNBU4GHhI0gElznca8BKwG9klLytK9Cnbr5K4I2IiMBGy20369jjF5lsgFZ9zXGzOb/E5x8Xm/Bafc1xs7d5u8pjmtRtMJ+jKayy06gu8looKOwEjU/s04OOSNkuXTnyxzTHPp+3j2zn3EZLWk7Q9MARYUG1wkrYFXoqIy4Gfk12aUcpRuZ8PtxenpO0jYm5EnE/2Onciu9yjT+58fYEX04yLY4Eeqb2iflXEbWZmZmZmZt1YEUpidwInSZpP9sX/EYCIeF7SecBjwKvAU8Dr6ZjxwI2SXiNbe2G7Muf+czp+E+CktA5BtfE1A9+WtApYDhxXpt9mkuaQzYD4Ugdxnippf2AN8ATw27S9WtJsYBJwKXBzWrPhTuDNdOycCvtVGreZmZmZmZl1Y12qsBARvUu0rSRbyLGUayJiYpqxcCtwWzpmCjClxLkmkX3ZJiJGl4mhBWhJ2+Pb7PtI21gj4krgyvKv6j0/ioiz2pyvXJzfKHOOT7R5vmtu+6x07KoK+1Uat5mZmZmZmXVjXaqwUIPxkj5FtubC3aTCgtVfr549WDBhVKPDsE7U0tJSiOu/rDznuNic3+JzjovN+S0+57jYip7fQhcWIuJbjY6hEhExuNExmJmZmZmZmdWiCIs3mpmZmZmZmVmDuLBgZmZmZmZmZjVzYcHMzMzMzMzMaubCgpmZmZmZmZnVTBHR6BisACQtAxY0Og7rVP2AJY0OwjqVc1xszm/xOcfF5vwWn3NcbEXI77YR0b/UjkLfFcLWqgURMaLRQVjnkTTdOS4257jYnN/ic46LzfktPue42C8/VyIAAAZhSURBVIqeX18KYWZmZmZmZmY1c2HBzMzMzMzMzGrmwoLVy8RGB2CdzjkuPue42Jzf4nOOi835LT7nuNgKnV8v3mhmZmZmZmZmNfOMBTMzMzMzMzOrmQsL9oFJOlDSAknPSBrX6Hjs/SRtLeleSU9KekLSN1P7eEnPS5qVHgfnjvm3lM8Fkg7ItZfMtaTtJD2a2q+XtEFq3zA9fybtH7z2Xnn3ImmRpLkpl9NT2+aS7pG0MP3cLLVL0kUpL3MkDc+d5/jUf6Gk43Pte6TzP5OOVXtjWP1I+qfc53SWpDcknerPcNcm6QpJL0ual2tr2Ge2vTGsemXy+yNJT6X391ZJm6b2wZLezn2WL8sdU7c8lvtdsdqUyXFD/10uN4ZVr0x+r8/ldpGkWandn2GAiPDDj5ofQA/gj8AQYANgNrBzo+Py43052hIYnrb7AE8DOwPjgW+V6L9zyuOGwHYpvz3ayzVwA3B02r4MODlt/ytwWdo+Gri+0e9HUR/AIqBfm7YfAuPS9jjg/LR9MPBbQMBI4NHUvjnwbPq5WdreLO17LPVVOvag9sbwo9Py3AP4K7CtP8Nd+wHsBwwH5uXaGvaZLTeGH3XN72eA9dP2+bn3fnC+X5vz1CWP7f2u+FHXHDfs3+VyYzT6feqqj1L5bbP/AuCctO3PcIRnLNgHtifwTEQ8GxHvANcBn29wTJYTES9GxMy0vQyYDwxs55DPA9dFxMqI+BPwDFmeS+Y6VV4/AdyUjr8S+ELuXFem7ZuAT7ZWam2tyL//bfNyVWQeATaVtCVwAHBPRLwaEa8B9wAHpn2bRMQjkf3X7SpK5zg/hnWOTwJ/jIjn2unjz3AXEBH3A6+2aW7kZ7bcGFaDUvmNiLsj4t309BFgUHvnqHMeS/6ufKAX2c2V+QyXszb+XS43htWgvfym9/tI4Nr2ztHdPsMuLNgHNRD4S+75Ytr/0moNlKbLDQMeTU1fT9OsrtDfp7CXy2m59i2Av+X+Zyn/O/DeMWn/66m/1V8Ad0uaIWlMahsQES+m7b8CA9J2tTkemLbbtrc3hnWOo3n//8j4M1wsjfzM+r/na9cJZH+VbLWdpMcl3Sdp39RWzzw6v2tPo/5ddo7Xnn2BlyJiYa6t23+GXVgw6yYk9QZuBk6NiDeA/wa2B3YHXiSb0mVd1z4RMRw4CDhF0n75nalS3qm3AVobY3Rn6frazwE3piZ/hgvMn9niknQ28C5wdWp6EdgmIoYBpwPXSNqk0vM5j+sU/7vcPXyJ9xf5/RnGhQX74J4Hts49H5TabB0iqSdZUeHqiLgFICJeiojVEbEGuJy/T5crl9Ny7UvJpmmt36b9fedK+/um/lZnEfF8+vkycCtZPl9qncqcfr6culeb4+d5/5TdfI7LjWH1dxAwMyJeAn+GC6qRn1n/93wtkDQaOAQ4Jn2ZIE1dX5q2Z5BdG78j9c2j87sWNPjfZed4LUjv+WHA9a1t/gxnXFiwD2oasENauXYDsmm6tzc4JstJ14H9ApgfERfm2vPXzh4KtK56eztwdFp1eDtgB7KFZ0rmOv2P0b3A4en444EpuXO1rlp7OPCH1v+RsvqRtLGkPq3bZAuEzeP973/bvByXVh4eCbyepuPdBXxG0mZp+uZngLvSvjckjUy/T8dROsf5Maz+3vcXEn+GC6mRn9lyY1idSDoQOBP4XES8lWvvL6lH2h5C9pl9ts55LPm70pmvtztq8L/L5caw+voU8FREvHeJgz/DSawDK0j60bUfZKuXPk1WnTu70fH48Q/52YdsetUcYFZ6HAxMBuam9tuBLXPHnJ3yuYC0em17uSZbzfgxsoWCbgQ2TO1N6fkzaf+QRr8fRXyk9392ejzRmhuyay5/DywEfgdsntoF/FfK41xgRO5cJ6R8PQN8Jdc+gux/kP4IXAKovTH8qHuONyb7i1TfXJs/w134QVYkehFYRXat7Fcb+Zltbww/6pbfZ8iukW79b3Hryv5fTP92zwJmAp/tjDyW+13xo645bui/y+XG8KM++U3tk4CT2vT1ZzjivRdmZmZmZmZmZlY1XwphZmZmZmZmZjVzYcHMzMzMzMzMaubCgpmZmZmZmZnVzIUFMzMzMzMzM6uZCwtmZmZmZmZmVjMXFszMzMzMzMysZi4smJmZmZmZmVnNXFgwMzMzMzMzs5r9f41PCyGqF5t2AAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1152x144 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"pd.concat([df['obje_tipas'].value_counts().rename('viso'), tipai], axis=1, join='inner').set_index('obje_pav')[['viso']].plot.barh(figsize=(16, 2), grid=True);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Panašu, kad taip.\n", | |
"\n", | |
"Duomenų pateikimas nėra labai paprastas, tačiau sugaišus šiek tiek laiko pavyko juos „atsidaryti“. Dabar bandysiu pasiskaičiuoti kokias nors statistikas.\n", | |
"\n", | |
"Įdomu kokiose savivaldybėse daugiausia pastatų, top 10 savivaldybių, pagal pastatų skaičių:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 167, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA+YAAAD4CAYAAABhVPxRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7RddXnv//eHmwSiQQ0nAwQMHBS0BBFSRSt0I1bRIOpPDpfSChWN9BzFS6jSaiNS2x9WUEEqjoCKt0IEFBA8iCBbtMotEhIQAyqxihZFEA23JuE5f6y5ZbHdt+ys7JnsvF9jrLHneuZ3fuczN89Y4VnzslNVSJIkSZKkdmzSdgKSJEmSJG3MbMwlSZIkSWqRjbkkSZIkSS2yMZckSZIkqUU25pIkSZIktWizthPQ47bZZpvadddd205Dk8iDDz7I1ltv3XYamkSsKfWS9aRes6bUa9aUem3RokX3VtW2g+M25uuRGTNmcNNNN7WdhiaR/v5++vr62k5Dk4g1pV6yntRr1pR6zZpSryX56VBxL2WXJEmSJKlFNuaSJEmSJLXIxlySJEmSpBbZmEuSJEmS1CIf/rYeeXjlamaeeHnbaWgSmTdrFcdYU+oha0rjsfyUOW2nIEnSes0z5pIkSZIktWjMjXmSFV3Lr0pyR5JnJjkpyQmjbHtckjeMcT9nJJk9wvr+kdZLkiRJkrQhWeNL2ZMcCJwBvKKqfppk1G2q6pNjnb+qjl/TnNZGks2qatVE7lOSJEmSpAFrdCl7kv2Bs4GDq+rHQ6x/c5Ibk9yS5KIkWzXxP5xVb854n55kcZJbk7ygiW+d5NNJbkhyc5LXNPEpSc5PcnuSrwBTuvZ3ZJKlzTwfamKbJjm3iS1N8s4h8jw3ySeTXA/86wjHu3WSy5vjuTXJ4U18fnOctyZZkI7dk9zQte3MJEvX5PcrSZIkSdr4rMkZ8ycBFwN9VfXDYcZ8uarOBkjyQeBY4ONDjNuqqvZqGv1PA3sA7wW+WVVvTLINcEOSq4C3AA9V1XOS7Al8v5l/e+BDwD7A/cCVSV4L/Ax4RlXt0YzbZphcdwBeXFWrRzjmg4BfVNWcZq5pTfzMqjq5iX2ezhcVX02yRZKdq+ou4HBg4Qhz02w/F5gLMH36tsyf5cl79c6MKZ2HdUm9Yk1pPPr7+4eMr1ixYth10nhYU+o1a0oTZU0a85XAd+k0228fZsweTUO+DTAV+Pow484DqKprkzylaZ5fDhzSdb/6lsBOwP50Lp2nqpYkWdKs/1Ogv6p+DZDki83YfwJ2SfJx4HLgymFyuGCUphxgKXBaczb+sqr6dhM/IMm7ga2ApwG3AV8FvkSnIT+l+Xn4KPNTVQuABQA77bJrnbbUB+Wrd+bNWoU1pV6ypjQey4/qGzLe399PX9/Q66TxsKbUa9aUJsqaXMr+GHAY8IIk/zDMmHOBt1bVLOADdJrrodQQ7wO8vqr2al47VdXta5BfZ6Kq+4HnAf3AccA5wwx9cAxz3QHsTadB/2BzCfuWwCeAQ5vjPJvHj3MhcFiSZ3c2rzvXNH9JkiRJ0sZlje4xr6qHgDnAUUmOHWLIk4FfJtkcOGqEqQbu1X4J8EBVPUDn7Prb0jxNLsnzm7HXAn/ZxPYA9mziNwB/nmR6kk2BI4FvJZkObFJVFwHvo9NYj0tzufxDVfUF4MPNXANN+L1JpgKHDoxv7rtfDfwjY7iMXZIkSZKkNb4esaruS3IQcG2SXw9a/Y/A9cCvm59PHmaaR5LcDGwOvLGJ/RPwMWBJkk2Au4CDgbOAzyS5HbgdWNTk8cskJwLX0DnbfnlVXZLkec34gS8d/n60Y2r+/NpxVfWmQatmAR9O8hidS/n/tqp+m+Rs4Fbgv4AbB22zkE4Tv3PX/CcDN1XVpaPlIkmSJEnauIy5Ma+qqV3LP+PxxvPSrvhZdBrpwdueNCj0hap6x6AxD9N50NvgbR8Gjhgmp/No7lfvit3CKGfJq+qYQe9vAgY35VTV1xniPvmqeh+ds/FDzX0qcOqg2PyR8pEkSZIkbbx8gs96ZMrmm7LslDltp6FJpL+/f9iHLknjYU1JkiT13oQ35lXVN9H7lCRJkiRpfbVGD3+TJEmSJEm9ZWMuSZIkSVKLbMwlSZIkSWqRjbkkSZIkSS2yMZckSZIkqUU25pIkSZIktcjGXJIkSZKkFtmYS5IkSZLUIhtzSZIkSZJatFnbCehxD69czcwTL287DU0i82at4hhrSj1kTamXzj1o67ZTkCRpvbBenzFP8vokmyU5LMmmTWxaklcmeUqSV7WdoyRJkiRJa2OtGvMkr01SSXZfy3lWDLPqTuBq4ElVtRqgqh4AXgicD9zcbH9IkhPXJgdJkiRJktqwtpeyHwl8p/n5/rVP54mqagnw50PETxr0/lLg0vHsI0mAVNVj49lekiRJkqS1Me4z5kmmAi8BjgWO6Ir3JelPcmGSHyb5YjpemuTirnF/keQrg+acnuR7SeYk2S7JtUkWJ7k1yX7NmIOSfD/JLUmubmLHJDmzWT43yaFdc/7R2fgkM5MsS/I54FZgxxGO8381+78lybVd23+7yeP7SV7cxM9PMqdr2yfkIkmSJEnSYGtzxvw1wBVVdUeS3yTZp6oWNeueD/wJ8AvgP4A/A64BPpFk26r6NfA3wKcHJksyg85Z7/dV1TeSzAO+XlX/3NxfvlWSbYGzgf2r6q4kT1uL/J8FHF1V140ybj7wiqq6O8k2TexXwF9U1SNJngWcB8wGFgKHAZcn2QI4EPjbkSZPMheYCzB9+rbMn7Vq3AckDTZjSudhXVKvWFPqpRUrVtDf3992GppErCn1mjWlibI2jfmRwOnN8vnN+4HG/Iaq+jlAksXAzKr6TpLPA3+V5DPAi4A3NOM3p3Mv+f+pqm81sRuBTyfZHLi4qhYn6QOuraq7AKrqvrXI/6djaMqh88XCuUm+BHy5K98zk+wFrAae3cT/L3B6kicBBzW5PjzS5FW1AFgAsNMuu9ZpS31Qvnpn3qxVWFPqJWtKvXTuQVvT19fXdhqaRPr7+60p9ZQ1pYkyrv+7as5UvxSYlaSATYFK8nfNkEe7hq/u2s9ngK8CjwAXVNXAaZdVdJr6VwDfAqiqa5PsD8yh0xh/BLh/DOmtorlEP8kmwBbDjHtwDHNRVccleWGTx6Ik+wBvA+4Bntfs65Fm7CNJ+pvjOJzOFxaSJEmSJA1rvPeYHwp8vqqeWVUzq2pH4C5gv5E2qqpf0Lm8/X10mvQ/rALeCOye5D0ASZ4J3FNVZwPnAHsD1wH7J9m5GTPUpezLgX2a5UPonN0etyT/s6qur6r5wK/p3I8+Dfhl88C4v6bzxcSAhXQu098PuGJt9i1JkiRJmvzG25gfCXxlUOyiJj6aLwI/q6rbu4PNn0M7Enhpkv8N9AG3JLmZztnn05t70+cCX05yC50meLCzgT9v1r+IMZ4ZT3JOktlDrPpwkqVJbgW+C9wCfAI4utnH7oP2cSWdJ8lfVVX/3cy9fZKvjSUPSZIkSdLGJVU1sTvsPD395qr61ATsawrwb1X1xnW9r17YbbfdatmyZW2noUnE+6LUa9aUesl6Uq9ZU+o1a0q9lmRRVf3RCeFx/7m08SYB7Al8YYJ2uSWd++BPmKD9SZIkSZK0Rib00bpVtc/oo3q6v/uBP53IfUqSJEmStCYm9Iy5JEmSJEl6IhtzSZIkSZJaZGMuSZIkSVKLbMwlSZIkSWqRjbkkSZIkSS2yMZckSZIkqUU25pIkSZIktcjGXJIkSZKkFm3WdgJ63MMrVzPzxMvbTkOTyLxZqzjGmlIPWVPqpYF6Wn7KnLZTkSSpVZ4xlyRJkiSpRTbmkiRJkiS1aK0a8yQrupZfleSOJM/sil2YZPsRtl+eZPoo+/hakm1GGXNykpetSe6SJEmSJK0PenKPeZIDgTOAV1TVTwfiVXXo2s5dVa8aw5j5450/yWZVtWq820uSJEmStDbW+lL2JPsDZwMHV9WPm9i2SS5KcmPz+rMm/vQkVya5Lck5QLrmuTjJombd3K748iTTk8xMcnuSs5sxVyaZ0ow5N8mh3eOb5dlJ+ofI+Zgklyb5JnD1KMd3SpIfJFmS5NQm9uok1ye5OclVSWYk2aTZ9zZd296ZZMY4f7WSJEmSpI3A2p4xfxJwMdBXVT/sip8OfLSqvpNkJ+DrwHOA9wPfqaqTk8wBju3a5o1VdV/TbN+Y5KKq+s2g/T0LOLKq3pzkS8DrgS+MM/e9gT2r6r7hBiR5OvA6YPeqqq6m+zvAvk3sTcC7q2pekkua8Z9J8kLgp1V1z0hJNF9CzAWYPn1b5s/y5L16Z8aUzlOPpV6xptRLA/XU39/fdiqaJFasWGE9qaesKU2UtW3MVwLfpdNgv70r/jLguckfTog/JclUYH/g/wOoqsuT3N+1zfFJXtcs70inCR/cmN9VVYub5UXAzLXI/RsjNeWNB4BHgE8luQy4rInvACxMsh2wBXBXE18IzAc+AxzRvB9RVS0AFgDstMuuddpS/4KdemferFVYU+ola0q9NFBPy4/qazsVTRL9/f309fW1nYYmEWtKE2VtL2V/DDgMeEGSfxg0775VtVfzekZVrRh6CkjSR6eZf1FVPQ+4GdhyiKGPdi2vZugvFlbx+HENNceAB0dYB0Bz7/kLgAuBg4ErmlUfB86sqlnAW7r28z1g1yTbAq8FvjzaPiRJkiRJG7e1vse8qh4C5gBHJRm4NP1K4G0DY5Ls1SxeC/xlE3sl8NQmPg24v6oeSrI7sO9apLQc2KdZfv1azENzln9aVX0NeCfwvGbVNODuZvnogfFVVcBXgI8Atw9xKb4kSZIkSU/Qk79j3lwSfhDwviSHAMcDs5sHpv0AOK4Z+gFg/yS30bmk/T+b+BXAZkluB04BrluLdD4AnJ7kJjpn1cckyeIhwk8GLkuyhM595e9q4icBFyRZBNw7aJuFwF/RdRl7kkOSnDzmI5AkSZIkbTTSOck7OSXZG3hpVZ3adi5jsdtuu9WyZcvaTkOTiPdFqdesKfWS9aRes6bUa9aUei3JoqqaPTjekzPm67FpwGubJ8BLkiRJkrTemdSP1q2qa4CXtJ2HJEmSJEnDmexnzCVJkiRJWq/ZmEuSJEmS1CIbc0mSJEmSWmRjLkmSJElSi2zMJUmSJElqkY25JEmSJEktsjGXJEmSJKlFNuaSJEmSJLVos7YT0OMeXrmamSde3nYamkTmzVrFMdaUesiaUi+taT0tP2XOOsxGkqT2TEhjnuQZwIeAxcCdVXXJROxXkiRJkqT13YRcyl5VdwPnAL+1KZckSZIk6XET0pgneS/wb8DxSRYneWETPyfJc8c55zFJzmyWj0vyht5lLEmSJEnSxFjnl7IneRFwMLB3VT2aZDqwBUBVvakX+6iqT65FfptV1ape5CFJkiRJ0pqaiHvMtwPurapHAarq3oEVSfqBE6rqpiRnAX8KTAEurKr3N2OWA7Or6t4ks4FTq6qvewdJTgJWVNWpg+acDtxUVTMHje8D/gm4H9gdePZwySc5HjgOWAX8oKqOSPIC4HRgS+Bh4G+qalmS64Bjq+q2wcc3wvxzgbkA06dvy/xZfkeg3pkxpfNwJalXrCn10prWU39//7pLRpPCihUrrBP1lDWliTIRjfmVwPwkdwBXAQur6ltDjHtvVd2XZFPg6iR7VtWSdZjX3sAeVXXXKONOBHZuzvZv08R+COxXVauSvAz4F+D1wELgMOD9SbYDthupKQeoqgXAAoCddtm1Tlvqg/LVO/NmrcKaUi9ZU+qlNa2n5Uf1rbtkNCn09/fT19fXdhqaRKwpTZR1fo95Va0A9qFzVvjXwMIkxwwx9LAk3wduBv4EGNe952vghjE05QBLgC8m+Ss6Z80BpgEXJLkV+CidfAG+BBzaLB8GXNjDfCVJkiRJk9BEPZV9dVX1N5env5XO2eU/SLIzcAJwYFXtCVxO5zJx6DTDA3luyejGOv7BMaY/h86D6/YGbkyyGZ3L4K+pqj2AVw/sp3n6/G+S7AkcTucMuiRJkiRJw1rnjXmS3ZI8qyu0F/DTQcOeQqdRfiDJDOCVXeuW0znjDoMa+mF0jz90hHGjSrIJsGNVXQO8h86Z8qnNz7ubYccM2mwh8G5g2jq+FF+SJEmSNAlMxBnzqcBnk/wgyRI6l6if1D2gqm6hcwn7D4F/B/6ja/UHgNOT3ASsHsP+TgX+NsnNwPSxJpnka0m2HxTeFPhCkqVNfmdU1W+BfwX+/2Yfg2+OuxA4gs5l7QNzz05yzlhzkSRJkiRtPFJVbeewzjSN9ruq6oS2cxmL3XbbrZYtW9Z2GppEfGCJes2aUi9ZT+o1a0q9Zk2p15IsqqrZg+MTco95i54M7Jfk6LYTkSRJkiRpKJP6b95U1TLghW3nIUmSJEnScCb7GXNJkiRJktZrNuaSJEmSJLXIxlySJEmSpBbZmEuSJEmS1CIbc0mSJEmSWmRjLkmSJElSi2zMJUmSJElqkY25JEmSJEkt2qztBPS4h1euZuaJl7edhiaRebNWcYw1pR6yptRLE11Py0+ZM2H7kiRpTXjGXJIkSZKkFq3TxjzJa5NUkt27YjOT3DrKdn1JXrwuc5MkSZIkaX2wrs+YHwl8p/m5JvqACWvMk3hJvyRJkiSpFeusMU8yFXgJcCxwxDBjrk2yV9f77yR5HnAc8M4ki5Psl+TVSa5PcnOSq5LMaMaflOSEru1vbc7Ib53k8iS3NLHDh9h3f5KPJbkJePsIx7Fdk+fiZq79mvhZSW5KcluSDzSxg5Jc0LVtX5LL1uw3J0mSJEnamKzLM8WvAa6oqjuS/CbJPlW1aNCYTwHHAO9I8mxgy6q6JckngRVVdSpAkqcC+1ZVJXkT8G5g3gj7Pgj4RVXNabafNsy4Lapq9ijH8ZfA16vqn5NsCmzVxN9bVfc1sauT7AlcBSxIsnVVPQgcDpw/0uRJ5gJzAaZP35b5s1aNko40djOmdB6uJPWKNaVemuh66u/vn7B9qR0rVqzwv7N6yprSRFmXjfmRwOnN8vnN+8GN+QXAPyb5O+CNwLnDzLUDsDDJdsAWwF2j7HspcFqSDwGXVdW3hxm3cJR5AG4EPp1kc+DiqlrcxA9rmurNgO2A51bVkiRXAK9OciEwh86XCMOqqgXAAoCddtm1TlvqVfXqnXmzVmFNqZesKfXSRNfT8qP6Jmxfakd/fz99fX1tp6FJxJrSRFknl7IneRrwUuCcJMuBv6PTyKZ7XFU9BHyDztn1w4AvDjPlx4Ezq2oW8BZgyya+iicew5bNvHcAe9Np0D+YZP4w8z442rFU1bXA/sDdwLlJ3pBkZ+AE4MCq2hO4vCun85tjeSlwU1X9frR9SJIkSZI2XuvqHvNDgc9X1TOramZV7UjnLPd+Q4w9BzgDuLGq7m9ivwee3DVmGp3GGODorvhyOg04SfYGdm6WtwceqqovAB8eGDMeSZ4J3FNVZze57g08hU5T/0Bzv/sruzb5VjPmzYxyGbskSZIkSeuqMT8S+Mqg2EUM8XT25r7z3wGf6Qp/FXjdwMPfgJOAC5IsAu4dNOfTktwGvBW4o4nPAm5Ishh4P/DB0RJOckiSk4dY1QfckuRmOveMn15VtwA3Az8E/h34j67jWQ1cRqdZ/8OD35Kck2S0+9klSZIkSRuZdXJjV1UdMETsjK63ewwsNGe3NwGu7Bp7B7DnoCkuGWLOh4GXD5HCcuDro+TYN+j9pcClQ4z7LPDZIeLHjDD3W+l8UdAde9NI+UiSJEmSNk6tPsEnyRuAfwbeVVWPtZnL+mDK5puy7JQ5baehSaS/v9+HHamnrCn1kvUkSVJHq415VX0O+FybOUiSJEmS1KZ1dY+5JEmSJEkaAxtzSZIkSZJaZGMuSZIkSVKLbMwlSZIkSWqRjbkkSZIkSS2yMZckSZIkqUU25pIkSZIktcjGXJIkSZKkFtmYS5IkSZLUos3aTkCPe3jlamaeeHnbaWgSmTdrFcdYU+oha0q9ZD2NbPkpc9pOQZI0QTa4M+ZJnpFkvyRTk/gvliRJkiRpgzZqY55kdZLFSW5NckGSrSYisa79X5hk+4H3VXU38HbgLOCnzZjZSc6YyLwkSZIkSeqFsZwxf7iq9qqqPYD/Bo5bxzk9QVUdWlW/GBT+R+CKqrq1GXNTVR0/nvmTeDm/JEmSJKk1a3op+7eBXQGSXJxkUZLbkswdGJBkRZJ/TnJLkuuSzGji2ya5KMmNzevPkmySZHmSbbq2vzPJjKHGN+u/BpwH/F2SB5IcnaQvyWXN+qc1uS1p9r/n4INIckySS5N8E7h6pANOckqSHzTzndrEXp3k+iQ3J7mqyXfYY1nD37EkSZIkaSMy5rPFzZnlVwJXNKE3VtV9SaYANya5qKp+A2wNXFdV703yr8CbgQ8CpwMfrarvJNkJ+HpVPSfJJcDrgM8keSHw06q6J8m/Dx4PPKeqXtXksw/wGeBi4PldqX4AuLmqXpvkpcDngL2GOKS9gT2r6r4RjvnpTW67V1V1Nd3fAfZtYm8C3l1V84Y7llF+r3OBuQDTp2/L/FmrRhourZEZUzoPV5J6xZpSL1lPI+vv7287hQ3OihUr/L2pp6wpTZSxNOZTkixulr8NfKpZPj7J65rlHYFnAb+hc7n7ZU18EfAXzfLLgOcmGZj3KUmmAguB+XSa7COa98OOr6oVSaYDnwcOq6oHusYAvAR4PUBVfTPJ05M8pap+N+i4vjFSU954AHgE+FRzRn7guHYAFibZDtgCuKuJD3csw6qqBcACgJ122bVOW+qV9eqdebNWYU2pl6wp9ZL1NLLlR/W1ncIGp7+/n76+vrbT0CRiTWmijOVfw4er6glnnJP00WmcX1RVDyXpB7ZsVq+sqmqWV3ftYxM6Z5kfGTTX94Bdk2wLvJbO2fWRxm8KnA+cPHCP+Tg9ONqAqlqV5AXAgcChwFuBlwIfBz5SVZc2v4uTmk2GOxZJkiRJkoY03j+XNg24v2nKdwf2HcM2VwJvG3iTZC+Apon/CvAR4PbmcvhhxwOnAEuq6vxh9vNt4Khmmz7g3iHOlo9Jc0Z/WlV9DXgn8Lxm1TTg7mb56IHxIxyLJEmSJElDGm9jfgWwWZLb6TTK141hm+OB2c1D1H7AE5/uvhD4K5546fdw408AXt78CbfFSQ4ZtJ+TgH2SLGlyO5ox6Lpcv9uTgcuaub4DvKtrHxckWQTcO2ibPzqWJIckOXkseUiSJEmSNi55/KpztW233XarZcuWtZ2GJhHvi1KvWVPqJetJvWZNqdesKfVakkVVNXtwfLxnzCVJkiRJUg/YmEuSJEmS1CIbc0mSJEmSWmRjLkmSJElSi2zMJUmSJElqkY25JEmSJEktsjGXJEmSJKlFNuaSJEmSJLXIxlySJEmSpBbZmEuSJEmS1KLN2k5Aj3t45Wpmnnh522loEpk3axXHWFPqIWtKvWQ9aW0sP2VO2ylIUs94xlySJEmSpBbZmEuSJEmS1KJ11pgnWdG1/KokdyR55rranyRJkiRJG6J1fo95kgOBM4BXVNVP1/X+JEmSJEnakKzTS9mT7A+cDRxcVT9uYq9Ocn2Sm5NclWRGEz8pyQld296aZGbzuj3J2UluS3JlkinNmL2SXJdkSZKvJHnqEDmcm+SsZtxPkvQl+XQz57ljOIb/1eRyS5Jrm9jMJN9O8v3m9eImfn6SOV3bnpvk0LX6JUqSJEmSJrVU1bqZOFkJ/B7oq6olXfGnAr+tqkryJuA5VTUvyUnAiqo6tRl3K3Bws9mPgNlVtTjJl4BLq+oLSZYAb6uqbyU5GXhKVb1jUB7nAlsCRwKHAJ8H/gy4DbgROLaqFo9wHEuBg6rq7iTbVNVvk2wFPFZVjyR5FnBeVc1O8jrgtVV1dJItgB8Dz66qh0eYfy4wF2D69G33mf+xs0f/5UpjNGMK3DNs9UlrzppSL1lPWhuznjHtj2IrVqxg6tSpLWSjycqaUq8dcMABi6pq9uD4uryUfSXwXeBY4O1d8R2AhUm2A7YA7hrDXHd1Nc+LgJlJpgHbVNW3mvhngQuG2f6rzRcBS4F7qmopQJLbgJnAsI058B/Auc0XAl9uYpsDZybZC1gNPLuJ/1/g9CRPAg4Crh2pKQeoqgXAAoCddtm1TlvqX7BT78ybtQprSr1kTamXrCetjeVH9f1RrL+/n76+P45L42VNaaKsy0vZHwMOA16Q5B+64h8HzqyqWcBb6JzNBlg1KJ8tu5Yf7VpezZp/oTCw/WOD5npstLmq6jjgfcCOwKIkTwfeCdwDPA+YTecLBqrqEaAfeAVwOLBwDfOUJEmSJG1k1uk95lX1EDAHOCrJsU14GnB3s3x01/DlwN4ASfYGdh5l7geA+5Ps14T+GvjWCJuMS5L/WVXXV9V84Nd0GvRpwC+r6rFmv5t2bbIQ+BtgP+CKXucjSZIkSZpc1vnfMa+q++hc1v2+JIcAJwEXJFkE3Ns19CLgac3l5W8F7hjD9EcDH27uNd8LOHm8eSY5J8kfXevfzL+0uef9u8AtwCeAo5PcAuwOPNg1/krgz4Grquq/m7m3T/K18eYmSZIkSZq81tnD37Tmdtttt1q2bFnbaWgS8b4o9Zo1pV6yntRr1pR6zZpSryUZ8uFv6/yMuSRJkiRJGp6NuSRJkiRJLbIxlyRJkiSpRTbmkiRJkiS1yMZckiRJkqQW2ZhLkiRJktQiG3NJkiRJklpkYy5JkiRJUotszCVJkiRJapGNuSRJkiRJLdqs7QT0uIdXrmbmiZe3nYYmkXmzVnGMNaUesqbUS9aTes2a2vAsP2VO2ylI6wXPmEuSJEmS1KJxNeZJrknyikGxdyQ5K8n2SS5sYn1JLhvDfN8dTx6SJEmSJG3oxnvG/DzgiEGxI4DzquoXVXXomkxWVS8eZx6SJEmSJG3QxtuYXwjMSbIFQJKZwPbAt5PMTHLr4A2SnJTk00n6k/wkyfFd61Y0P6cmuTrJ95MsTfKagfm750xyQpKTmuXjk/wgyZIk5w+x32OSXJzkG0mWJ3lrkncluTnJdUmeNtKBJvmTJDckWdzs41lN/OIki5LclmRuEzsuyYcH7fvMsf5SJcyBZdsAABCLSURBVEmSJEkbn3E9/K2q7ktyA/BK4BI6Z8u/VFWVZKRNdwcOAJ4MLEtyVlWt7Fr/CPC6qvpdkunAdUkuHSWdE4Gdq+rRJNsMM2YP4PnAlsCPgPdU1fOTfBR4A/CxEeY/Dji9qr7YfBGxaRN/Y/N7mALcmOQi4CLge8DfNWMOB/55pOSbpn4uwPTp2zJ/1qpRDlcauxlTOg/CkXrFmlIvWU/qNWtqw9Pf3992CiNasWLFep+jJoe1eSr7wOXsA435sWPY5vKqehR4NMmvgBnAz7vWB/iXJPsDjwHPaMaMZAnwxSQXAxcPM+aaqvo98PskDwBfbeJLgT1Hmf97wHuT7AB8uarubOLHJ3lds7wj8Kyquq65GmBf4E46X0T8x0iTV9UCYAHATrvsWqct9UH56p15s1ZhTamXrCn1kvWkXrOmNjzLj+prO4UR9ff309fX13Ya2giszVPZLwEOTLI3sFVVLRrDNo92La/mj78YOArYFtinqvYC7qFzlnvVoFy37FqeA/wbsDedM9dDfRp37/exrvePDZHDE1TVvwOHAA8DX0vy0iR9wMuAF1XV84Cbu3I6HzgMeD3wlaqqkeaXJEmSJG3cxt2YV9UK4Brg03TOnvfCNOBXVbUyyQHAM5v4PcD/SPL0JE8CDgZIsgmwY1VdA7yn2X5qj3Kh2ccuwE+q6gw6X0bs2ezn/qp6KMnuwL5dm3wFeA1wJJ0mXZIkSZKkYa3ttT7n0WlEBz+hfby+CHw1yVLgJuCHAE2jfjJwA3D3QJzO/d5fSDKNzmXwZ1TVb8ez4yTHNfv65KBVhwF/nWQl8F/AvwAPAscluR1YBlw3MLiq7m/iz62qG7rm/xrwpqr6xXjykyRJkiRNTmvVmFfVxXQa4u7YcjoPW6Oq+oH+ZvmkQeP26Fqe2vy8F3jRMPs6AzhjiFUvGSXHc4Fzu97PHGrdEA35wJhTgFOGWPXKEfZ58BCxV42UpyRJkiRp4+TTMdYjUzbflGWnzGk7DU0i/f396/1DVbRhsabUS9aTes2akrShWpuHv0mSJEmSpLVkYy5JkiRJUotszCVJkiRJapGNuSRJkiRJLbIxlyRJkiSpRTbmkiRJkiS1yMZckiRJkqQW2ZhLkiRJktQiG3NJkiRJklpkYy5JkiRJUos2azsBPe7hlauZeeLlbaehSWTerFUcY02ph6wp9ZL1pF6zpjZcy0+Z03YKUqs8Yy5JkiRJUosmtDFPsqJr+VVJ7kjyzInMQZIkSZKk9UkrZ8yTHAicAbyyqn7aRg5duXg5vyRJkiSpNRPemCfZHzgbOLiqftzEXp3k+iQ3J7kqyYwmflKSE7q2vTXJzOZ1e5Kzk9yW5MokU5oxeyW5LsmSJF9J8tQhcjg3ySeTXA/86wi5bp3k8iS3NPs+vInPT3JjE1uQjt2T3NC17cwkS3v0a5MkSZIkTVKpqonbWbIS+D3QV1VLuuJPBX5bVZXkTcBzqmpekpOAFVV1ajPuVuDgZrMfAbOranGSLwGXVtUXkiwB3lZV30pyMvCUqnrHoDzOBaYDr6mq1SPk+3rgoKp6c/N+WlU9kORpVXVfE/s88KWq+mqSxcDrququJO8BNq+qD47yO5kLzAWYPn3bfeZ/7OzRf5HSGM2YAvc83HYWmkysKfWS9aRes6Y2XLOeMa3tFIa0YsUKpk6d2nYamkQOOOCARVU1e3B8oi/jXgl8FzgWeHtXfAdgYZLtgC2Au8Yw111VtbhZXgTMTDIN2KaqvtXEPwtcMMz2F4zUlDeWAqcl+RBwWVV9u4kfkOTdwFbA04DbgK8CXwIOB05pfh4+2kFU1QJgAcBOu+xapy31ynr1zrxZq7Cm1EvWlHrJelKvWVMbruVH9bWdwpD6+/vp6+trOw1tBCb6UvbHgMOAFyT5h674x4Ezq2oW8BZgyya+iifmuGXX8qNdy6tZ8y8ZHhxtQFXdAexNp0H/YHMJ+5bAJ4BDm3zP7sprIXBYkmd3Nq871zAnSZIkSdJGZsLvMa+qh4A5wFFJjm3C04C7m+Wju4Yvp9MYk2RvYOdR5n4AuD/Jfk3or4FvjbDJiJJsDzxUVV8APtzkMtCE35tkKnBo1/5/TOdLgn+k06RLkiRJkjSiVq71qar7khwEXJvk18BJwAVJ7ge+yeMN+EXAG5LcBlwP3DGG6Y8GPplkK+AnwN+MtkGS2cBxVfWmQatmAR9O8hidy/D/tqp+m+Rs4Fbgv4AbB22zkE4T/4cvEZp73W+qqkvHkL8kSZIkaSMyoY15VU3tWv4ZTzwDfskQ4x8GXj7MdHt0jTu1a3kxsO8oeRwz6P1NwOCmnKr6OvD1IeLvA943zNynAqcOis0fKR9JkiRJ0sbLp2OsR6ZsvinLTpnTdhqaRPr7+9fbh6low2RNqZesJ/WaNSVpQzXh95hLkiRJkqTH2ZhLkiRJktQiG3NJkiRJklpkYy5JkiRJUotszCVJkiRJapGNuSRJkiRJLbIxlyRJkiSpRTbmkiRJkiS1yMZckiRJkqQWparazkGNnXbZtTY57PS209AkMm/WKk5bulnbaWgSsabUS9aTes2aUq9ZUxuG5afMaTuFMUuyqKpmD457xlySJEmSpBbZmEuSJEmS1KKeNeZJrknyikGxdyQ5K8n2SS5sYn1JLhvDfN/tVW6SJEmSJK2vennG/DzgiEGxI4DzquoXVXXomkxWVS/uWWYjSOJNI5IkSZKk1vSyMb8QmJNkC4AkM4HtgW8nmZnk1sEbJDkpyaeT9Cf5SZLju9ataH5OTXJ1ku8nWZrkNQPzd8+Z5IQkJzXLxyf5QZIlSc4fYr/HJLk0yTeBq0c6qCSndM11ahN7dZLrk9yc5KokM5JskmR5km26tr0zyYwx/wYlSZIkSRudnp0trqr7ktwAvBK4hM7Z8i9VVSUZadPdgQOAJwPLkpxVVSu71j8CvK6qfpdkOnBdkktHSedEYOeqerS7UR5kb2DPqrpvuEmSPB14HbB7cxwDc30H2LeJvQl4d1XNS3JJM/4zSV4I/LSq7hkp0SRzgbkA06dvy/xZq0Y5NGnsZkzpPE1U6hVrSr1kPanXrCn1mjW1Yejv7287hbXW68u4By5nH2jMjx3DNpdX1aPAo0l+BcwAft61PsC/JNkfeAx4RjNmJEuALya5GLh4mDHfGKkpbzxA54uBTzX3xQ/cG78DsDDJdsAWwF1NfCEwH/gMneNfOMr8VNUCYAF0/lyaf45BveSf+FCvWVPqJetJvWZNqdesqQ3D8qP62k5hrfX6qeyXAAcm2RvYqqoWjWGbR7uWV/PHXxYcBWwL7FNVewH3AFsCq3hi/lt2Lc8B/o3OWfEbh7mP/MHREquqVcAL6FymfzBwRbPq48CZVTULeEvXvr8H7JpkW+C1wJdH24ckSZIkaePW08a8qlYA1wCfpnP2vBemAb+qqpVJDgCe2cTvAf5HkqcneRKdxpkkmwA7VtU1wHua7aeOZ8dJpgLTquprwDuB53XldHezfPTA+Koq4CvAR4Dbq+o349mvJEmSJGnjsS6uyziPTnM6+Ant4/VF4KtJlgI3AT8EaBr1k4Eb6DTJP2zGbwp8Ick0OpfBn1FVvx1tJ0kWN2fkuz0ZuCTJls1c72riJwEXJLkf+Cawc9c2C4EbgWO65j4EmF1V88d60JIkSZKkjUM6J3m1Pthtt91q2bJlbaehSaS/v5++vr6209AkYk2pl6wn9Zo1pV6zptRrSRZV1ezB8V7fYy5JkiRJktaAjbkkSZIkSS2yMZckSZIkqUU25pIkSZIktcjGXJIkSZKkFvlU9vVIkt8DPpZdvTQduLftJDSpWFPqJetJvWZNqdesKfXaM6tq28HBdfF3zDV+y4Z6dL40XklusqbUS9aUesl6Uq9ZU+o1a0oTxUvZJUmSJElqkY25JEmSJEktsjFfvyxoOwFNOtaUes2aUi9ZT+o1a0q9Zk1pQvjwN0mSJEmSWuQZc0mSJEmSWmRjLkmSJElSi2zM1wNJDkqyLMmPkpzYdj5avyTZMck1SX6Q5LYkb2/iT0vyjSR3Nj+f2sST5IymnpYk2btrrqOb8XcmOborvk+Spc02ZyTJxB+pJlKSTZPcnOSy5v3OSa5vamBhki2a+JOa9z9q1s/smuPvm/iyJK/oivuZtpFJsk2SC5P8MMntSV7kZ5TWRpJ3Nv/m3ZrkvCRb+jmlNZHk00l+leTWrtg6/1wabh/SaGzMW5ZkU+DfgFcCzwWOTPLcdrPSemYVMK+qngvsC/yfpkZOBK6uqmcBVzfvoVNLz2pec4GzoPMPBfB+4IXAC4D3d/1jcRbw5q7tDpqA41K73g7c3vX+Q8BHq2pX4H7g2CZ+LHB/E/9oM46mBo8A/oROvXyiafb9TNs4nQ5cUVW7A8+jU1t+RmlckjwDOB6YXVV7AJvS+bzxc0pr4lz++LNiIj6XhtuHNCIb8/a9APhRVf2kqv4bOB94Tcs5aT1SVb+squ83y7+n8z+8z6BTJ59thn0WeG2z/Brgc9VxHbBNku2AVwDfqKr7qup+4BvAQc26p1TVddV5GuTnuubSJJRkB2AOcE7zPsBLgQubIYPraaDOLgQObMa/Bji/qh6tqruAH9H5PPMzbSOTZBqwP/ApgKr676r6LX5Gae1sBkxJshmwFfBL/JzSGqiqa4H7BoUn4nNpuH1II7Ixb98zgJ91vf95E5P+SHN53vOB64EZVfXLZtV/ATOa5eFqaqT4z4eIa/L6GPBu4LHm/dOB31bVquZ9dw38oW6a9Q8049e0zjR57Qz8GvhMOrdHnJNka/yM0jhV1d3AqcB/0mnIHwAW4eeU1t5EfC4Ntw9pRDbm0gYiyVTgIuAdVfW77nXNt7X+7UONKsnBwK+qalHbuWjS2AzYGzirqp4PPMigSzf9jNKaaC4Vfg2dL322B7bG2xfUYxPxueRnn9aEjXn77gZ27Hq/QxOT/iDJ5nSa8i9W1Zeb8D3NpVQ0P3/VxIerqZHiOwwR1+T0Z8AhSZbTuXzzpXTuD96muWQUnlgDf6ibZv004DeseZ1p8vo58POqur55fyGdRt3PKI3Xy4C7qurXVbUS+DKdzy4/p7S2JuJzabh9SCOyMW/fjcCzmieNbkHnISWXtpyT1iPNfXKfAm6vqo90rboUGHg66NHAJV3xNzRPGN0XeKC5pOrrwMuTPLU5G/Fy4OvNut8l2bfZ1xu65tIkU1V/X1U7VNVMOp8336yqo4BrgEObYYPraaDODm3GVxM/onka8s50HnxzA36mbXSq6r+AnyXZrQkdCPwAP6M0fv8J7Jtkq+a/+UBN+TmltTURn0vD7UMaWVX5avkFvAq4A/gx8N628/G1fr2Al9C5DGoJsLh5vYrO/XNXA3cCVwFPa8aHztNmfwwspfNU24G53kjn4Tc/Av6mKz4buLXZ5kwgbR+3rwmprT7gsmZ5Fzr/w/oj4ALgSU18y+b9j5r1u3Rt/96mZpYBr+yK+5m2kb2AvYCbms+pi4Gn+hnlay1r6gPAD5v/7p8HnuTnlK81rKHz6DyjYCWdK3uOnYjPpeH24cvXaK+BApIkSZIkSS3wUnZJkiRJklpkYy5JkiRJUotszCVJkiRJapGNuSRJkiRJLbIxlyRJkiSpRTbmkiRJkiS1yMZckiRJkqQW/T9GD/NFUG1migAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 1152x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"df['sav_pavadinimas'].value_counts()[:10].plot.barh(figsize=(16, 4), grid=True);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"O kaip dėl seniniūnijų top 10, pagal pastatų skaičių?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 168, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABAEAAAD4CAYAAACdUf/aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5hdZX33//eHECESBWnSXErFiFgViSIgigc6eEAlFrVSDw/9KVWb0l89tcGKjxSx1aexilW0goAaDxRFPKGo4IENeEAgEkgQ4wFi6+HBA4qMYiTh+/yx18hmmMlMJhN21t7v13Xta9a+173u9V37yx6yv/te96SqkCRJkiRJg2+HfgcgSZIkSZLuGhYBJEmSJEkaEhYBJEmSJEkaEhYBJEmSJEkaEhYBJEmSJEkaEjv2OwD1x2677VZ77713v8PQDP3mN79hl1126XcY2grmsN3MX/uZw3Yzf+1nDtvN/LXDqlWrfl5VC8e3WwQYUosWLeKKK67odxiaoU6nw8jISL/D0FYwh+1m/trPHLab+Ws/c9hu5q8dkvxgonZvB5AkSZIkaUhYBJAkSZIkaUhYBJAkSZIkaUhYBJAkSZIkaUi4MOCQuuXWTSw+7rx+h6EZWr5kI0ebv1YbpByuX7G03yFIkiRpmpwJ0EiyS5KnJ5mT5C/7HY8kSZIkSbNt4IoASSrJh3qe75jkZ0k+s7njquo3wBHAKcDN0zjP15qfIxONneSIJMdt8QVIkiRJkrSNDFwRAPgNsG+Sec3zJwM/muaxrwOuqqrPT9Wxqh4zxf5zq2rFNM8rSZIkSdI2N4hFAIDPAmM3qT4fOGtsR5KDknw9yZVJvpbkQU37GcDngL9pZg68rml/VZLLk1yd5PU944yOP2mSRzbjPiDJ0Une2bSvTHLkFMfukuS8JFclWZvkuU37AUkuSrIqyflJ7t20d5K8KcllSb6T5PFb/apJkiRJkgbaoC4M+GHghGaa/sOA9wJjH5K/DTy+qjYmeRLwf4BnV9VLAJLcD/g8sDLJYcADgYOAAOcmOaSqLh5/wiSPAd4BPKOq/nsGH8qfCvy4qpY24+2aZG7PmD9rCgNvBF7UHLNjVR2U5HC6sxietLkTJFkGLANYsGAhJyzZuIUhanuxaF53YTm11yDlsNPp9DuEu9zo6OhQXvcgMYftZv7azxy2m/lrt4EsAlTV1UkW050F8Nlxu3cF3p/kgUABc8d2JNkZ+Cjwsqr6QZKXAYcBVzZd5tMtCowvAjwEOA04rKp+PMOw1wAnJXkT8JmquiTJvsC+wBeSAMwBftJzzMebn6uAxVOdoKpOa+Jkz732rpPWDGT6h8LyJRsxf+02SDlcf9RIv0O4y3U6HUZGRvodhraCOWw389d+5rDdzF+7Dca/QCd2LvAWYAT4o572fwUurKpnNYWCTs++U4GPV9UXm+cB/q2q3j3FuX4C7Aw8ApioCLCR5taLJDsAdxvfoaq+k2R/4HDgDUm+BHwCuKaqDp7kvBuan5sY7FxKkiRJkmbBoK4JAN1bAF5fVWvGte/K7QsFHj3WmOTvgXuMW8zvfOBFSeY3ffZI8scTnOtXdNcg+LckIxPsXw8c0GwfQc/sg57z3wf4bVV9CHgzsD+wDliY5OCmz9wkD53sgiVJkiRJ2pyBLQJU1Q+r6uQJdv073Q/rV3LHb8+PBZYkWd08jqmqC4D/Ar6eZA1wDnCPSc53A/B04D+TPGrc7tOBP0tyFXAw3b9gMN4S4LIkq+ne3/+Gqvo9cCTwpubY1cBm/ypBkvskGX8LhCRJkiRJgzeFvKrmT9DWoZn2X1VfB/60Z/fxTfv9Jxnv7cDbJzvPuLH/Gxj7pv4bwMqm/Qbg0QDNny5cOMF459OdeTC+fTVwyATtIz3bP6dZE6BZk+Dwia5FkiRJkjTcBq4I0AI7051xcGxVvaVfQcybO4d1K5ZO3VHbpU6nM5SLsQ0ScyhJkqR+sAhwF6uqXwKP7HcckiRJkqThM7BrAkiSJEmSpDuyCCBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pDYsd8BqD9uuXUTi487r99haIaWL9nI0eav1YYth+tXLO13CJIkScKZAJIkSZIkDY3NFgGSLE6ydlzbiUmObbY7SQ7clgFOR5KvbaNxj0nyghkct1+Sw7dFTJIkSZIkzdR2fTtAkh2rauNU/arqMdvi/FV16gwP3Q84EPjsLIYjSZIkSdJWmZXbAZLskGRlkjc0z0eTvDnJNUm+mOSgZtbAdUmOaPrMafpcnuTqJH/btI8kuSTJucC3mrZ/TrIuyVeSnNUzE+EBST6fZFVzzIOb9r9MsjbJVUkuniDekSQXJflUE9OKJEcluSzJmiQPaPqduKXnSnI34F+A5yZZneS5SXZP8snmOi9N8rAJYnpoc/7VTb8HNu1/1dP+7iRzel7jNzbnvTTJotnIpSRJkiRpcM3GTIAdgTOBtVX1xqZtF+DLVfWqJJ8A3gA8GdgHeD9wLvBi4KaqemSSnYCvJrmgOX5/YN+quj7JI4FnAw8H5gLfBFY1/U4Djqmq7yZ5FPAu4AnACcBTqupHSXabJO6HAw8BbgSuA86oqoOSvAJ4GfDKcf2nda6q+n2SE4ADq+qlAEneAVxZVc9M8gTgA3RnC/Q6Bnh7VZ3ZFBLmJHkI8FzgsVV1a5J3AUc1x+8CXFpVr03y78DfNK/zpJIsA5YBLFiwkBOWTDnJQtupRfO6C8upvYYth51Op98hzKrR0dGBu6ZhYw7bzfy1nzlsN/PXblMVAWoa7e8Gzu4pAAD8Hvh8s70G2NB8iF0DLG7aDwMeluTI5vmuwAObYy+rquub9scCn6qq3wG/S/JpgCTzgccAH00ydt6dmp9fBVYmORv4+CTXcHlV/aQZ6/vAWAFiDXBob8dZONfj6BYyqKovJ/mjJPesql/39Pk68NokfwJ8vCk2PBE4ALi8Oe884KdN/98Dn2m2V9EtsmxWVZ1Gt5jBnnvtXSet2a7vBtFmLF+yEfPXbsOWw/VHjfQ7hFnV6XQYGRnpdxjaCuaw3cxf+5nDdjN/7TbVv0B/AdxrXNvuwPU9z78GHJrkpOaDOsCtVTVWKLgN2ABQVbclGTtngJdV1fm9gycZAX4zjdh3AH5VVeO/Uaeqjmm+rV8KrEpyQFX9Yly3DT3bt/U8v407vy5bdK5pxH4nVfVfSb7RjPPZ5vaIAO+vqtdMcEjva7xpgpglSZIkSbqDza4JUFWjwE+aKewk2R14KvCVnm7vobsA3tk9H/Cn43zg75LMbcb+0yS7TNDvq8CfJ9m5+Ub+6U1svwauT/KXzfFJ8vBm+wFV9Y2qOgH4GXDfLYjrTmZwrpuBe/QMcQndafxjRY6fj5sFQJK9gOuq6mTgU8DDgC8BRyb546bP7knutzXXIkmSJEkaXtNZGPAFwD8nWQ18GXh9VX2/t0NVvRW4EvhgkukuNngG3YX/vpnunyF8NxN8m11Vl9NdQ+Bq4HN0p+vf1Ow+CnhxkquAa4BnNO1vbhb4W0t3psJV04xpc7bkXBcC+4wtDAicCByQ5GpgBfDCCcZ/DrC2eZ33BT5QVd8CjgcuaI79AnDvzQWZ5Igk/7KV1ypJkiRJGkC5fUb59ivJ/KoaTXJ34GJgWVV9s99xtdmDHvSgWrduXb/D0Ax5H1b7mcN2M3/tZw7bzfy1nzlsN/PXDklWVdWB49vbch/5aUn2AXame4+8BQBJkiRJkrZQK4oAVfW/+h2DJEmSJEltN9379yVJkiRJUstZBJAkSZIkaUhYBJAkSZIkaUhYBJAkSZIkaUhYBJAkSZIkaUhYBJAkSZIkaUhYBJAkSZIkaUhYBJAkSZIkaUjs2O8A1B+33LqJxced1+8wNEPLl2zkaPPXauaw3WY7f+tXLJ21sSRJkjbHmQCSJEmSJA0JiwBbIMnjk+yRZCTJffodjyRJkiRJW2JoigBJRmd43BlJ9mmergbeATyrqn7c7O8kOXCC4z6bZLcZByxJkiRJ0ixzTYApVNVLerZvBv5imscdvs2CkiRJkiRpBoZmJgBAut6cZG2SNUme27SPNN/on5Pk20nOTJJmXyfJgUnmJFnZc+w/jBt7h2b/G5rn65MsaLb/sTlubZJXThDXhGMneUCSzydZleSSJA9u2lcmOTnJ15Jcl+TIbfvKSZIkSZIGwbDNBPgLYD/g4cAC4PIkFzf7HgE8FPgx8FXgscBXeo7dD9ijqvYFGDfVf0fgTGBtVb2x94RJDgD+GngUEOAbSS6qqiunMfZpwDFV9d0kjwLeBTyh2Xdv4HHAg4FzgXOmuvgky4BlAAsWLOSEJRunOkTbqUXzuquTq73MYbvNdv46nc6sjaXpGR0d9XVvMfPXfuaw3cxfuw1bEeBxwFlVtQm4IclFwCOBXwOXVdUPAZKsBhZzxyLAdcBeSd4BnAdc0LPv3cDZ4wsAPef8RFX9phn748Djgd4iwJ3GTjIfeAzw0WZSAsBOPcd8sqpuA76VZNF0Lr6qTqNbWGDPvfauk9YMW/oHx/IlGzF/7WYO222287f+qJFZG0vT0+l0GBkZ6XcYmiHz137msN3MX7sN1e0AU9jQs72JcQWSqvol3RkEHeAY4Iye3V8DDk2y80xOPMnYOwC/qqr9eh4PmSTeIEmSJEnSFIatCHAJ8NzmHvyFwCHAZdM5sLm/f4eq+hhwPLB/z+73AJ8Fzk4y/quhS4BnJrl7kl2AZzVtmx27qn4NXJ/kL5s+SfLwLbxeSZIkSZL+YCjmojYfzDcAnwAOBq4CCvinqvq/YwvuTWEP4H1Jxgonr+ndWVVvTbIr8MEkR/W0fzPJSm4vNpwxbj2AzY19FHBKkuOBucCHm9g3d62rq2q/aVyPJEmSJGnIDEURgO6Cf9+vqgJe1Tz+oKo6dKfijz1/ac/2SE/X3m//77S/ql7Xs2txT/tbgbdOFlxVXTXJ2NcDT52g/ehxz+f3bE+rADBv7hzWrVg6na7aDnU6He8hbjlz2G7mT5IktdXA3w6Q5BjgLLrT7CVJkiRJGloDPxOgqk4FTu13HJIkSZIk9dvAzwSQJEmSJEldFgEkSZIkSRoSFgEkSZIkSRoSFgEkSZIkSRoSFgEkSZIkSRoSFgEkSZIkSRoSFgEkSZIkSRoSFgEkSZIkSRoSO/Y7APXHLbduYvFx5/U7DM3Q8iUbOdr8tZo5bLd+52/9iqV9O7ckSWo3ZwJIkiRJkjQkBqYIkGRTktVJ1ib5aJK7T9Lvs0l2m2Ks0S08dyfJgT3P90lyxpaMIUmSJEnStjYwRQDglqrar6r2BX4PHNO7M107VNXhVfWrbRlIVX2rql6yLc8hSZIkSdKWGqQiQK9LgL2TLE6yLskHgLXAfZOsT7IAIMlfJbmsmUHw7iRzegdJsiDJ15MsTTKS5DM9+96Z5OjxJ05yWHPMN5sZCfOb9hVJvpXk6iRvmeC4P2viWJ3kyiT3aNpfleTy5rjXN22Lk1yb5PQk1yS5IMm82Xv5JEmSJEmDaOAWBkyyI/A04PNN0wOBF1bVpc3+sX4PAZ4LPLaqbk3yLuAo4APN/kXAucDxVfWFJCPTOPcC4HjgSVX1mySvBv4xyX8CzwIeXFU1ye0IxwJ/X1VfbQoHv0tyWBP/QUCAc5McAvx30/78qvqbJGcDzwY+NEV8y4BlAAsWLOSEJRunuiRtpxbN6y5MpvYyh+3W7/x1Op2+nXtQjI6O+jq2mPlrP3PYbuav3QapCDAvyepm+xLgPcB9gB+MFQDGeSJwAHB5UxiYB/y02TcX+BLdD+UXbUEMjwb2Ab7ajHk34OvATcDvgPc0swk+M8GxXwXemuRM4ONV9cOmCHAYcGXTZz7dD///DVxfVWPXuwpYPFVwVXUacBrAnnvtXSetGaT0D5flSzZi/trNHLZbv/O3/qiRvp17UHQ6HUZGRvodhmbI/LWfOWw389dug/Qv0Fuqar/ehuaD+G8m6R/g/VX1mgn2baT7wfopwEU9bb23T+w8yZhfqKrn32lHchDdwsORwEuBJ/Tur6oVSc4DDqdbRHhKM96/VdW7x421GNjQ07SJbhFDkiRJkqRJDeqaANPxJeDIJH8MkGT3JPdr9hXwIuDBzZR+gB8A+yTZqZnO/8QJxrwUeGySvZsxd0nyp830/l2r6rPAPwAPH39gkgdU1ZqqehNwOfBg4HzgRT3rCuwxFq8kSZIkSVtqkGYCbJGq+laS44ELkuwA3Ar8Pd0P+1TVpiTPp3sf/s1V9a7m3vu1wPXcPkW/d8yfNYsFnpVkp6b5eOBm4FNJdqb77f4/ThDSK5McCtwGXAN8rqo2NGsXfL2Z1TAK/BXdb/4nlOSYJpZTt+wVkSRJkiQNuoEpAlTV/Ana1gP7jmtb3LP9EeAjk41VVRvo3hIw1v5PwD9N0H+kZ/vLwCMnCPGgKeJ/2STtbwfePsGufXv6vKVn2w//kiRJkqQJDUwRQFtm3tw5rFuxtN9haIY6nY4Lg7WcOWw38ydJktpqmNcEkCRJkiRpqFgEkCRJkiRpSFgEkCRJkiRpSFgEkCRJkiRpSFgEkCRJkiRpSFgEkCRJkiRpSFgEkCRJkiRpSFgEkCRJkiRpSFgEkCRJkiRpSFgEkCRJkiRpSOzY7wDUH7fcuonFx53X7zA0Q8uXbORo89dq5rDd2pC/9SuW9jsESZK0HXImwBZK8uwkOyZ5TpI5TduuSZ6W5J5JDu93jJIkSZIkTWTgigBJnpmkkjx4K8cZnWTXd4EvATtV1SaAqroJeBTwYeDK5vgjkhy3NTFIkiRJkjSbBvF2gOcDX2l+vm62B6+qq4E/m6D9xHHPzwXOne3zS5IkSZI0UwM1EyDJfOBxwIuB5/W0jyTpJDknybeTnJmuJyT5ZE+/Jyf5xLgxFyT5epKlSe6d5OIkq5OsTfL4ps9Tk3wzyVVJvtS0HZ3knc32yiRH9ox5p1kGSXZJcl4zxtokz23aD0hyUZJVSc5Pcu+mvZPkTUkuS/KdsVgkSZIkSZrMoM0EeAbw+ar6TpJfJDmgqlY1+x4BPBT4MfBV4LHAhcC7kiysqp8Bfw28d2ywJIvofpt/fFV9Icly4PyqemOzHsDdkywETgcOqarrk+w+w9ifCvy4qpY25941yVzgHcAzqupnTWHgjcCLmmN2rKqDmnUIXgc8aXMnSLIMWAawYMFCTliycYahqt8WzesuTKb2Moft1ob8dTqdfoewXRsdHfU1ajHz137msN3MX7sNWhHg+cDbm+0PN8/HigCXVdUPAZKsBhZX1VeSfBD4qyTvAw4GXtD0n0v33v+/r6qLmrbLgfc2H84/WVWrk4wAF1fV9QBVdeMMY18DnJTkTcBnquqSJPsC+wJfSAIwB/hJzzEfb36uAhZPdYKqOg04DWDPvfauk9YMWvqHx/IlGzF/7WYO260N+Vt/1Ei/Q9iudTodRkZG+h2GZsj8tZ85bDfz127b979gtkDzDfwTgCVJiu4H5kryqqbLhp7um7j92t8HfBr4HfDRqhr7amcj3Q/XTwEuAqiqi5McAiwFViZ5K/DLaYS3kebWiyQ7AHcb36GZvbA/cDjwhua2gk8A11TVwZOMO3ZNvdcjSZIkSdKEBmlNgCOBD1bV/apqcVXdF7ge2Oy98lX1Y7q3CBxPtyDwh110p90/OMmrAZLcD7ihqk4HzgD2By4FDkly/6bPRLcDrAcOaLaPoDvL4A6S3Af4bVV9CHhzM/Y6YGGSg5s+c5M8dKoXQpIkSZKkiQzSt8fPB940ru1jTftHpjj2TGBhVV3b21hVm5I8Hzg3yc3Ab4BXJbkVGAVe0Nyrvwz4ePMt/0+BJ48b/3TgU0muAj7fjDPeEuDNSW4DbgX+rqp+3ywoeHKSXenm623ANZNdSFNMOKOqDp/imiVJkiRJQ2ZgigBVdegEbSf3PO30tL90XNfH0f2g3nvs/ObnBrq3BIx5/wTn+RzwuXFtK4GVzfYNwKMBkswDFk4wxvnA+RO0rwYOmaB9pGf75zRrAjQzGywASJIkSZLuZGCKADOVZBXdb+aX30Wn3JnuugXHVtVb7qJz3sm8uXNYt2Jpv06vrdTpdFz0q+XMYbuZP0mS1FZDXwSoqgOm7jWr5/sl8Mi78pySJEmSJMFgLQwoSZIkSZI2wyKAJEmSJElDwiKAJEmSJElDwiKAJEmSJElDwiKAJEmSJElDwiKAJEmSJElDwiKAJEmSJElDwiKAJEmSJElDwiKAJEmSJElDYsd+B6D+uOXWTSw+7rx+h6EZWr5kI0ebv1Yzh+026Plbv2Jpv0OQJEnbiDMBJEmSJEkaEgNfBEgy2rN9eJLvJLlfkhOTHDvFscckecE0z3NykgM3s7+zuf2SJEmSJG1rQ3M7QJInAicDT6mqHySZ8piqOnW641fVy7ciPEmSJEmStrmBnwkAkOQQ4HTg6VX1/Qn2/02Sy5NcleRjSe7etP9htkDzTf7bk6xOsjbJQU37Lknem+SyJFcmeUbTPi/Jh5Ncm+QTwLye8z0/yZpmnDc1bXOSrGza1iT5hwniXJnklCSXJrkuyUhz7muTrJz9V06SJEmSNEiGYSbATsAngZGq+vYkfT5eVacDJHkD8GLgHRP0u3tV7dcUFd4L7Au8FvhyVb0oyW7AZUm+CPwt8NuqekiShwHfbMa/D/Am4ADgl8AFSZ4J/A+wR1Xt2/TbbZJY7wUcDBwBnAs8FngJcHmS/apq9WQvRJJlwDKABQsWcsKSjZN11XZu0bzuwmRqL3PYboOev06n0+8QtrnR0dGhuM5BZf7azxy2m/lrt2EoAtwKfI3uB/tXTNJn3+bD/27AfOD8SfqdBVBVFye5Z/NB/TDgiJ71BXYG9gQOoXv7AVV1dZKrm/2PBDpV9TOAJGc2ff8V2CvJO4DzgAsmieHTVVVJ1gA3VNWaZpxrgMXApEWAqjoNOA1gz732rpPWDEP6B9PyJRsxf+1mDttt0PO3/qiRfoewzXU6HUZGRvodhmbI/LWfOWw389duw3A7wG3Ac4CDkvzvSfqsBF5aVUuA19P9ID+RmuB5gGdX1X7NY8+qunZLg6yqXwIPBzrAMcAZk3Td0Py8rWd77Png/otUkiRJkrTVhqEIQFX9FlgKHJXkxRN0uQfwkyRzgaM2M9RzAZI8Dripqm6iO2vgZWlWGkzyiKbvxcD/atr2BR7WtF8G/FmSBUnmAM8HLkqyANihqj4GHA/sP+MLliRJkiRpAkPzzXFV3ZjkqcDFSX42bvc/A98Aftb8vMckw/wuyZXAXOBFTdu/Am8Drk6yA3A98HTgFOB9Sa4FrgVWNXH8JMlxwIV0ZxGcV1WfSvLwpv9YYeY1M73WJGcAp1bVFTMdQ5IkSZI0eAa+CFBV83u2/we4f/P03J72U+h+aB9/7Injmj5UVa8c1+cWuosAjj/2FuB5k8R0Fs36Aj1tVzHFt/9VdXTP9nq6CxNOtO8lmxsHYN7cOaxbsXSqbtpOdTqdobhnd5CZw3Yzf5Ikqa2G4nYASZIkSZI0BDMBZktVjfQ7BkmSJEmStoYzASRJkiRJGhIWASRJkiRJGhIWASRJkiRJGhIWASRJkiRJGhIWASRJkiRJGhIWASRJkiRJGhIWASRJkiRJGhIWASRJkiRJGhI79jsA9cctt25i8XHn9TsMzdDyJRs52vy1mjlsN/PXfuaw3ZYv2chIv4OQpJZyJoAkSZIkSUPCmQCTSLIH8CZgNfDdqvpUn0OSJEmSJGmrOBNgElX1I+AM4FcWACRJkiRJg8AiwCSSvBb4T+DlSVYneVTTfkaSfWY45tFJ3tlsH5PkBbMXsSRJkiRJm+ftABNIcjDwdGD/qtqQZAFwN4CqeslsnKOqTp2NcSRJkiRJmq5UVb9j2O4k+Qvgr6vqzyfY1wGOraorkpwCPBKYB5xTVa9r+qwHDqyqnyc5EHhLVY0kObppf2mSE4HRqnrLuDEXAFdU1eJx5x0BXg/8ClgCnA2sAV7RnP+ZVfX9Ka5rGbAMYMGChQec8LbTt/i10fZh0Ty44ZZ+R6GtYQ7bzfy1nzlst0Xz4I9337XfYWgrjI6OMn/+/H6HoRkyf+1w6KGHrqqqA8e3OxNgYhcAJyT5DvBF4CNVddEE/V5bVTcmmQN8KcnDqurqbRjXw4GHADcC1wFnVNVBSV4BvAx45eYOrqrTgNMA9txr7zppjelvq+VLNmL+2s0ctpv5az9z2G7Ll2zkOSMj/Q5DW6HT6TBiDlvL/LWbawJMoKpGgQPofmv+M+Ajzbf44z0nyTeBK4GHAjNaK2ALXF5VP6mqDcD36RYroDsjYPE2PrckSZIkqeUsgU+iqjYBHaCTZA3wQmDl2P4k9weOBR5ZVb9MshLYudm9kdsLLGNtmzPd/ht6tm/reX4b5lKSJEmSNAVnAkwgyYOSPLCnaT/gB+O63RP4DXBTkkXA03r2rac7kwDg2dM4ZW//I7c0XkmSJEmSpsNvjyc2H3hHkt3ofkv/PZoF9cZU1VVJrgS+DfwP8NWe3a8H3pPkX+nOJpjKW4Czm4X7ztuawJMcQXfxwRM212/e3DmsW7F0a06lPup0Oqw/aqTfYWgrmMN2M3/tZw7brdPp9DsESWotiwATqKpVwGMm2TfSs330JH0uAf50gvaVNLcUVNWJPe3fBh4GkOQ+THBLQFV16CkojIvjD/uq6lzg3InikiRJkiQNN28H2P7cA3h8khf2OxBJkiRJ0mBxJsB2pqrWAY/qdxySJEmSpMHjTABJkiRJkoaERQBJkiRJkoaERQBJkiRJkoaERQBJkiRJkoaERQBJkiRJkoaERQBJkiRJkoaERQBJkiRJkobEjv0OQP1xy62bWHzcef0OQzO0fMlGjjZ/rWYO2838tZ85bLdtkb/1K5bO6niStL1yJsBdIMkeSR6fZH4S/w8jSZIkSeqLgSwCJNmUZHWStUk+muTud/H5z0lyn7HnVfUj4BXAKcAPmj4HJjn5roxLkiRJkjTcBrIIANxSVftV1b7A74Fj7sqTV9WRVfXjcc3/DHy+qtY2fa6oqpfflXFJkiRJkobboPwSnFYAABBRSURBVBYBel0C7A2Q5JNJViW5JsmysQ5JRpO8MclVSS5NsqhpX5jkY0kubx6PTbJDkvVJdus5/rtJFk3Uv9n/WeAs4FVJbkrywiQjST7T7N+9ie3q5vwPG38RSY5u+nyhOf9Lk/xjkiubY3bfpq+iJEmSJKn1UlX9jmHWJRmtqvlJdgQ+Rvcb+FOS7F5VNyaZB1wO/FlV/SJJAUdU1aeT/Dvw66p6Q5L/At5VVV9JsidwflU9JMnbgdVV9b4kjwLeWFVPmqx/T1wHAO8DHg88Aji2qp6e5B3Az6vq9UmeALy1qvYbd01HA8c3x+0MfA94dVWdmuQ/gB9U1dumeF2WAcsAFixYeMAJbzt9a15m9dGieXDDLf2OQlvDHLab+Ws/c9hu2yJ/S/bYdXYH1GaNjo4yf/78foehGTJ/7XDooYeuqqoDx7cP6l8HmJdkdbN9CfCeZvvlSZ7VbN8XeCDwC7q3DHymaV8FPLnZfhKwT5Kxce+ZZD7wEeAEuh/on9c8n7R/VY0mWQB8EHhOVd3U0wfgccCzAarqy0n+KMk9q+rX467rwqq6Gbg5yU3Ap5v2NcCdZg+MV1WnAacB7LnX3nXSmkFN/+BbvmQj5q/dzGG7mb/2M4ftti3yt/6okVkdT5vX6XQYGRnpdxiaIfPXboP6f79bJvgmfYTuh/SDq+q3STp0v1EHuLVunxKxidtflx2AR1fV78aN9XVg7yQLgWcCb5ii/xzgw8C/jK0JMEMberZv63l+G4ObS0mSJEnSLBmGNQHG7Ar8sikAPBh49DSOuQB42diTJPsBNAWDTwBvBa6tql9srj+wAri6qj48yXkuAY5qjhmhe2vA+FkAkiRJkiRtlWEqAnwe2DHJtXQ/lF86jWNeDhzYLNj3Le74VwY+AvwVt98KsLn+xwKHNX+2cHWSI8ad50TggCRXN7G9cAuv7Q+SHJPkLv1rCJIkSZKkdhjIKeRVdadVKqpqA/C0qfpX1TnAOc32z4HnTnLMFUDGtU3Yv6oyvq3RafbfSPe2gklV1UpgZc/zxRPtq6pTNzeOJEmSJGl4DWQRQFObN3cO61Ys7XcYmqFOp+MCRi1nDtvN/LWfOWw38ydJMzdMtwNIkiRJkjTULAJIkiRJkjQkLAJIkiRJkjQkLAJIkiRJkjQkLAJIkiRJkjQkLAJIkiRJkjQkLAJIkiRJkjQkLAJIkiRJkjQkLAJIkiRJkjQkLAJIkiRJkjQkUlX9jkF9sOdee9cOz3l7v8PQDC1fspGT1uzY7zC0Fcxhu5m/9jOH7Wb+2s8cztz6FUv7HQKdToeRkZF+h6EpJFlVVQeOb3cmgCRJkiRJQ2KoiwBJLkzylHFtr0xySpL7JDmnaRtJ8plpjPe1bRWrJEmSJElba6iLAMBZwPPGtT0POKuqflxVR27JYFX1mFmLTJIkSZKkWTbsRYBzgKVJ7gaQZDFwH+CSJIuTrB1/QJITk7w3SSfJdUle3rNvtPk5P8mXknwzyZokzxgbv3fMJMcmObHZfnmSbyW5OsmHJzjv0Uk+meQLSdYneWmSf0xyZZJLk+w+my+MJEmSJGnwDPVqHFV1Y5LLgKcBn6I7C+Dsqqokmzv0wcChwD2AdUlOqapbe/b/DnhWVf06yQLg0iTnThHOccD9q2pDkt0m6bMv8AhgZ+B7wKur6hFJ/gN4AfC2zZ0gyTJgGcCCBQs5YcnGKULS9mrRvO6COmovc9hu5q/9zGG7mb/2M4cz1+l0+h0Co6Oj20UcmpmhLgI0xm4JGCsCvHgax5xXVRuADUl+CiwCftizP8D/SXIIcBuwR9Nnc64GzkzySeCTk/S5sKpuBm5OchPw6aZ9DfCwqYKuqtOA06D71wFckbW9XFG3/cxhu5m/9jOH7Wb+2s8cztz6o0b6HYJ/HaDlhv12AOh++H9ikv2Bu1fVqmkcs6FnexN3LqYcBSwEDqiq/YAb6H57v5E7vuY792wvBf4T2B+4PMlEvxV7z3tbz/PbJohBkiRJkqQ7GPoiQFWNAhcC76U7K2A27Ar8tKpuTXIocL+m/Qbgj5P8UZKdgKcDJNkBuG9VXQi8ujl+/izFIkmSJEkS4LfHY84CPsGd/1LATJ0JfDrJGuAK4NsATVHgX4DLgB+NtQNzgA8l2ZXurQQnV9WvZnLiJMc05zp16y5BkiRJkjRoLAIAVfVJuh++e9vW012Ij6rqAJ1m+8Rx/fbt2Z7f/Pw5cPAk5zoZOHmCXY+bIsaVwMqe54sn2ueHf0mSJEnSZCwCDKl5c+ewbsXSfoehGep0OtvFojCaOXPYbuav/cxhu5m/9jOHUv8M/ZoAkiRJkiQNC4sAkiRJkiQNCYsAkiRJkiQNCYsAkiRJkiQNCYsAkiRJkiQNCYsAkiRJkiQNCYsAkiRJkiQNCYsAkiRJkiQNCYsAkiRJkiQNiVRVv2NQH+y51961w3Pe3u8wNEPLl2zkpDU79jsMbQVz2G7mr/3MYbuZv/Yzh+02zPlbv2Jpv0OYtiSrqurA8e3OBJAkSZIkaUhYBJAkSZIkaUhYBJiGJKM924cn+U6S+/UzJkmSJEmSttRw3sgxQ0meCJwMPKWqftDveCRJkiRJ2hLOBJimJIcApwNPr6rvN21/nuQbSa5M8sUki5r2E5Mc23Ps2iSLm8e1SU5Pck2SC5LMa/rsl+TSJFcn+USSe00Qw8okpzT9rksykuS9zZgr75IXQpIkSZLUWv51gGlIcitwMzBSVVf3tN8L+FVVVZKXAA+pquVJTgRGq+otTb+1wNObw74HHFhVq5OcDZxbVR9KcjXwsqq6KMm/APesqleOi2MlsDPwfOAI4IPAY4FrgMuBF1fV6s1cxzJgGcCCBQsPOOFtp2/dC6O+WTQPbril31Foa5jDdjN/7WcO2838tZ85bLdhzt+SPXbtdwjTduihh0741wG8HWB6bgW+BrwYeEVP+58AH0lyb+BuwPXTGOv6ng/qq4DFSXYFdquqi5r29wMfneT4TzdFhzXADVW1BiDJNcBiYNIiQFWdBpwG3T8ROKx/1mMQDPOfZRkU5rDdzF/7mcN2M3/tZw7bbZjzt/6okX6HsNW8HWB6bgOeAxyU5H/3tL8DeGdVLQH+lu639AAbueNru3PP9oae7U1seSFm7Pjbxo112wzGkiRJkiQNEYsA01RVvwWWAkcleXHTvCvwo2b7hT3d1wP7AyTZH7j/FGPfBPwyyeObpv8PuGgzh0iSJEmStMX85ngLVNWNSZ4KXJzkZ8CJwEeT/BL4Mrd/2P8Y8IJmiv43gO9MY/gXAqcmuTtwHfDXM40zyRnAqVV1xUzHkCRJkiQNHhcGHFIPetCDat26df0OQzPU6XQYGRnpdxjaCuaw3cxf+5nDdjN/7WcO2838tUOSCRcG9HYASZIkSZKGhEUASZIkSZKGhEUASZIkSZKGhEUASZIkSZKGhEUASZIkSZKGhH8dYEgluRnwzwO01wLg5/0OQlvFHLab+Ws/c9hu5q/9zGG7mb92uF9VLRzfuGM/ItF2Yd1Efy5C7ZDkCvPXbuaw3cxf+5nDdjN/7WcO2838tZu3A0iSJEmSNCQsAkiSJEmSNCQsAgyv0/odgLaK+Ws/c9hu5q/9zGG7mb/2M4ftZv5azIUBJUmSJEkaEs4EkCRJkiRpSFgEkCRJkiRpSFgEGDJJnppkXZLvJTmu3/HojpKsT7ImyeokVzRtuyf5QpLvNj/v1bQnyclNLq9Osn/POC9s+n83yQv7dT2DLsl7k/w0ydqetlnLV5IDmv8evtccm7v2CgffJDk8McmPmvfh6iSH9+x7TZOPdUme0tM+4e/WJPdP8o2m/SNJ7nbXXd3gS3LfJBcm+VaSa5K8omn3fdgCm8mf78GWSLJzksuSXNXk8PVN+4Sve5Kdmuffa/Yv7hlri3KrrbeZ/K1Mcn3Pe3C/pt3foYOiqnwMyQOYA3wf2Au4G3AVsE+/4/JxhxytBxaMa/t34Lhm+zjgTc324cDngACPBr7RtO8OXNf8vFezfa9+X9sgPoBDgP2BtdsiX8BlTd80xz6t39c8aI9JcngicOwEffdpfm/uBNy/+X06Z3O/W4Gzgec126cCf9fvax6kB3BvYP9m+x7Ad5o8+T5swWMz+fM92JJH876Y32zPBb7RvF8mfN2B/x84tdl+HvCRmebWxzbN30rgyAn6+zt0QB7OBBguBwHfq6rrqur3wIeBZ/Q5Jk3tGcD7m+33A8/saf9AdV0K7Jbk3sBTgC9U1Y1V9UvgC8BT7+qgh0FVXQzcOK55VvLV7LtnVV1a3f+LfqBnLM2SSXI4mWcAH66qDVV1PfA9ur9XJ/zd2nzb8QTgnOb43v8eNAuq6idV9c1m+2bgWmAPfB+2wmbyNxnfg9uZ5r002jyd2zyKyV/33vfmOcATmzxtUW638WUNjc3kbzL+Dh0QFgGGyx7A//Q8/yGb/5+t7noFXJBkVZJlTduiqvpJs/1/gUXN9mT5NM/9NVv52qPZHt+uu8ZLm6mO7x2bSs6W5/CPgF9V1cZx7doGmmnFj6D7TZbvw5YZlz/wPdgaSeYkWQ38lO6Hv+8z+ev+h1w1+2+imyf/TdMn4/NXVWPvwTc278H/SLJT0+bv0AFhEUDavjyuqvYHngb8fZJDenc2VVT/rmdLmK/WOgV4ALAf8BPgpP6Go6kkmQ98DHhlVf26d5/vw+3fBPnzPdgiVbWpqvYD/oTuN/cP7nNI2gLj85dkX+A1dPP4SLpT/F/dxxC1DVgEGC4/Au7b8/xPmjZtJ6rqR83PnwKfoPs/0xua6VQ0P3/adJ8sn+a5v2YrXz9qtse3axurqhuafxTdBpxO930IW57DX9CdKrnjuHbNoiRz6X6APLOqPt40+z5siYny53uwnarqV8CFwMFM/rr/IVfN/l3p5sl/0/RZT/6e2tyqU1W1AXgfM38P+jt0O2URYLhcDjywWbH1bnQXZDm3zzGpkWSXJPcY2wYOA9bSzdHYKqsvBD7VbJ8LvKBZqfXRwE3N9NfzgcOS3KuZQnlY06a7xqzkq9n36ySPbu6XfEHPWNqGxj48Np5F930I3Rw+r1nd+v7AA+kueDTh79bmG+gLgSOb43v/e9AsaN4b7wGuraq39uzyfdgCk+XP92B7JFmYZLdmex7wZLprO0z2uve+N48EvtzkaYtyu+2vbDhMkr9v9xRRQ/ce/t73oL9DB8FEqwX6GNwH3VU9v0P3fq3X9jseH3fIzV50V729CrhmLD9075X7EvBd4IvA7k17gP9scrkGOLBnrBfRXVTne8Bf9/vaBvUBnEV3quqtdO9ze/Fs5gs4kO7/eL8PvBNIv6950B6T5PCDTY6upvsPnnv39H9tk4919KxwPNnv1uZ9fVmT248CO/X7mgfpATyO7lT/q4HVzeNw34fteGwmf74HW/IAHgZc2eRqLXDC5l53YOfm+fea/XvNNLc+tmn+vty8B9cCH+L2vyDg79ABeaRJjiRJkiRJGnDeDiBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pCwCCBJkiRJ0pD4f6E2BZPNmMJnAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 1152x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"df['seniunijos_pavad'].value_counts()[:10].plot.barh(figsize=(16, 4), grid=True);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Hm įdomu, Kaune yra daugiau pastatų, nei vilniuje. O jei imčiau tik gyvenamuosius pastatus?" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 169, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/4AAAD4CAYAAABVLT1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3debhdZX33//fHgBIJghian1IgUhSkRBFQoYoe1OIQx8ojUFqJSlNaFQewpY99eNBqGwesOFQfRMURURBQUMGBA0JVIBISBoNTtAoiCKLREEn8/v7Yd3SzPRnItBf7vF/Xta+z1r3utda99gfOznev4aSqkCRJkiRJo+k+wx6AJEmSJEnadCz8JUmSJEkaYRb+kiRJkiSNMAt/SZIkSZJGmIW/JEmSJEkjbIthD0Cbz3bbbVe77bbbsIehAb/+9a/Zeuuthz0MTcBsustsuslcustsustsuslcusts1mz+/Pm3VtUOg+0W/pPIjBkzuPLKK4c9DA0YHx9nbGxs2MPQBMymu8ymm8ylu8ymu8ymm8ylu8xmzZL8cKJ2L/WXJEmSJGmEWfhLkiRJkjTCLPwlSZIkSRphFv6SJEmSJI0wH+43iSy7ayUzjz9/2MPQgGNnrWCOuXSS2XSX2XTTuuSyZN7szTQaSZK0imf8JUmSJEkaYRb+QJLnJakke/S1zUxyzVrWG0vyF5t+hJIkSZIkrR8L/57DgUvbz3tiDLDwlyRJkiR11qQv/JNMA54AvBQ4bDV9Lkmyd9/8pUkeBRwNvDrJgiQHJnl2km8muSrJl5PMaP1PTHJc3/rXtCsKtk5yfpKrW9uhE+x7PMl/JrkyyfVJHpPkM0m+k+SNG/ntkCRJkiSNGB/uB88FvlhVNyT5eZJ9q2r+QJ8PAHOAVyV5OLBVVV2d5H3A0qp6G0CSBwL7V1UlOQr4J+DYNez76cCNVTW7rb/tavr9tqr2S/JK4FxgX+A24HtJ/rOqfr66HSSZC8wFmD59B06YtWJN74WGYMbU3gOx1D1m011m003rksv4+PjmGYzuZunSpb73HWU23WQu3WU268fCv3d5/8lt+pNtfrDw/zTwf5K8FngJcNpqtvWnwBlJHgzcF/jBWva9CDgpyZuB86rqa6vp99m+/tdW1U0ASb4P7ASstvCvqlOAUwB23nW3OmmRkXfNsbNWYC7dZDbdZTbdtC65LDlibPMMRnczPj7O2NjYsIehCZhNN5lLd5nN+pnUl/on2R54MnBqkiXAa4EXJkl/v6r6DfAlelcHvBD4+Go2+S7g3VU1C/h7YKvWvoK7v9dbte3eAOxDr6B/Y5ITVrPd5e3n7/qmV837L19JkiRJ0mpN6sIfOAT4aFXtUlUzq2onemfpD5yg76nAO4Erqur21vYrYJu+PtsCP2nTR/a1L6FX4JNkH+ChbfohwG+q6mPAW1f1kSRJkiRpY5nshf/hwNkDbWcxwdP9233/vwQ+1Nf8OeD5qx7uB5wIfDrJfODWgW1un+Ra4OXADa19FnB5kgXA/wXW+2F9ST7fvkiQJEmSJOn3JvVl4lV10ARt7+yb3WvVRCuq7wNc2Nf3BuCRA5s4d4JtLgMOnmAIS4AL1jLGsb7pcWB8NcueuabtSJIkSZImp0ld+K+rJC8C3gS8pqp+N+zxrK+pW05h8bzZwx6GBoyPj/uwq44ym+4ym24yF0mSusnCfx1U1UeAjwx7HJIkSZIk3VOT/R5/SZIkSZJGmoW/JEmSJEkjzMJfkiRJkqQRZuEvSZIkSdIIs/CXJEmSJGmEWfhLkiRJkjTCLPwlSZIkSRphFv6SJEmSJI0wC39JkiRJkkbYFsMegDafZXetZObx5w97GBpw7KwVzDGXTjKb7jKbbppsuSyZN3vYQ5AkaZ14xl+SJEmSpBHW+cI/yfOSVJI91rH/q5Lcfx36LUky/R6MY639k7whyVPXdZuSJEmSJG1qnS/8gcOBS9vPdfEqYK2F/6ZQVSdU1ZeHsW9JkiRJkibS6cI/yTTgCcBLgcP62seSjCc5M8m3k3w8PccADwEuSnJR6/veJFcmuTbJ6yfYx9QkX0jyd23+nCTzW/+5E/SfmeT6JO9vfS5MMrUtOy3JIW36KUmuSrIoyQeT3G+CbR2T5LokC5N8srVt3fpf3tZ/bmufk+QzSb6Y5DtJ3rLBb7AkSZIkaeSlqoY9htVKcgTw5Kp6aZL/Bl5RVfOTjAHnAn8O3AhcBry2qi5NsgTYr6pubdvYvqpuSzIF+ApwTFUtbP3GgFOBj1TVRwb6TwWuAJ5UVT9ftV1gGvDdto8FST4FfLaqPpbkNOC89voO8JSquiHJR4BvVdU7Bo7vRuChVbU8yXZV9Ysk/w5c17a3HXA58GjgfwEntOnlwGLgCVX1P2t5D+cCcwGmT99h3xPe8f57FoI2uRlT4eZlwx6FJmI23WU23TTZcpm147bDHsI6W7p0KdOmTRv2MDQBs+kmc+kus1mzgw46aH5V7TfY3vWn+h8OnNymP9nm57f5y6vqxwBJFgAz6d0SMOiFrfjdAngwsCewsC07F3hLVX28r/8xSZ7fpncCHgb8fGCbP6iqBW16ftt3v91bnxva/IeBlwHvGOi3EPh4knOAc1rbwcBzkhzX5rcCdm7TX6mqO9oxXwfsAqyx8K+qU4BTAHbedbc6aVHXI598jp21AnPpJrPpLrPppsmWy5IjxoY9hHU2Pj7O2NjYsIehCZhNN5lLd5nN+unsp3OS7YEnA7OSFDAFqCSvbV2W93VfyQTHkuShwHHAY6rq9nZGfqu+LpcBT0/yiaqqdiXBU4EDquo3ScYH+q8yuO+p63GIALOBJwLPBl6XZBYQ4AVVtXjgWB43wX47m58kSZIkqRu6fI//IcBHq2qXqppZVTsBPwAOXMt6vwK2adMPAH4N3JFkBvCMgb4nALcD72nz2wK3t6J/D2D/9Rz7YmBmkt3a/N8CF/d3SHIfYKequgj457bvacAFwCuSpPV79HqOQZIkSZKkThf+hwNnD7Sdxdqf7n8K8MUkF1XV1cBVwLeBT9A7wz/olcDU9rC8LwJbJLkemAd8Y30GXlV3Ai8GPp1kEfA74H0D3aYAH2vLrwLeWVW/AP4N2BJYmOTaNr9GSU5N8kf3cUiSJEmS1OmH+2nj2n333Wvx4sVr76jNyvuUustsustsuslcustsustsuslcusts1izJhA/36/IZf0mSJEmStIEs/CVJkiRJGmEW/pIkSZIkjTALf0mSJEmSRpiFvyRJkiRJI8zCX5IkSZKkEWbhL0mSJEnSCLPwlyRJkiRphFn4S5IkSZI0wiz8JUmSJEkaYVsMewDafJbdtZKZx58/7GFowLGzVjDHXDrJbLrLbLrJXO5uybzZwx6CJEmAZ/wlSZIkSRppFv6SJEmSJI2we1Xhn+R1Sa5NsjDJgiSP20jbHU+y30ba1qlJ9twY25IkSZIkaUPda+7xT3IA8Cxgn6panmQ6cN8hD+tukkypqqOGPQ5JkiRJkla5N53xfzBwa1UtB6iqW6vqRoAk+ya5OMn8JBckeXBrH0/y5iSXJ7khyYGtfWqSTya5PsnZwNTWfnSSt67aYZI5Sd7dps9p2782ydy+PkuTnJTkauCA/qsHkhyeZFGSa5K8eaKDSjIvyXXtKoa3tbYdkpyV5Ir2enxrPzHJB9s+vp/kmI38HkuSJEmSRkyqathjWCdJpgGXAvcHvgycUVUXJ9kSuBh4blXdkuRQ4GlV9ZIk48D8qjo2yTOB11TVU5O8Btir9Xkk8C1gf+CHwNerare2zy8Ab6qqS5NsX1W3JZkKXAE8qap+nqSAQ6vqU22dceA44EbgG8C+wO3AhcA7q+qcvmN6EPDfwB5VVUm2q6pfJPkE8F9tvzsDF1TVI5KcCBwMHARsAywG/r+qumsN79tcYC7A9Ok77HvCO96//iFok5gxFW5eNuxRaCJm011m003mcnezdtx22EP4vaVLlzJt2rRhD0MTMJtuMpfuMps1O+igg+ZX1R/dxn6vudS/qpYm2Rc4kF7he0aS44Ergb2ALyUBmALc1LfqZ9rP+cDMNv1E4J1tuwuTLGzTt7Qz6fsD3wH2AC5r6xyT5PlteifgYcDPgZXAWRMM+THAeFXdApDk422/5/T1uQO4E/hAkvOA81r7U4E92/EAPKB98QFwfrvqYXmSnwEzgB+v4X07BTgFYOddd6uTFt1rIp80jp21AnPpJrPpLrPpJnO5uyVHjA17CL83Pj7O2NjYsIehCZhNN5lLd5nN+rlXfTpX1UpgHBhPsgg4kl5Bf21VHbCa1Za3nytZt+P9JPBC4NvA2e1M/Bi9YvyAqvpNO6u/Vet/ZxvXPVZVK5I8FngKcAjwcuDJ9G7B2L+q7uzv374IWN7XtK7HJEmSJEmapO419/gn2T3Jw/qa9qZ3af5iYIf28D+SbJnkz9eyuUuAv2799wIe2bfsbOC5wOH0vgQA2Ba4vRX9e9C7LWBtLgeelGR6kiltexcPHNM0YNuq+jzwauBRbdGFwCv6+u29DvuTJEmSJOmP3GsKf2Aa8OFVD8ID9gROrKrf0jtb/ub2gL0FwF+sZVvvBaYluR54A72rBgCoqtuB64Fdqury1vxFYIvWfx69e/fXqKpuAo4HLgKupvesgXMHum0DnNeO51LgNa39GGC/9sC/64Cj17a/JJ9P8pC19ZMkSZIkTS73msvEq2o+qynoq2oBvfvnB9vH+qZvpd3jX1XLgMPWsK9nDcwvB56xmr7TBub793k6cPoa9nMT8NgJ2m8FDp2g/cSB+b36pp+5uv2sMnXLKSyeN3tt3bSZjY+Pd+o+UP2B2XSX2XSTuUiS1E33pjP+kiRJkiTpHrLwlyRJkiRphFn4S5IkSZI0wiz8JUmSJEkaYRb+kiRJkiSNMAt/SZIkSZJGmIW/JEmSJEkjzMJfkiRJkqQRZuEvSZIkSdIIs/CXJEmSJGmEbTHsAWjzWXbXSmYef/6wh6EBx85awRxz6SSz6S6z6SZz6a5hZ7Nk3uyh7VuS5Bl/SZIkSZJG2qQr/JNclORpA22vSvLee7idpRO0PSTJmRs6RkmSJEmSNpZJV/gDpwOHDbQd1trXKj0Tvm9VdWNVHbKB45MkSZIkaaOZjIX/mcDsJPcFSDITeAjwtTb/2iRXJFmY5PWr+iRZnOQjwDXATqs2lmR6kq8nmd36XdPa5yR5d1+/85KMDQ4mybwk17X9va217ZDkrDaOK5I8vrWfmOSDScaTfD/JMZviDZIkSZIkjY5J93C/qrotyeXAM4Bz6Z3t/1RVVZKDgYcBjwUCfDbJE4EftfYjq+obAElIMgP4LPCvVfWl9iXCOkvyIOD5wB5t/9u1RScD/1lVlybZGbgAeERbtgdwELANsDjJe6vqrjXsYy4wF2D69B04YdaKezJEbQYzpvYeuqTuMZvuMptuMpfuGnY24+PjQ9t31y1dutT3p4PMpbvMZv1MusK/WXW5/6rC/6Wt/eD2uqrNT6NX8P8I+OGqor/ZEvgK8LKqung9x3EHcCfwgSTnAee19qcCeyZZ1e8BSaa16fOrajmwPMnPgBnAj1e3g6o6BTgFYOddd6uTFk3WyLvr2FkrMJduMpvuMptuMpfuGnY2S44YG9q+u258fJyxsbFhD0MDzKW7zGb9TNZP53OB/0yyD3D/qprf2gP8R1X9v/7O7Uz+rwe2sQKYDzwNmKjwX8Hdb6XYarBDVa1I8ljgKcAhwMuBJ7f19q+qOwfGAbC8r2klkzdDSZIkSdI6mIz3+FNVS4GLgA9y94f6XQC8ZNXZ9SQ7JvmT1W0GeAmwR5J/nmD5EmDvJPdJshO92wfupu1n26r6PPBq4FFt0YXAK/r67X0PDk+SJEmSpN+bzGeLTwfOpu8J/1V1YZJHAF9vZ9eXAn9D78z6H6mqlUkOp/csgF8Bn+9bfBnwA+A64HrgWxNsYhvg3CRb0bva4DWt/RjgPUkW0svoEuDoNR1Mks8DR1XVjWvqJ0mSJEmaXCZt4V9V59ArtgfbT6b3cL1Bew30m9Z+Lqd3uf/d+lVVAUesakxyKnDFwDZuYoIrAarqVuDQCdpPHJjfq2/6mROMWZIkSZI0yU3awn8IdgDeA8wZ1gCmbjmFxfNmD2v3Wo3x8XEfetRRZtNdZtNN5tJdZiNJk5uF/2ZSVc8d9hgkSZIkSZPPpHy4nyRJkiRJk4WFvyRJkiRJI8zCX5IkSZKkEWbhL0mSJEnSCLPwlyRJkiRphFn4S5IkSZI0wiz8JUmSJEkaYRb+kiRJkiSNMAt/SZIkSZJG2BbDHoA2n2V3rWTm8ecPexgacOysFcwxl04ym+4ym24yl+7qSjZL5s0e9hAkaVLyjL8kSZIkSSNs5Ar/JEv7pp+Z5IYkuyQ5Mclxa1n36CQvWsf9vDPJfmtYPr6m5ZIkSZIkbQ4je6l/kqcA7wSeVlU/TLLWdarqfeu6/ao6ZgOGJ0mSJEnSZjFyZ/wBkjwReD/wrKr63gTL/y7JFUmuTnJWkvu39t9fFdDO2J+cZEGSa5I8trVvneSDSS5PclWS57b2qUk+meT6JGcDU/v2d3iSRW07b25tU5Kc1toWJXn1BOM8Lcl7k3wjyfeTjLV9X5/ktI3/zkmSJEmSRs0onvG/H3AOMFZV315Nn89U1fsBkrwReCnwrgn63b+q9m5fJHwQ2At4HfDVqnpJku2Ay5N8Gfh74DdV9YgkjwS+1bb/EODNwL7A7cCFSZ4H/A+wY1Xt1fptt5qxPhA4AHgO8Fng8cBRwBVJ9q6qBWt6M5LMBeYCTJ++AyfMWrGm7hqCGVN7D11S95hNd5lNN5lLd3Ulm/Hx8WEPoXOWLl3q+9JB5tJdZrN+RrHwvwv4b3rF/CtX02evVvBvB0wDLlhNv9MBquqSJA9oxfnBwHP6nhewFbAz8ER6txZQVQuTLGzLHwOMV9UtAEk+3vr+G7BrkncB5wMXrmYMn6uqSrIIuLmqFrXtXAvMBNZY+FfVKcApADvvuludtGgUI793O3bWCsylm8ymu8ymm8ylu7qSzZIjxoY9hM4ZHx9nbGxs2MPQAHPpLrNZP6N4qf/vgBcCj03yv1fT5zTg5VU1C3g9veJ9IjXBfIAXVNXe7bVzVV1/TwdZVbcDjwLGgaOBU1fTdXn7+bu+6VXzw/8ElyRJkiR12igW/lTVb4DZwBFJXjpBl22Am5JsCRyxhk0dCpDkCcAdVXUHvasDXpH2tMAkj259LwH+urXtBTyytV8OPCnJ9CRTgMOBi5NMB+5TVWcB/wrss94HLEmSJEnSaozsGeOqui3J04FLktwysPj/AN8Ebmk/t1nNZu5MchWwJfCS1vZvwDuAhUnuA/wAeBbwXuBDSa4Hrgfmt3HclOR44CJ6VwucX1XnJnlU67/qy5d/Wd9jTXIq8L6qunJ9tyFJkiRJGk0jV/hX1bS+6f8BHtpmP9vX/l56hfrguicONH2sql410GcZvQf5Da67DDhsNWM6nfa8gL62q1nLWf6qmtM3vYTewwUnWnbUmrYjSZIkSZq8Rq7w1+pN3XIKi+fNHvYwNGB8fNyHHXWU2XSX2XSTuXSX2UjS5GbhvxpVNTbsMUiSJEmStKFG8uF+kiRJkiSpx8JfkiRJkqQRZuEvSZIkSdIIs/CXJEmSJGmEWfhLkiRJkjTCLPwlSZIkSRphFv6SJEmSJI0wC39JkiRJkkaYhb8kSZIkSSNsi2EPQJvPsrtWMvP484c9DA04dtYK5phLJ5lNd5lNN5lLd03GbJbMmz3sIUhSZ4x84Z9kR+DNwALgO1V17pCHJEmSJEnSZjPyl/pX1U+AU4FfWPRLkiRJkiabkS/8k7wOeA9wTJIFSR7X2k9NsmebXpJk+lq28/kk262lzxuSPHVjjV2SJEmSpA010pf6JzkAeBawT1Utb8X9fQGq6qh7sq2qeuY69DlhvQYqSZIkSdImkqoa9hg2mSR/Bby4qp49wbJx4LiqujLJEmC/qro1yTnATsBWwMlVdUrrvwTYD5gGfAG4FPgL4CfAc6tqWZLTgPOq6syBbe4HvK2qxgbG8OfAh+h9GXEf4AVV9Z0kfwMc09q/CfxjVa1MshQ4md6XGcvafm9ey3swF5gLMH36Dvue8I73r/P7p81jxlS4edmwR6GJmE13mU03mUt3TcZsZu247bCHsE6WLl3KtGnThj0MDTCX7jKbNTvooIPmV9V+g+0jfcYfuBA4IckNwJeBM6rq4rWs85Kqui3JVOCKJGdV1c8H+jwMOLyq/i7Jp4AXAB9bj/EdTe/LhY8nuS8wJckjgEOBx1fVXUn+CzgC+AiwNfCNqnpdkrcAfwe8cU07aF9cnAKw86671UmLRj3ye59jZ63AXLrJbLrLbLrJXLprMmaz5IixYQ9hnYyPjzM2NjbsYWiAuXSX2ayfkb7Hv6qWAvvSO+N9C3BGkjlrWe2YJFcD36B35v9hE/T5QVUtaNPzgZnrOcSvA/87yT8Du1TVMuApbcxXJFnQ5ndt/X8LnLcR9itJkiRJmiRG/qvfqloJjAPjSRYBRwKnTdQ3yRjwVOCAqvpNux1gqwm6Lu+bXglMnaDPCv7wxcpE26CqPpHkm8Bs4PNJ/h4I8OGq+pcJVrmr/nBvxkomQX6SJEmSpA0z0mf8k+yepP+M/d7AD9ewyrbA7a3o3wPYfwN2v4TemXvo3Qow0fh2Bb5fVe8EzgUeCXwFOCTJn7Q+2yfZZQPGIUmSJEmaxEb9jPE04F3tz/CtAL5Le9DdanwRODrJ9cBiepf7r6/XAx9I8m/0rjiYyAuBv01yF/BT4N/b8wX+FbgwyX2Au4CXsYYvLJI8h96DBNf4VwWmbjmFxfNm3/Mj0SY1Pj5+r7kPcbIxm+4ym24yl+4yG0ma3Ea68K+q+fSevD/RsrG+6Zl9i56xmv6r+twK7NXX/ra+6Tl9018DHg6QZB96hf3gNucB8yZoPwM4Y4L2aX3TZwJntunPAp+daNySJEmSpMltpC/175Btgecl8XS7JEmSJGmzGukz/l1RVRcBTxj2OCRJkiRJk49n/CVJkiRJGmEW/pIkSZIkjTALf0mSJEmSRpiFvyRJkiRJI8zCX5IkSZKkEWbhL0mSJEnSCLPwlyRJkiRphG0x7AFo81l210pmHn/+sIehAcfOWsEcc+kks+kus+kmc+kus+lZMm/2sIcgSUPhGX9JkiRJkkaYhb8kSZIkSSNspAr/JM9LUkn26GubmeSataw3luS8Ddz3zCR/vSHbkCRJkiRpYxupwh84HLi0/dzcZgIW/pIkSZKkThmZwj/JNOAJwEuBw1bTZ0qStya5IsnCJH8/QZ/HJLkqyZ8leVKSBe11VZJt0vPWJNckWZTk0LbqPODA1vfVSbZK8qHW56okB02wrwcnuaStc02SA1v7wUm+nuRbST7djo0kS5K8vrUv6r+yQZIkSZKkiaSqhj2GjSLJEcCTq+qlSf4beEVVzU8yEzivqvZKMhf4k6p6Y5L7AZcB/wvYBTgO+HfgXcDzq+pHST4HzKuqy1rxfSfwXOBo4OnAdOAK4HHA7sBxVfWsNp5jgT+vqpe0Av1C4OFVdWffmI8FtqqqNyWZAtwfuB/wGeAZVfXrJP8M3K+q3pBkCXBSVb0ryT8C+1TVUWt5X+YCcwGmT99h3xPe8f71f5O1ScyYCjcvG/YoNBGz6S6z6SZz6S6z6Zm147bDHsIfWbp0KdOmTRv2MDTAXLrLbNbsoIMOml9V+w22j9Kf8zscOLlNf7LNzx/oczDwyCSHtPltgYcBvwUeAZwCHFxVN7bllwFvT/Jx4DNV9eMkTwBOr6qVwM1JLgYeA/xyYF9PoPclAlX17SQ/BB4OLOzrcwXwwSRbAudU1YIkTwL2BC5LAnBf4Ot963ym/ZwP/NXa3pSqOqUdFzvvuludtGiUIh8Nx85agbl0k9l0l9l0k7l0l9n0LDlibNhD+CPj4+OMjY0NexgaYC7dZTbrZyQ+AZJsDzwZmJWkgClAJXntYFd6VwJcMLD+GHATsBXwaOBGgKqal+R84Jn0CvGnbcxxV9UlSZ4IzAZOS/J24HbgS1W1uucULG8/VzIi+UmSJEmSNp1Rucf/EOCjVbVLVc2sqp2AHwAHDvS7APiHdoadJA9PsnVb9gt6Bfh/tC8CSPJnVbWoqt5M7+z8HsDXgEPb8wJ2AJ4IXA78Ctimb19fA45YtR9gZ2Bx/2CS7ALcXFXvB04F9gG+ATw+yW6tz9ZtfUmSJEmS7rFRKfwPB84eaDuLP366/6nAdcC32p/4+3/0nTWvqpuBZwHvSfI44FXtoXsLgbuAL7T9LASuBr4K/FNV/bS1rUxydZJXA/8F3CfJIuAMYE5VrTpbv8oYcHWSq4BDgZOr6hZgDnB62+/X6X3hsFpJ9kty6pr6SJIkSZImp5F5uJ/Wbvfdd6/FixevvaM2K+9T6i6z6S6z6SZz6S6z6S6z6SZz6S6zWbMkEz7cb1TO+EuSJEmSpAlY+EuSJEmSNMIs/CVJkiRJGmEW/pIkSZIkjTALf0mSJEmSRpiFvyRJkiRJI8zCX5IkSZKkEWbhL0mSJEnSCLPwlyRJkiRphFn4S5IkSZI0wrYY9gC0+Sy7ayUzjz9/2MPQgGNnrWCOuXSS2XSX2XSTuXSX2aybJfNmD3sIkrRJeMZfkiRJkqQRttbCP0klOalv/rgkJ67vDpP893qu9/kk223Afo9McvpA2/QktyS5X5JTk+zZ2pckmb6W7b0hyVPXdzySJEmSJG0O63LGfznwV2srhNdVVf3Feq73zKr6xQbs+mzgL5Pcv6/tEOBzVbW8qo6qquvuwXhOqKovb8B4JEmSJEna5Nal8F8BnAK8enBBkmcn+WaSq5J8OcmM1n5ikuP6+l2TZGabXtp+Jslb27JFSQ5t7Q9OckmSBW3Zga3992fhk7ymLbsmyata29ZJzk9ydWs/tH+sVfVL4GLg2X3NhwGnt/XHk+w3cHwzk1yf5P1Jrk1yYZKpbdlpSQ5p009p78GiJB9Mcr/WPi/JdUkWJnnbBO/fk9pxLmjrb9PaX5vkirbe69c2FkmSJEmSVmddH+73HmBhkrcMtF8K7F9VleQo4J+AY9dxm8ptHC0AABG0SURBVH8F7A08CpgOXJHkEuCvgQuq6k1JpgD9Z+hJsi/wYuBxQIBvJrkY2BW4sapmt37bTrDP04EjgDOSPAR4OPDVtYzzYcDhVfV3ST4FvAD4WN94tgJOA55SVTck+QjwD0k+Cjwf2KO9PxPdpnAc8LKquizJNODOJAe3fT62Hd9nkzwR+NHaxjKRJHOBuQDTp+/ACbNWrOVwtbnNmNp76JK6x2y6y2y6yVy6y2zWzfj4+Gbf59KlS4eyX62ZuXSX2ayfdSr8q+qXraA9BljWt+hP6RXRDwbuC/zgHuz7CcDpVbUSuLkV748BrgA+mGRL4JyqWjDBemdX1a8BknwGOBD4InBSkjcD51XV1ybY5/nAfyV5APBC4Ky2/zX5Qd8Y5gMzB5bv3vrc0OY/DLwMeDdwJ/CBJOcB502w7cuAtyf5OPCZqvpxK/wPBq5qfabRK/h/tA5j+SNVdQq9KzbYedfd6qRF/iGHrjl21grMpZvMprvMppvMpbvMZt0sOWJss+9zfHycsbHNv1+tmbl0l9msn3vyVP93AC8Ftu5rexfw7qqaBfw9sFVrXzGw7a1YR1V1CfBE4CfAaUletI7r3QDsAywC3pjkhAn6LKP3BcHz6bvMfy2W902vZN2/LFlB76z9mcCz2n4H+8wDjgKmApcl2YPeWf7/qKq922u3qvrAhoxFkiRJkjR5rXPhX1W3AZ+iV/yvsi29Ah3gyL72JfSKcJLsAzx0gk1+DTg0yZQkO9Ar9i9Psgtwc1W9Hzh11XYG1ntekvsn2ZpeEf+1dun+b6rqY8BbJ1hvldOB1wAzgK+v9cDXbjEwM8lubf5vgYvbpfvbVtXn6T0f4VGDKyb5s6paVFVvpnelwx7ABcBL2vok2THJn2yEcUqSJEmSJqF7esb4JODlffMnAp9Ocju9e+VXFfhnAS9Kci3wTeCGvnWq/TwbOAC4urX9U1X9NMmRwGuT3AUsBe52xr+qvpXkNODy1nRqVV2V5GnAW5P8DrgL+IfVHMOXgI8AH6iqWk2fdVZVdyZ5Mb33YQt6Bfz7gO2Bc9szAELvy4ZBr0pyEPA74FrgC1W1PMkjgK8ngd578Df0zvBPKMnRbSzv29DjkSRJkiSNlrUW/lU1rW/6ZvoetldV5wLnTrDOMnr3qd9NkgcBt7U+Bby2vfrX/TC9++QHtzmzb/rtwNsHll9A72z52o5nBbDDBO1jE+zrVmCvvva39U3P6Zv+CvDogU3eRO9S/zWN5RWraT8ZOHmCRasbiwW/JEmSJGlCm+0e8XYp/jjwR3/WTpvH1C2nsHje7GEPQwPGx8eH8jAhrZ3ZdJfZdJO5dJfZSNLkttkK/6q6kd6fz5MkSZIkSZvJPXmqvyRJkiRJupex8JckSZIkaYRZ+EuSJEmSNMIs/CVJkiRJGmEW/pIkSZIkjTALf0mSJEmSRpiFvyRJkiRJI8zCX5IkSZKkEWbhL0mSJEnSCNti2APQ5rPsrpXMPP78YQ9DA46dtYI55tJJZtNdZtNN5tJdZtNdZtMdS+bNHvYQpE3Gwr9Pkh2BNwMLgO9U1blDHpIkSZIkSRvES/37VNVPgFOBX1j0S5IkSZJGgYV/nySvA94DHJNkQZLHtfZTk+y5ntuck+TdbfroJC/aeCOWJEmSJGnNvNS/SXIA8Cxgn6panmQ6cF+AqjpqY+yjqt63MbYjSZIkSdK6SlUNewydkOSvgBdX1bMnWDYOHFdVVyZ5L/AYYCpwZlX939ZnCbBfVd2aZD/gbVU1lmROa395khOBpVX1toFtTgeurKqZA/sdA14P/AKYBXwKWAS8su3/eVX1vbUc11xgLsD06Tvse8I73n+P3xttWjOmws3Lhj0KTcRsustsuslcustsustsumPWjtv+fnrp0qVMmzZtiKPR6pjNmh100EHzq2q/wXbP+P/BhcAJSW4AvgycUVUXT9DvdVV1W5IpwFeSPLKqFm7CcT0KeARwG/B94NSqemySVwKvAF61ppWr6hTgFICdd92tTlpk5F1z7KwVmEs3mU13mU03mUt3mU13mU13LDli7PfT4+PjjI2Nrbavhsds1o/3+DdVtRTYl97Z8VuAM9rZ+kEvTPIt4Crgz4H1uvf/Hriiqm6qquXA9+h9QQG9M/8zN/G+JUmSJEn3cn692KeqVgLjwHiSRcCRwGmrlid5KHAc8Jiquj3JacBWbfEK/vBFyqq2NVnX/sv7pn/XN/87zE+SJEmStBae8W+S7J7kYX1NewM/HOj2AODXwB1JZgDP6Fu2hN4VAwAvWIdd9vc/5J6OV5IkSZKkdWHh/wfTgA8nuS7JQnqX8J/Y36GqrqZ3if+3gU8Al/Utfj1wcpIrgZXrsL+3Af+Q5Cpg+oYMPMlzkrxhQ7YhSZIkSRpNPtW/A5I8BHhNVR23Kfez++671+LFizflLrQefEBJd5lNd5lNN5lLd5lNd5lNN5lLd5nNmiWZ8Kn+nvHvhm2AA5McOeyBSJIkSZJGiw+H64CqWgw8btjjkCRJkiSNHs/4S5IkSZI0wiz8JUmSJEkaYRb+kiRJkiSNMAt/SZIkSZJGmIW/JEmSJEkjzMJfkiRJkqQRZuEvSZIkSdIIS1UNewzaTHbedbe6zwtPHvYwNODYWSs4adEWwx6GJmA23WU23WQu3WU23WU23WQu3TWMbJbMm71Z97chksyvqv0G2z3jL0mSJEnSCLPw30SS7JjkwCTTktx7viKSJEmSJI2UkSn8k6xMsiDJNUk+neT+m3n/ZyZ5yKr5qvoJ8ErgvcAPW5/9krxzc45LkiRJkjS5jUzhDyyrqr2rai/gt8DRm3PnVXVIVd040Px/gC9W1TWtz5VVdczmHJckSZIkaXIbpcK/39eA3QCSnJNkfpJrk8xd1SHJ0iRvSnJ1km8kmdHad0hyVpIr2uvxSe6TZEmS7frW/06SGRP1b8s/D5wOvDbJHUmOTDKW5Ly2fPs2toVt/48cPIgkc1qfL7X9vzzJa5Jc1dbZfpO+i5IkSZKke72Reap/kqVVNS3JFsBZ9M60vzfJ9lV1W5KpwBXAk6rq50kKeE5VfS7JW4BfVtUbk3wC+K+qujTJzsAFVfWIJCcDC6rqQ0keB7ypqp66uv5949oX+BBwIPBo4LiqelaSdwG3VtXrkzwZeHtV7T1wTHOAf23rbQV8F/jnqnpfkv8EflhV71jL+zIXmAswffoO+57wjvdvyNusTWDGVLh52bBHoYmYTXeZTTeZS3eZTXeZTTeZS3cNI5tZO267eXe4AQ466KAJn+o/Sn+jYmqSBW36a8AH2vQxSZ7fpncCHgb8nN7tAOe19vnAX7bppwJ7Jlm13QckmQacAZxAr4g/rM2vtn9VLU0yHfgo8MKquqOvD8ATgBcAVNVXkzwoyQOq6pcDx3VRVf0K+FWSO4DPtfZFwB9dJTCoqk4BToHen/Pzz5J0j38uprvMprvMppvMpbvMprvMppvMpbuG8uf8jhjbrPvbFEbpv+ZlE5wxH6NXmB9QVb9JMk7vzDnAXfWHyx1W8of34j7A/lV158C2vg7slmQH4HnAG9fSfwrwSeANq+7xX0/L+6Z/1zf/O0YrP0mSJEnSJjCq9/ivsi1weyv69wD2X4d1LgResWomyd4A7UuCs4G3A9dX1c/X1B+YByysqk+uZj9fA45o64zRu+x/8Gy/JEmSJEkbZNQL/y8CWyS5nl4h/o11WOcYYL/20L3ruPtfBzgD+Bv+cJn/mvofBxzc/sTggiTPGdjPicC+SRa2sR15D4/t95IcnWSz/hUDSZIkSdK9w8g83E9rt/vuu9fixYuHPQwNGB8fZ2xsbNjD0ATMprvMppvMpbvMprvMppvMpbvMZs2STPhwv1E/4y9JkiRJ0qRm4S9JkiRJ0giz8JckSZIkaYRZ+EuSJEmSNMIs/CVJkiRJGmE+1X8SSfIrwMf6d8904NZhD0ITMpvuMptuMpfuMpvuMptuMpfuMps126Wqdhhs3GIYI9HQLJ7oTztouJJcaS7dZDbdZTbdZC7dZTbdZTbdZC7dZTbrx0v9JUmSJEkaYRb+kiRJkiSNMAv/yeWUYQ9AEzKX7jKb7jKbbjKX7jKb7jKbbjKX7jKb9eDD/SRJkiRJGmGe8ZckSZIkaYRZ+EuSJEmSNMIs/CeBJE9PsjjJd5McP+zxTAZJPpjkZ0mu6WvbPsmXknyn/Xxga0+Sd7Z8FibZp2+dI1v/7yQ5chjHMkqS7JTkoiTXJbk2yStbu9kMWZKtklye5OqWzetb+0OTfLNlcEaS+7b2+7X577blM/u29S+tfXGSpw3niEZLkilJrkpyXps3lw5IsiTJoiQLklzZ2vx91gFJtktyZpJvJ7k+yQFmM3xJdm//v6x6/TLJq8xm+JK8un3+X5Pk9PbvAj9rNqaq8jXCL2AK8D1gV+C+wNXAnsMe16i/gCcC+wDX9LW9BTi+TR8PvLlNPxP4AhBgf+CbrX174Pvt5wPb9AOHfWz35hfwYGCfNr0NcAOwp9kM/9Xe42ltekvgm+09/xRwWGt/H/APbfofgfe16cOAM9r0nu333P2Ah7bff1OGfXz39hfwGuATwHlt3lw68AKWANMH2vx91oEX8GHgqDZ9X2A7s+nWi96/kX8K7GI2Q89iR+AHwNQ2/ylgjp81G/flGf/R91jgu1X1/ar6LfBJ4LlDHtPIq6pLgNsGmp9L7x8CtJ/P62v/SPV8A9guyYOBpwFfqqrbqup24EvA0zf96EdXVd1UVd9q078Crqf3YWM2Q9be46Vtdsv2KuDJwJmtfTCbVZmdCTwlSVr7J6tqeVX9APguvd+DWk9J/hSYDZza5oO5dJm/z4Ysybb0TgB8AKCqfltVv8BsuuYpwPeq6oeYTRdsAUxNsgVwf+Am/KzZqCz8R9+OwP/0zf+4tWnzm1FVN7XpnwIz2vTqMjK7TahdFvZoemeWzaYD2uXkC4Cf0ftH1PeAX1TVital/33+fQZt+R3AgzCbTeEdwD8Bv2vzD8JcuqKAC5PMTzK3tfn7bPgeCtwCfKjdInNqkq0xm645DDi9TZvNEFXVT4C3AT+iV/DfAczHz5qNysJfGoKqKnr/YNMQJJkGnAW8qqp+2b/MbIanqlZW1d7An9L7hn6PIQ9p0kvyLOBnVTV/2GPRhJ5QVfsAzwBeluSJ/Qv9fTY0W9C73e+9VfVo4Nf0Lh//PbMZrnav+HOATw8uM5vNrz1T4bn0vjR7CLA1XkGx0Vn4j76fADv1zf9pa9Pmd3O7PIz282etfXUZmd0mkGRLekX/x6vqM63ZbDqkXRJ7EXAAvcsqt2iL+t/n32fQlm8L/Byz2dgeDzwnyRJ6t4o9GTgZc+mEdpaMqvoZcDa9L8z8fTZ8PwZ+XFXfbPNn0vsiwGy64xnAt6rq5jZvNsP1VOAHVXVLVd0FfIbe54+fNRuRhf/ouwJ4WHsq5n3pXdb02SGPabL6LLDqqa9HAuf2tb+oPTl2f+COdrnZBcDBSR7Yvgk9uLVpPbX7vz4AXF9Vb+9bZDZDlmSHJNu16anAX9J7BsNFwCGt22A2qzI7BPhqO0vzWeCw9sTfhwIPAy7fPEcxeqrqX6rqT6tqJr3Pj69W1RGYy9Al2TrJNqum6f0eugZ/nw1dVf0U+J8ku7empwDXYTZdcjh/uMwfzGbYfgTsn+T+7d9qq/6f8bNmY9qYTwr01c0XvSeS3kDvftnXDXs8k+FF78PkJuAuet/8v5TevUdfAb4DfBnYvvUN8J6WzyJgv77tvITeg0m+C7x42Md1b38BT6B3+d5CYEF7PdNshv8CHglc1bK5Bjihte9K70P7u/Quybxfa9+qzX+3Ld+1b1uva5ktBp4x7GMblRcwxh+e6m8uw89jV3pPr74auHbV57u/z7rxAvYGrmy/086h9+R3s+nAi95l5D8Htu1rM5vh5/J64Nvt3wAfpfdkfj9rNuIr7Q2SJEmSJEkjyEv9JUmSJEkaYRb+kiRJkiSNMAt/SZIkSZJGmIW/JEmSJEkjzMJfkiRJkqQRZuEvSZIkSdIIs/CXJEmSJGmE/f/u9LdRTtnxNwAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 1152x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"df[df['obje_tipas'] == 20]['seniunijos_pavad'].value_counts()[:10].plot.barh(figsize=(16, 4), grid=True);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Arba aš kažką ne taip darau, arba Panevėžyje yra daugiausiai gyenamūjų pastatų. Nors klausimas kas yra „Vilniaus m.“, ar tai tikrai seniūnija? Nes yra „Naujosios Vilnios sen.“, kas yra Vilniaus miesto mikro rajonas. Ir kuo skiriasi „Anykščių m.“, nuo „Anykščių sen.“? Abu yra užvadinti kaip `seniunijos_pavad`.\n", | |
"\n", | |
"Bandau žiūrėti pagal gyvenamąjį plotą:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 174, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBAAAAD4CAYAAABVPRUMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deZyddXn//9ebRYhEQUyan+ISEasiQQRccMFBKyqxqJW6lFZwaUrrghWs9KtFtFpjFRdsBQE1bsUFUVFUsMpBXBAIhCSocSO2KsUdGcRIwvX749wjh2EmZ2YykzP35PV8PM5j7vO5P/d9X/e5ciZzrvO5P3eqCkmSJEmSpM3ZbtABSJIkSZKk2c8CgiRJkiRJ6ssCgiRJkiRJ6ssCgiRJkiRJ6ssCgiRJkiRJ6muHQQeg9tltt91qr732GnQYmqIbb7yRXXbZZdBhaAuYw3Yzf+1nDtvN/LWfOWw389cOK1eu/EVVLRzdbgFBk7Zo0SIuv/zyQYehKep0OgwNDQ06DG0Bc9hu5q/9zGG7mb/2M4ftZv7aIcmPxmr3EgZJkiRJktSXBQRJkiRJktSXBQRJkiRJktSXBQRJkiRJktSXkyhq0m66eROLTzhv0GFoio5bspGjzV+rzaUcrl++dNAhSJIkaYIcgTANkuyS5ClJtk/yl4OOR5IkSZKk6WYBoUeSSvKhnuc7JPl5ks9ubruquhE4HDgVuGECx/l683NorH0nOTzJCZM+AUmSJEmSZogFhNu6Edgnybzm+ROAn0xw29cAV1XVF/p1rKpH9ll/blUtn+BxJUmSJEmacRYQbu9zwMhFuc8BzhpZkeRhSb6R5MokX09y/6b9TODzwN82IxZe07S/IsllSVYneW3PfoZHHzTJQ5v93jfJ0Un+o2lfkeSIPtvukuS8JFclWZvkWU37AUkuSrIyyflJ7ta0d5K8KcmlSb6b5DFb/KpJkiRJkuY0J1G8vY8AJzaXFuwLvBcY+YD9HeAxVbUxyZ8B/wY8o6peCJDk3sAXgBVJDgXuBzwMCHBukoOr6iujD5jkkcA7gadW1f9M4QP9k4CfVtXSZn+7JtmxZ58/b4oKbwCe32yzQ1U9LMlhdEdP/NnmDpBkGbAMYMGChZy4ZOMkQ9RssWhedxI+tddcymGn0xl0CFvd8PDwNnnec4k5bDfz137msN3MX7tZQBilqlYnWUx39MHnRq3eFXh/kvsBBew4siLJzsDHgZdU1Y+SvAQ4FLiy6TKfbkFhdAHhgcDpwKFV9dMphr0GODnJm4DPVtXFSfYB9gG+mARge+Danm3OaX6uBBb3O0BVnd7Eyb323KtOXuM/nbY6bslGzF+7zaUcrj9yaNAhbHWdToehoaFBh6EtYA7bzfy1nzlsN/PXbnPjL9Dpdy7wFmAIuGtP+78CF1bV05siQ6dn3WnAOVX1383zAG+sqnf3Oda1wM7AQ4CxCggbaS41SbIdcIfRHarqu0n2Bw4DXp/kS8Angaur6qBxjruh+bkJ/x1IkiRJkvpwDoSxvRd4bVWtGdW+K7dOqnj0SGOSFwF3GjXx4fnA85PMb/rskeRPxjjWb+jOufDGJENjrF8PHNAsH07PqIee498d+F1VfQh4M7A/sA5YmOSgps+OSR403glLkiRJkrQ5FhDGUFU/rqpTxlj173Q/6F/Jbb+1Px5YkmRV8zimqi4A/gv4RpI1wNnAncY53nXAU4D/TPLwUavPAB6b5CrgILp3ihhtCXBpklV05zN4fVX9ATgCeFOz7Spgs3d/SHL3JKMv25AkSZIkyaHrvapq/hhtHZpLFarqG8Cf9qx+ddN+n3H29w7gHeMdZ9S+/wcYGSHwTWBF034d8AiA5vaSC8fY3/l0RzyMbl8FHDxG+1DP8i9o5kBo5mA4bKxzkSRJkiRt2ywgtMvOdEc6HF9VbxlUEPN23J51y5f276hZqdPpbJMT180l5lCSJEmDYAGhRarq18BDBx2HJEmSJGnb4xwIkiRJkiSpLwsIkiRJkiSpLwsIkiRJkiSpLwsIkiRJkiSpLwsIkiRJkiSpLwsIkiRJkiSpLwsIkiRJkiSpLwsIkiRJkiSpLwsIkiRJkiSprx0GHYDa56abN7H4hPMGHYam6LglGzna/LXatpbD9cuXDjoESZIk4QgESZIkSZI0ATNWQEiyOMnaUW0nJTm+We4kOXCmjj9RSb4+Q/s9Jslzp7DdfkkOm4mYJEmSJEmaqjl7CUOSHapqY79+VfXImTh+VZ02xU33Aw4EPjeN4UiSJEmStEUGfglDku2SrEjy+ub5cJI3J7k6yX8neVgzWuGHSQ5v+mzf9Lksyeokf9e0DyW5OMm5wLeatn9Jsi7JV5Oc1TMC4r5JvpBkZbPNA5r2v0yyNslVSb4yRrxDSS5K8ukmpuVJjkxyaZI1Se7b9DtpssdKcgfgdcCzkqxK8qwkuyf5VHOelyTZd4yYHtQcf1XT735N+1/3tL87yfY9r/EbmuNekmTRtCZVkiRJkjTnDHoEwg7Ah4G1VfWGpm0X4MtV9YoknwReDzwB2Bt4P3Au8ALg+qp6aJKdgK8luaDZfn9gn6q6JslDgWcADwZ2BK4AVjb9TgeOqarvJXk48C7gccCJwBOr6idJdhsn7gcDDwR+BfwQOLOqHpbkWOAlwMtG9Z/QsarqD0lOBA6sqhcDJHkncGVVPS3J44AP0B2l0OsY4B1V9eGmCLF9kgcCzwIeVVU3J3kXcGSz/S7AJVX1qiT/Dvxt8zqPK8kyYBnAggULOXFJ38EdmqUWzetOwqf22tZy2Ol0Bh3CtBoeHp5z57StMYftZv7azxy2m/lrt5ksINQE2t8NfKyneADwB+ALzfIaYEPzAXgNsLhpPxTYN8kRzfNdgfs1215aVdc07Y8CPl1Vvwd+n+QzAEnmA48EPp5k5Lg7NT+/BqxI8jHgnHHO4bKqurbZ1w+AkeLFGuCQ3o7TcKxH0y2CUFVfTnLXJHeuqt/29PkG8Kok9wDOaQoVjwcOAC5rjjsP+FnT/w/AZ5vllXQLNJtVVafTLYRwrz33qpPXDLr2pKk6bslGzF+7bWs5XH/k0KBDmFadToehoaFBh6EtYA7bzfy1nzlsN/PXbjP5F+gvgbuMatsduKbn+deBQ5Kc3HzIB7i5qkaKDLcAGwCq6pYkI/EGeElVnd+78yRDwI0TiG074DdVNfqbfKrqmGaUwFJgZZIDquqXo7pt6Fm+pef5Ldz+NZ3UsSYQ++1U1X8l+Wazn881l3QEeH9V/fMYm/S+xpvGiFmSJEmSpNuYsTkQqmoYuLYZdk+S3YEnAV/t6fYeupMFfqynODAR5wN/n2THZt9/mmSXMfp9DfjzJDs3IwGe0sT2W+CaJH/ZbJ8kD26W71tV36yqE4GfA/ecRFy3M4Vj3QDcqWcXF9O99GCkQPKLUaMPSLIn8MOqOgX4NLAv8CXgiCR/0vTZPcm9t+RcJEmSJEnbrpmeRPG5wL8kWQV8GXhtVf2gt0NVvRW4EvhgkonGcybdSRKvSPdWke9mjG/Rq+oyunMmrAY+T/cSg+ub1UcCL0hyFXA18NSm/c3NZIhr6Y6QuGqiJ7sZkznWhcDeI5MoAicBByRZDSwHjhpj/88E1jav8z7AB6rqW8CrgQuabb8I3G1zQSY5PMnrtvBcJUmSJElzUG4dyT43JZlfVcNJ7gh8BVhWVVcMOq42u//971/r1q0bdBiaIq87az9z2G7mr/3MYbuZv/Yzh+1m/tohycqqOnB0+7Zw7fvpSfYGdqY7J4DFA0mSJEmSJmnOFxCq6q8GHYMkSZIkSW0303MgSJIkSZKkOcACgiRJkiRJ6ssCgiRJkiRJ6ssCgiRJkiRJ6ssCgiRJkiRJ6ssCgiRJkiRJ6ssCgiRJkiRJ6ssCgiRJkiRJ6muHQQeg9rnp5k0sPuG8QYehKTpuyUaONn+tZg7bbbrzt3750mnblyRJ0uY4AkGSJEmSJPVlAWErSfKYJHskGUpy90HHI0mSJEnSZFhAmIAkw1Pc7swkezdPVwHvBJ5eVT9t1neSHDjGdp9LstuUA5YkSZIkaZo5B8IMqqoX9izfAPzFBLc7bMaCkiRJkiRpChyBMEHpenOStUnWJHlW0z7UjCQ4O8l3knw4SZp1nSQHJtk+yYqebf9x1L63a9a/vnm+PsmCZvnlzXZrk7xsjLjG3HeS+yb5QpKVSS5O8oCmfUWSU5J8PckPkxwxs6+cJEmSJGkucATCxP0FsB/wYGABcFmSrzTrHgI8CPgp8DXgUcBXe7bdD9ijqvYBGHV5wg7Ah4G1VfWG3gMmOQB4HvBwIMA3k1xUVVdOYN+nA8dU1feSPBx4F/C4Zt3dgEcDDwDOBc7ud/JJlgHLABYsWMiJSzb220Sz1KJ53Vng1V7msN2mO3+dTmfa9qWJGR4e9nVvMfPXfuaw3cxfu1lAmLhHA2dV1SbguiQXAQ8FfgtcWlU/BkiyCljMbQsIPwT2TPJO4Dzggp517wY+Nrp40HPMT1bVjc2+zwEeA/QWEG637yTzgUcCH28GQwDs1LPNp6rqFuBbSRZN5OSr6nS6RQnutededfIa/+m01XFLNmL+2s0cttt052/9kUPTti9NTKfTYWhoaNBhaIrMX/uZw3Yzf+3mJQzTY0PP8iZGFWaq6td0Ry50gGOAM3tWfx04JMnOUznwOPveDvhNVe3X83jgOPEGSZIkSZL6sIAwcRcDz2rmHFgIHAxcOpENm/kMtquqTwCvBvbvWf0e4HPAx5KM/krqYuBpSe6YZBfg6U3bZvddVb8Frknyl02fJHnwJM9XkiRJkqQ/cgxsH82H+g3AJ4GDgKuAAv6pqv5vZHLCPvYA3pdkpGDzz70rq+qtSXYFPpjkyJ72K5Ks4NZCxZmj5j/Y3L6PBE5N8mpgR+AjTeybO9dVVbXfBM5HkiRJkrSNsYDQ34OAH1RVAa9oHn9UVR26lw+MPH9xz/JQT9feUQe3W19Vr+lZtbin/a3AW8cLrqquGmff1wBPGqP96FHP5/csT6h4MG/H7Vm3fOlEumoW6nQ6XjPdcuaw3cyfJElqKy9h2IwkxwBn0b00QJIkSZKkbZYjEDajqk4DTht0HJIkSZIkDZojECRJkiRJUl8WECRJkiRJUl8WECRJkiRJUl8WECRJkiRJUl8WECRJkiRJUl8WECRJkiRJUl99b+OYZP/Nra+qK6YvHEmSJEmSNBv1LSAAJzc/dwYOBK4CAuwLXA4cNDOhSZIkSZKk2aJvAaGqDgFIcg6wf1WtaZ7vA5w0o9FpVrrp5k0sPuG8QYehKTpuyUaONn+tZg7bbdD5W7986cCOLUmS2m0ycyDcf6R4AFBVa4EHTn9IkiRJkiRptplMAWF1kjOTDDWPM4DVMxXY1pRkU5JVSdYm+XiSO47T73NJduuzr+FJHruT5MCe53snOXMy+5AkSZIkaaZNpoDwPOBq4Njm8a2mbS64qar2q6p9gD8Ax/SuTNd2VXVYVf1mJgOpqm9V1Qtn8hiSJEmSJE3WhAsIVfX7qnpbVT29ebytqn4/k8ENyMXAXkkWJ1mX5APAWuCeSdYnWQCQ5K+TXNqMXHh3ku17d5JkQZJvJFnajNj4bM+6/0hy9OgDJzm02eaKZiTE/KZ9eZJvJVmd5C1jbPfYJo5VSa5Mcqem/RVJLmu2e23TtjjJt5OckeTqJBckmTd9L58kSZIkaS6ayF0YAEhyP+CNwN5078gAQFXtOQNxDUSSHYAnA19omu4HHFVVlzTrR/o9EHgW8KiqujnJu4AjgQ806xcB5wKvrqovJhmawLEXAK8G/qyqbkzySuDlSf4TeDrwgKqqcS6hOB54UVV9rSk6/D7JoU38D6N714xzkxwM/E/T/pyq+tskHwOeAXyoT3zLgGUACxYs5MQlG/udkmapRfO6k7ipvcxhuw06f51OZ2DHniuGh4d9HVvM/LWfOWw389duEy4gAO8DXgO8DTiE7uULk7kEYjabl2RVs3wx8B7g7sCPRooHozweOAC4rCkqzAN+1qzbEfgS3Q/0F00ihkfQLc58rdnnHYBvANcDvwfe04xi+OwY234NeGuSDwPnVNWPmwLCocCVTZ/5dAsH/wNcU1Uj57sSWNwvuKo6HTgd4F577lUnr5nMPx3NJsct2Yj5azdz2G6Dzt/6I4cGduy5otPpMDQ0NOgwNEXmr/3MYbuZv3abzF8w86rqS0lSVT8CTkqyEjhxhmLbmm6qqv16G5oP8TeO0z/A+6vqn8dYt5Huh/InAhf1tPUWW3YevVGzzy9W1XNutyJ5GN2ixRHAi4HH9a6vquVJzgMOo1uAeGKzvzdW1btH7WsxsKGnaRPdAogkSZIkSeOazAiCDUm2A76X5MVJnk73W+1t0ZeAI5L8CUCS3ZPcu1lXwPOBBzSXIQD8CNg7yU7NJQiPH2OflwCPSrJXs89dkvxpc0nCrlX1OeAfgQeP3jDJfatqTVW9CbgMeABwPvD8nnkU9hiJV5IkSZKkyZrMCIRjgTsCLwX+le5lDEfNRFCzXVV9K8mrgQuaosrNwIvoFgqoqk1JnkN33oEbqupdzVwDa4FruPWygt59/ryZWPGsJDs1za8GbgA+nWRnuqMKXj5GSC9LcghwC907ZXy+qjY0czV8oxlNMQz8Nd0RB2NKckwTy2mTe0UkSZIkSXPdZAoIm6pqmO4H0bly+0YAqup2Iymqaj2wz6i2xT3LHwU+Ot6+qmoD3csYRtr/CfinMfoP9Sx/GXjoGCE+rE/8Lxmn/R3AO8ZYtU9Pn7f0LFs4kCRJkiSNaTIFhJOT/H/A2cBHq2rtDMWkWW7ejtuzbvnSQYehKep0Ok6i1nLmsN3MnyRJaqsJz4FQVYfQvWzh58C7k6xphvFLkiRJkqQ5blK3Yayq/6uqU4BjgFXMjTswSJIkSZKkPiZcQEjywCQnJVkDvBP4OnCPGYtMkiRJkiTNGpOZA+G9wEeAJ1bVT2coHkmSJEmSNAtNuIBQVQfNZCCSJEmSJGn2mnABIcn9gDcCewM7j7RX1Z4zEJckSZIkSZpFJjOJ4vuAU4GNdO/G8AHgQzMRlCRJkiRJml0mU0CYV1VfAlJVP6qqk4ClMxOWJEmSJEmaTSYzieKGJNsB30vyYuAnwPyZCUuSJEmSJM0mkxmBcCxwR+ClwAHA3wBHzURQkiRJkiRpdpnMXRguA2hGIby0qm6Ysag0q9108yYWn3DeoMPQFB23ZCNHm79WM4ftNtvzt365VydKkqSxTXgEQpIDk6wBVgNrklyV5ICZC23uSfKMJDskeWaS7Zu2XZM8Ocmdkxw26BglSZIkSRrLZC5heC/wD1W1uKoWAy+ie2eGOSPJ05JUkgds4X6Gx1n1PeBLwE5VtQmgqq4HHg58BLiy2f7wJCdsSQySJEmSJE2nyUyiuKmqLh55UlVfTbJxBmIapOcAX21+vma6d15Vq4HHjtF+0qjn5wLnTvfxJUmSJEmaqsmMQLgoybuTDCV5bJJ3AZ0k+yfZf6YC3FqSzAceDbwAeHZP+1CSTpKzk3wnyYfT9bgkn+rp94Qknxy1zwVJvpFkaZK7JflKklVJ1iZ5TNPnSUmuaC4J+VLTdnSS/2iWVyQ5omeftxvdkGSXJOc1+1ib5FlN+wFJLkqyMsn5Se7WtHeSvCnJpUm+OxKLJEmSJEnjmcwIhAc3P0d/M/8QoIDHTUtEg/NU4AtV9d0kv0xyQFWtbNY9BHgQ8FPga8CjgAuBdyVZWFU/B55H9zIPAJIsojuK4NVV9cUkxwHnV9UbmvkP7phkIXAGcHBVXZNk9ynG/iTgp1W1tDn2rkl2BN4JPLWqft4UFd4APL/ZZoeqelgz78JrgD/b3AGSLAOWASxYsJATl8y1wSfbjkXzupO4qb3MYbvN9vx1Op1BhzDrDQ8P+zq1mPlrP3PYbuav3SZzF4ZDNrc+yVFV9f4tD2lgngO8o1n+SPN8pIBwaVX9GCDJKmBxcwnHB4G/TvI+4CDguU3/HenOdfCiqrqoabsMeG/zwf5TVbUqyRDwlaq6BqCqfjXF2NcAJyd5E/DZqro4yT7APsAXkwBsD1zbs805zc+VwOJ+B6iq04HTAe6151518prJ1J40mxy3ZCPmr93MYbvN9vytP3Jo0CHMep1Oh6GhoUGHoSkyf+1nDtvN/LXbdP4FcyzQygJC883/44AlSYruh+1K8oqmy4ae7pu49XV7H/AZ4PfAx6tq5CuljXQ/mD8RuAigqr6S5GBgKbAiyVuBX08gvI00l5o0t9C8w+gOzaiJ/YHDgNc3l0J8Eri6qg4aZ78j59R7PpIkSZIkjWkycyD0k2nc19Z2BPDBqrp3c5eJewLXAJudG6Cqfkr3soZXc9s7UhTdSwUekOSVAEnuDVxXVWcAZwL7A5cABye5T9NnrEsY1gMjt8s8nO7ohttIcnfgd1X1IeDNzb7XAQuTHNT02THJg/q9EJIkSZIkjWU6v3muadzX1vYc4E2j2j7RtH+0z7YfBhZW1bd7G6tqU5LnAOcmuQG4EXhFkpuBYeC5zdwEy4BzmtEFPwOeMGr/ZwCfTnIV8IVmP6MtAd6c5BbgZuDvq+oPzeSLpyTZlW6u3w5cPd6JNIWIM6vqsD7nLEmSJEnaxkxnAaG1IxDGmt+hqk7pedrpaX/xqK6Ppvshv3fb+c3PDXQvYxhxu0s8qurzwOdHta0AVjTL1wGPAEgyD1g4xj7OB84fo30VcPAY7UM9y7+gmQOhGVFh8UCSJEmSdDvTWUD42jTuqxWSrKQ7IuC4rXTInenO03B8Vb1lKx3zdubtuD3rli8d1OG1hTqdjpOktZw5bDfzJ0mS2mrCcyAkOTbJndP1niRXJDl0ZP0Y38zPeVV1QFUd3Iw02BrH+3VVPXSQxQNJkiRJ0rZpMpMoPr+qfgscCtwF+Btg+YxEJUmSJEmSZpXJFBBG5jg4jO4dC66mxfMeSJIkSZKkiZtMAWFlkgvoFhDOT3In4JaZCUuSJEmSJM0mk5lE8QXAfsAPq+p3Se4KPG9mwpIkSZIkSbPJhAsIVXVLknsAf5UE4KKq+syMRSZJkiRJkmaNydyFYTlwLPCt5vHSJP82U4FJkiRJkqTZYzKXMBwG7FdVtwAkeT9wJfD/ZiIwSZIkSZI0e0xmEkWA3XqWd53OQCRJkiRJ0uw1mREIbwSuTHIh3ds3HgycMCNRSZIkSZKkWWUykyielaQDPLRpemVV/d+MRKVZ7aabN7H4hPMGHYam6LglGzna/LWaOWy3uZ6/9cuXDjoESZI0Q/oWEJI8oKq+k2T/punHzc+7J7kb8Kuq+tGMRShJkiRJkgZuIiMQXg4sA04eZ/1dk1xVVX8zfWENXpLhqprfLB8GvB14AvA8YLiq3rKZbY8BfldVH5jAcU4BPlBVl4+zvgMcP956SZIkSZK2hr4FhKpa1vw8ZLw+SS6YzqBmkySPB04BnlhVP0rSd5uqOm2i+6+ql25BeJIkSZIkbRUTuYThcVX15SR/Mdb6qjqnqg6d/tAGL8nBwBnAYVX1gzHW/y3d0Rl3AL4P/E1V/S7JSTSjFJoRBFcBj6X7ej+/qi5NsgvwTmAfYEfgpKr6dJJ5wPuABwPfAeb1HO85dG+bGeC8qnplku2B9wAHAgW8t6reNirOFcBNwEOAPwGeDzwXOAj4ZlUdvYUvlSRJkiRpjpvIJQyPBb4M/PkY6wo4Z1ojmj12Aj4FDFXVd8bpc05VnQGQ5PXAC+gWBUa7Y1Xt1xQk3ku3aPAq4MtV9fwkuwGXJvlv4O/oXv7wwCT7Alc0+7878CbgAODXwAVJngb8L7BHVe3T9Ntt9MEbd6FbMDgcOBd4FPBC4LIk+1XVqs29GEmW0S2WsGDBQk5csnFz3TWLLZrXncRN7WUO222u56/T6Qw6hBk3PDy8TZznXGX+2s8ctpv5a7eJXMLwmubn82Y+nFnlZuDrdIsCx47TZ5+mcLAbMB84f5x+ZwFU1VeS3Ln5kH8ocHiS45s+OwP3ont7zFOa/quTrG7WPxToVNXPAZJ8uOn7r8CeSd4JnAeMdznJZ6qqkqwBrquqNc1+rgYWA5stIFTV6cDpAPfac686ec1k7gCq2eS4JRsxf+1mDtttrudv/ZFDgw5hxnU6HYaGhgYdhqbI/LWfOWw389duE/4LJslOwDPoftj843ZV9brpD2tWuAV4JvClJP+vqv5tjD4rgKdV1VVJjgaGxtlXjfE8wDOqal3vionMsXCbHVX9OsmDgScCxzQxP3+Mrhuan7f0LI88n7t/yUqSJEmSpsV2k+j7aeCpwEbgxp7HnFVVvwOWAkcmecEYXe4EXJtkR+DIzezqWQBJHg1cX1XX0x2t8JI0FYMkD2n6fgX4q6ZtH2Dfpv1S4LFJFjTzHjwHuCjJAmC7qvoE8Gpg5HabkiRJkiRNm8l883yPqnrSjEUyS1XVr5I8CfhKkp+PWv0vwDeBnzc/7zTObn6f5Eq6kyWOjA74V7q3hlydZDvgGuApwKnA+5J8G/g2sLKJ49okJwAXcuskip9uRh+8r9kHwD9P9VyTnAmc5i0jJUmSJEmjTaaA8PUkS0aunZ/rqmp+z/L/Avdpnp7b034q3Q/8o7c9aVTTh6rqZaP63ER3wsTR294EPHucmM6imU+hp+0q+ow66L3LQlWtpzuJ41jrXri5/YyYt+P2rFu+dCJdNQt1Op1t4hrlucwctpv5kyRJbTWZAsKjgaOTXEP3GvoAVVX7bn4zSZIkSZLUdpMpIDx5xqKYw6pqaNAxSJIkSZK0pSZTQBh9JwFJkiRJkrSNmEwB4Txuvf3gznTnBFgHPGgG4pIkSZIkSbPIhAsIVbWk93mS/YF/mPaIJEmSJEnSrLNd/y5jq6orgIdPYyySJEmSJGmWmvAIhCQv73m6Hd1bB/502iOSJEmSJEmzzmTmQLhTz/JGunMifGJ6w5EkSZIkSbPRZOZAeO1MBiJJkiRJkmavvgWEJG+vqpcl+Qxj3Mqxqg6fkcgkSZIkSdKsMZERCB9sfr5lJgNRe9x08yYWn3DeoMPQFB23ZCNHm79WM4ftZv7azxy223FLNjI06CAkqaX6FhCqamXz86KZD0eSJEmSJM1Gk7kLw4GM138AABUvSURBVKOAk4B7N9sFqKrac2ZCa68kewBvAlYB36uqTw84JEmSJEmStshk7sLwHuAfgZXAppkJZ26oqp8kORPYy+KBJEmSJGku2G4Sfa+vqs9X1c+q6pcjjxmLrMWSvAr4T+ClSVYleXjTfmaSvae4z6OT/EezfEyS505fxJIkSZIkbd5kRiBcmOTNwDnAhpHGqrpi2qNqsSQHAU8B9q+qDUkWAHcAqKoXTscxquq06diPJEmSJEkTlarb3Zlx7I7JhWM0V1U9bnpDarckfwE8r6r+fIx1HeD4qro8yanAQ4F5wNlV9Zqmz3rgwKr6RZIDgbdU1VCSo5v2Fyc5CRiuqreM2ucC4PKqWjzquEPAa4HfAEuAjwFrgGOb4z+tqn7Q57yWAcsAFixYeMCJbz9j0q+NZodF8+C6mwYdhbaEOWw389d+5rDdFs2DP9l910GHoS0wPDzM/PnzBx2Gpsj8tcMhhxyysqoOHN0+4REIVXXI9IY0Z10AnJjku8B/Ax8d5w4Wr6qqXyXZHvhSkn2ravUMxvVg4IHAr4AfAmdW1cOSHAu8BHjZ5jauqtOB0wHutededfKayQxe0Wxy3JKNmL92M4ftZv7azxy223FLNvLMoaFBh6Et0Ol0GDKHrWX+2m3CcyAkWZTkPUk+3zzfO8kLZi60dqqqYeAAut/W/xz4aDN6YLRnJrkCuBJ4EDCluREm4bKquraqNgA/oFvogO5IhMUzfGxJkiRJUstNZhLFFcD5wN2b59+lz7fW26qq2lRVneayhBcDz+hdn+Q+wPHA46tqX+A8YOdm9UZuzcvO9DfR/ht6lm/peX4Lk5sLQ5IkSZK0DZpMAWFBVX2M7gdOqmoj3s7xdpLcP8n9epr2A340qtudgRuB65MsAp7cs2493REMMKrwMI7e/kdMNl5JkiRJkiZiMt8835jkrkABJHkEcP2MRNVu84F3JtmN7uiA79NMPjiiqq5KciXwHeB/ga/1rH4t8J4k/wp0JnC8twAfayY5PG9LAk9yON2JGk/cXL95O27PuuVLt+RQGqBOp8P6I4cGHYa2gDlsN/PXfuaw3TqdzqBDkKTWmkwB4eXAucB9k3wNWIjfeN9OVa0EHjnOuqGe5aPH6XMx8KdjtK+gexkJVXVST/t3gH0BktydMS5jqKoOPcWIUXH8cV1VnUs3x5IkSZIk3cZkLmG4L92h9o+kOxfC9/Da+dnmTsBjkhw16EAkSZIkSXPLZAoI/1JVvwXuAhwCvAs4dUai0pRU1bqqenhVvX/QsUiSJEmS5pbJFBBGJkxcCpxRVecBd5j+kCRJkiRJ0mwzmQLCT5K8G3gW8LkkO01ye0mSJEmS1FKTKQA8k+7cB0+sqt8AuwOvmJGoJEmSJEnSrDLhSRCr6nfAOT3PrwWunYmgJEmSJEnS7OIlCJIkSZIkqS8LCJIkSZIkqS8LCJIkSZIkqa8Jz4Egjbjp5k0sPuG8QYehKTpuyUaONn+tZg7bzfy1nzlst5nI3/rlS6d1f5I0WzkCYZZLskeSxySZn8T/nSRJkiRJA2EBYZQkm5KsSrI2yceT3HErH//sJHcfeV5VPwGOBU4FftT0OTDJKVszLkmSJEnSts0Cwu3dVFX7VdU+wB+AY7bmwavqiKr66ajmfwG+UFVrmz6XV9VLt2ZckiRJkqRtmwWEzbsY2AsgyaeSrExydZJlIx2SDCd5Q5KrklySZFHTvjDJJ5Jc1jwelWS7JOuT7Naz/feSLBqrf7P+c8BZwCuSXJ/kqCRDST7brN+9iW11c/x9R59EkqObPl9sjv/iJC9PcmWzze4z+ipKkiRJklovVTXoGGaVJMNVNT/JDsAn6H7zf2qS3avqV0nmAZcBj62qXyYp4PCq+kySfwd+W1WvT/JfwLuq6qtJ7gWcX1UPTPIOYFVVvS/Jw4E3VNWfjde/J64DgPcBjwEeAhxfVU9J8k7gF1X12iSPA95aVfuNOqejgVc32+0MfB94ZVWdluRtwI+q6u19XpdlwDKABQsWHnDi28/YkpdZA7RoHlx306Cj0JYwh+1m/trPHLbbTORvyR67Tu8OtVnDw8PMnz9/0GFoisxfOxxyyCErq+rA0e3eheH25iVZ1SxfDLynWX5pkqc3y/cE7gf8ku5lDp9t2lcCT2iW/wzYO8nIfu+cZD7wUeBEusWAZzfPx+1fVcNJFgAfBJ5ZVdf39AF4NPAMgKr6cpK7JrlzVf121HldWFU3ADckuR74TNO+BrjdqIXRqup04HSAe+25V528xn86bXXcko2Yv3Yzh+1m/trPHLbbTORv/ZFD07o/bV6n02FoaGjQYWiKzF+7+b/f7d00xjf4Q3Q/4B9UVb9L0qH7TT7AzXXrMI5N3Pqabgc8oqp+P2pf3wD2SrIQeBrw+j79twc+ArxuZA6EKdrQs3xLz/Nb8N+BJEmSJKkP50CYmF2BXzfFgwcAj5jANhcALxl5kmQ/gKbY8EngrcC3q+qXm+sPLAdWV9VHxjnOxcCRzTZDdC9nGD36QJIkSZKkLWIBYWK+AOyQ5Nt0P9BfMoFtXgoc2Exu+C1uezeHjwJ/za2XL2yu//HAoc2tJVclOXzUcU4CDkiyuontqEme2x8lOSbJVr3rhCRJkiSpHRy6PkpV3W5Gj6raADy5X/+qOhs4u1n+BfCscba5HMiotjH7V1VGtzU6zfpf0b0UYlxVtQJY0fN88Vjrquq0ze1HkiRJkrTtsoCgSZu34/asW7500GFoijqdjpM9tZw5bDfz137msN3MnyRNnZcwSJIkSZKkviwgSJIkSZKkviwgSJIkSZKkviwgSJIkSZKkviwgSJIkSZKkviwgSJIkSZKkviwgSJIkSZKkviwgSJIkSZKkviwgSJIkSZKkviwgSJIkSZKkvlJVg45BLXOvPfeq7Z75jkGHoSk6bslGTl6zw6DD0BYwh+1m/trPHLab+Ws/czh165cvHXQIdDodhoaGBh2G+kiysqoOHN3uCARJkiRJktSXBYQpSnJhkieOantZklOT3D3J2U3bUJLPTmB/X5+pWCVJkiRJ2lIWEKbuLODZo9qeDZxVVT+tqiMms7OqeuS0RSZJkiRJ0jSzgDB1ZwNLk9wBIMli4O7AxUkWJ1k7eoMkJyV5b5JOkh8meWnPuuHm5/wkX0pyRZI1SZ46sv/efSY5PslJzfJLk3wryeokHxnjuEcn+VSSLyZZn+TFSV6e5MoklyTZfTpfGEmSJEnS3OPsI1NUVb9KcinwZODTdEcffKyqKsnmNn0AcAhwJ2BdklOr6uae9b8Hnl5Vv02yALgkybl9wjkBuE9VbUiy2zh99gEeAuwMfB94ZVU9JMnbgOcCb9/cAZIsA5YBLFiwkBOXbOwTkmarRfO6kw+pvcxhu5m/9jOH7Wb+2s8cTl2n0xl0CAwPD8+KODQ1FhC2zMhlDCMFhBdMYJvzqmoDsCHJz4BFwI971gf4tyQHA7cAezR9Nmc18OEknwI+NU6fC6vqBuCGJNcDn2na1wD79gu6qk4HTofuXRic+ba9nLm4/cxhu5m/9jOH7Wb+2s8cTt36I4cGHYJ3YWg5L2HYMp8GHp9kf+COVbVyAtts6FnexO2LOEcCC4EDqmo/4Dq6owY2ctt87dyzvBT4T2B/4LIkY/1G7T3uLT3PbxkjBkmSJEmSbsMCwhaoqmHgQuC9dEcjTIddgZ9V1c1JDgHu3bRfB/xJkrsm2Ql4CkCS7YB7VtWFwCub7edPUyySJEmSJAF+8zwdzgI+ye3vyDBVHwY+k2QNcDnwHYCmoPA64FLgJyPtwPbAh5LsSvfyh1Oq6jdTOXCSY5pjnbZlpyBJkiRJmmssIGyhqvoU3Q/uvW3r6U5aSFV1gE6zfNKofvv0LM9vfv4COGicY50CnDLGqkf3iXEFsKLn+eKx1lk4kCRJkiSNxwKCJm3ejtuzbvnSQYehKep0OrNiAh1NnTlsN/PXfuaw3cxf+5lDaXCcA0GSJEmSJPVlAUGSJEmSJPVlAUGSJEmSJPVlAUGSJEmSJPVlAUGSJEmSJPVlAUGSJEmSJPVlAUGSJEmSJPVlAUGSJEmSJPVlAUGSJEmSJPWVqhp0DGqZe+25V233zHcMOgxN0XFLNnLymh0GHYa2gDlsN/PXfuaw3cxf+5nDdtuW87d++dJBhzBhSVZW1YGj2x2BIEmSJEmS+rKAIEmSJEmS+rKAMIOSDPcsH5bku0nuPciYJEmSJEmaim3z4pOtLMnjgVOAJ1bVjwYdjyRJkiRJk+UIhBmW5GDgDOApVfWDpu3Pk3wzyZVJ/jvJoqb9pCTH92y7Nsni5vHtJGckuTrJBUnmNX32S3JJktVJPpnkLmPEsCLJqU2/HyYZSvLeZp8rtsoLIUmSJElqNe/CMIOS3AzcAAxV1eqe9rsAv6mqSvJC4IFVdVySk4DhqnpL028t8JRms+8DB1bVqiQfA86tqg8lWQ28pKouSvI64M5V9bJRcawAdgaeAxwOfBB4FHA1cBnwgqpa1edclgHLABYsWHjAiW8/Y+ovjAZq0Ty47qZBR6EtYQ7bzfy1nzlsN/PXfuaw3bbl/C3ZY9dBhzBhhxxyyJh3YfAShpl1M/B14AXAsT3t9wA+muRuwB2Aayawr2t6PuSvBBYn2RXYraouatrfD3x8nO0/0xQs1gDXVdUagCRXA4uBzRYQqup04HTo3sZxW731ylywLd86Z64wh+1m/trPHLab+Ws/c9hu23L+1h85NOgQtpiXMMysW4BnAg9L8v962t8J/EdVLQH+ju7oAICN3DYnO/csb+hZ3sTkiz8j298yal+3TGFfkiRJkqRtjAWEGVZVvwOWAkcmeUHTvCvwk2b5qJ7u64H9AZLsD9ynz76vB36d5DFN098AF21mE0mSJEmSpsRvnreCqvpVkicBX0nyc+Ak4ONJfg18mVsLBZ8AnttcVvBN4LsT2P1RwGlJ7gj8EHjeVONMciZwWlVdPtV9SJIkSZLmJidR1KTd//73r3Xr1g06DE1Rp9NhaGho0GFoC5jDdjN/7WcO2838tZ85bDfz1w5JxpxE0UsYJEmSJElSXxYQJEmSJElSXxYQJEmSJElSXxYQJEmSJElSXxYQJEmSJElSX96FQZOW5AbA2zC01wLgF4MOQlvEHLab+Ws/c9hu5q/9zGG7mb92uHdVLRzduMMgIlHrrRvrlh5qhySXm792M4ftZv7azxy2m/lrP3PYbuav3byEQZIkSZIk9WUBQZIkSZIk9WUBQVNx+qAD0BYxf+1nDtvN/LWfOWw389d+5rDdzF+LOYmiJEmSJEnqyxEIkiRJkiSpLwsIkiRJkiSpLwsImrAkT0qyLsn3k5ww6Hh0W0nWJ1mTZFWSy5u23ZN8Mcn3mp93adqT5JQml6uT7N+zn6Oa/t9LctSgzmeuS/LeJD9LsranbdryleSA5t/D95tts3XPcO4bJ4cnJflJ8z5cleSwnnX/3ORjXZIn9rSP+bs1yX2SfLNp/2iSO2y9s5v7ktwzyYVJvpXk6iTHNu2+D1tgM/nzPdgSSXZOcmmSq5ocvrZpH/N1T7JT8/z7zfrFPfuaVG615TaTvxVJrul5D+7XtPs7dK6oKh8++j6A7YEfAHsCdwCuAvYedFw+bpOj9cCCUW3/DpzQLJ8AvKlZPgz4PBDgEcA3m/bdgR82P+/SLN9l0Oc2Fx/AwcD+wNqZyBdwadM3zbZPHvQ5z7XHODk8CTh+jL57N783dwLu0/w+3X5zv1uBjwHPbpZPA/5+0Oc8lx7A3YD9m+U7Ad9t8uT7sAWPzeTP92BLHs37Yn6zvCPwzeb9MubrDvwDcFqz/Gzgo1PNrY8Zzd8K4Igx+vs7dI48HIGgiXoY8P2q+mFV/QH4CPDUAcek/p4KvL9Zfj/wtJ72D1TXJcBuSe4GPBH4YlX9qqp+DXwReNLWDnpbUFVfAX41qnla8tWsu3NVXVLd/4E/0LMvTZNxcjiepwIfqaoNVXUN8H26v1fH/N3afMvyOODsZvvefw+aBlV1bVVd0SzfAHwb2APfh62wmfyNx/fgLNO8l4abpzs2j2L81733vXk28PgmT5PK7Qyf1jZjM/kbj79D5wgLCJqoPYD/7Xn+Yzb/H7W2vgIuSLIyybKmbVFVXdss/x+wqFkeL5/mebCmK197NMuj27V1vLgZnvnekeHvTD6HdwV+U1UbR7VrBjRDoR9C9xs034ctMyp/4HuwNZJsn2QV8DO6Hxx/wPiv+x9z1ay/nm6e/JtmQEbnr6pG3oNvaN6Db0uyU9Pm79A5wgKCNHc8uqr2B54MvCjJwb0rm+qt921tCfPVWqcC9wX2A64FTh5sOOonyXzgE8DLquq3vet8H85+Y+TP92CLVNWmqtoPuAfdEQMPGHBImoTR+UuyD/DPdPP4ULqXJbxygCFqBlhA0ET9BLhnz/N7NG2aJarqJ83PnwGfpPsf8XXNEDCanz9ruo+XT/M8WNOVr580y6PbNcOq6rrmD6pbgDPovg9h8jn8Jd3hnTuMatc0SrIj3Q+fH66qc5pm34ctMVb+fA+2U1X9BrgQOIjxX/c/5qpZvyvdPPk3zYD15O9JzeVFVVUbgPcx9fegv0NnKQsImqjLgPs1M+Pege7kNecOOCY1kuyS5E4jy8ChwFq6ORqZzfYo4NPN8rnAc5sZcR8BXN8M2T0fODTJXZphn4c2bdo6piVfzbrfJnlEc33oc3v2pRk08sGz8XS670Po5vDZzSzi9wHuR3dyqDF/tzbffF8IHNFs3/vvQdOgeW+8B/h2Vb21Z5XvwxYYL3++B9sjycIkuzXL84An0J3LYrzXvfe9eQTw5SZPk8rtzJ/ZtmGc/H2npwAbunMW9L4H/R06F4w1s6IPH2M96M6e+l2616e9atDx+LhNbvakO7vwVcDVI/mhe23gl4DvAf8N7N60B/jPJpdrgAN79vV8uhMQfR943qDPba4+gLPoDq+9me51fS+YznwBB9L9T/sHwH8AGfQ5z7XHODn8YJOj1XT/WLpbT/9XNflYR89M0uP9bm3e15c2uf04sNOgz3kuPYBH0708YTWwqnkc5vuwHY/N5M/3YEsewL7AlU2u1gInbu51B3Zunn+/Wb/nVHPrY0bz9+XmPbgW+BC33qnB36Fz5JEmOZIkSZIkSePyEgZJkiRJktSXBQRJkiRJktSXBQRJkiRJktSXBQRJkiRJktSXBQRJkiRJktSXBQRJkiRJktSXBQRJkiRJktTX/w+SW01nXu0A3wAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 1152x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"df.groupby('seniunijos_pavad')['gyv_plotas'].count().sort_values(ascending=False).head(10).plot.barh(figsize=(16, 4), grid=True);" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Vėl Kaunas pirmauja.\n", | |
"\n", | |
"Deja nėra koordinačių, kurių pagalba būtų galima iš duomenų gauti žymiai daugiau naudos, būtų galima daryti vizualizacija žemėlapyje, nes vis dėl to nekilnojamas tirtas yra labai susijęs su vieta žemėlapyje.\n", | |
"\n", | |
"Teoriškai, būtų galima daryti vizualizaciją žemėlapyje pagal savivaldybes, bet tada reikia iš kažkur gauti seniūnijų erdvinius duomenis, kurie kartu su NTR nepateikiami. O kadangi NTR neturi seniūnijų identifikatorių, tai net jei ir būtų kažkur erdviniai seniūnijų duomenys, juos tikriausiai būtų sunku sujungti.\n", | |
"\n", | |
"Bandau paskutinį klausimą, kiek Lietuvoje yra gyvenamųjų pastatų, be vandatiekio?\n", | |
"\n", | |
"Pirmiausiai žiūrim į lauką vandantiekis:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 180, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"0.0 1148528\n", | |
"1.0 251873\n", | |
"2.0 214891\n", | |
"3.0 379\n", | |
"4.0 1\n", | |
"Name: vandentiekis, dtype: int64" | |
] | |
}, | |
"execution_count": 180, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"df['vandentiekis'].value_counts()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Vandentiokio laukas konvertuotas į foat tipą, nes greičiausiai ne visi pastatai turi toki1 reikšmą, žiūrim:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 190, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"62.63%\n" | |
] | |
} | |
], | |
"source": [ | |
"print('%.2f%%' % ((~df[['vandentiekis']].isnull()).sum() / df.shape[0] * 100))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Tik 67% procentai pastatų turi duomenis apie vandentiekį, įdomu ką gaučiau, jei skaičiuočiau tik gyvenamuosius pastatus." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 199, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"82.82%\n" | |
] | |
} | |
], | |
"source": [ | |
"gyvenamieji_kodas, = tipai[tipai['obje_pav'] == 'Gyvenamas pastatas'].index\n", | |
"gyvenamieji = df[df['obje_tipas'] == gyvenamieji_kodas]\n", | |
"print('%.2f%%' % ((~gyvenamieji[['vandentiekis']].isnull()).sum() / gyvenamieji.shape[0] * 100))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Šiek tiek geriau, bet vis dar mažokai informacijos. Įdomu, kodėl beveik 20% pastatų neturi duomenų apie vandentikė. Na, bet kiek duomenų yra, tiek užteks.\n", | |
"\n", | |
"Skaičiuojam toliau. Kaip sužinoti, ką reiškia vandentiekio kodai 0, 1, 2, 3, 4? Turiu įtarimą, kad tai galima išsiaiškinti per atributų klasifikatorius, bandau..." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 209, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"RangeIndex: 254 entries, 0 to 253\n", | |
"Data columns (total 12 columns):\n", | |
"atri_kodas 254 non-null int64\n", | |
"atrt_tipas 254 non-null int64\n", | |
"atri_pav 254 non-null object\n", | |
"atri_pav_i 254 non-null object\n", | |
"atri_eilnr 254 non-null int64\n", | |
"vien_kodas 93 non-null float64\n", | |
"atri_koef 2 non-null object\n", | |
"atri_poz 254 non-null int64\n", | |
"atri_formatas 84 non-null object\n", | |
"atri_koregavimo_data 254 non-null object\n", | |
"atri_pav_en 254 non-null object\n", | |
"atri_pav_i_en 254 non-null object\n", | |
"dtypes: float64(1), int64(4), object(7)\n", | |
"memory usage: 23.9+ KB\n" | |
] | |
} | |
], | |
"source": [ | |
"atributai = pd.read_csv('https://www.registrucentras.lt/aduomenys/?byla=klas_NTR_atributai.csv', encoding='UTF-16')\n", | |
"atributai.info()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 206, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>atri_kodas</th>\n", | |
" <th>atrt_tipas</th>\n", | |
" <th>atri_pav</th>\n", | |
" <th>atri_pav_i</th>\n", | |
" <th>atri_eilnr</th>\n", | |
" <th>vien_kodas</th>\n", | |
" <th>atri_koef</th>\n", | |
" <th>atri_poz</th>\n", | |
" <th>atri_formatas</th>\n", | |
" <th>atri_koregavimo_data</th>\n", | |
" <th>atri_pav_en</th>\n", | |
" <th>atri_pav_i_en</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>7</th>\n", | |
" <td>8</td>\n", | |
" <td>1</td>\n", | |
" <td>Vandentiekis:</td>\n", | |
" <td>Vandentiekis:</td>\n", | |
" <td>1060</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1</td>\n", | |
" <td>NaN</td>\n", | |
" <td>2006-07-04 08:33:55.0</td>\n", | |
" <td>Water supply:</td>\n", | |
" <td>Water supply:</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" atri_kodas atrt_tipas atri_pav atri_pav_i atri_eilnr \\\n", | |
"7 8 1 Vandentiekis: Vandentiekis: 1060 \n", | |
"\n", | |
" vien_kodas atri_koef atri_poz atri_formatas atri_koregavimo_data \\\n", | |
"7 NaN NaN 1 NaN 2006-07-04 08:33:55.0 \n", | |
"\n", | |
" atri_pav_en atri_pav_i_en \n", | |
"7 Water supply: Water supply:" | |
] | |
}, | |
"execution_count": 206, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"atributai[atributai['atri_pav'].str.contains('vandentiekis', case=False)]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 210, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"<class 'pandas.core.frame.DataFrame'>\n", | |
"RangeIndex: 824 entries, 0 to 823\n", | |
"Data columns (total 8 columns):\n", | |
"atri_kodas 824 non-null int64\n", | |
"reik_reiksme 824 non-null int64\n", | |
"reik_pav 824 non-null object\n", | |
"reik_pav_i 824 non-null object\n", | |
"reik_koregavimo_data 824 non-null object\n", | |
"reik_naudojama 824 non-null int64\n", | |
"reik_pav_en 824 non-null object\n", | |
"reik_pav_i_en 824 non-null object\n", | |
"dtypes: int64(3), object(5)\n", | |
"memory usage: 51.6+ KB\n" | |
] | |
} | |
], | |
"source": [ | |
"atributu_reiksmes = pd.read_csv('https://www.registrucentras.lt/aduomenys/?byla=klas_NTR_atributu_reiksmes.csv', encoding='UTF-16')\n", | |
"atributu_reiksmes.info()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 211, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>atri_kodas</th>\n", | |
" <th>reik_reiksme</th>\n", | |
" <th>reik_pav</th>\n", | |
" <th>reik_pav_i</th>\n", | |
" <th>reik_koregavimo_data</th>\n", | |
" <th>reik_naudojama</th>\n", | |
" <th>reik_pav_en</th>\n", | |
" <th>reik_pav_i_en</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>172</th>\n", | |
" <td>8</td>\n", | |
" <td>2</td>\n", | |
" <td>Vietinis vandentiekis</td>\n", | |
" <td>Vietinis vandentiekis</td>\n", | |
" <td>2014-10-21 14:25:28.0</td>\n", | |
" <td>1</td>\n", | |
" <td>Local water supply</td>\n", | |
" <td>Local water supply</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>173</th>\n", | |
" <td>8</td>\n", | |
" <td>0</td>\n", | |
" <td>Nėra</td>\n", | |
" <td>Nėra</td>\n", | |
" <td>2014-10-21 14:25:28.0</td>\n", | |
" <td>1</td>\n", | |
" <td>No</td>\n", | |
" <td>No</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>174</th>\n", | |
" <td>8</td>\n", | |
" <td>1</td>\n", | |
" <td>Komunalinis vandentiekis</td>\n", | |
" <td>Komunalinis vandentiekis</td>\n", | |
" <td>2014-10-21 14:25:28.0</td>\n", | |
" <td>1</td>\n", | |
" <td>Water supply by public utility</td>\n", | |
" <td>Water supply by public utility</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>175</th>\n", | |
" <td>8</td>\n", | |
" <td>3</td>\n", | |
" <td>!!!Miesto ir vietinio kombinac</td>\n", | |
" <td>Miesto ir vietinio vandentiekio kombinacija</td>\n", | |
" <td>2014-10-21 14:25:28.0</td>\n", | |
" <td>0</td>\n", | |
" <td>Distr.&local watersupply comb.</td>\n", | |
" <td>Combination of district and local water supply</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>176</th>\n", | |
" <td>8</td>\n", | |
" <td>4</td>\n", | |
" <td>!!!Komunalinis vandentiekis</td>\n", | |
" <td>Komunalinis vandentiekis</td>\n", | |
" <td>2014-10-21 14:25:28.0</td>\n", | |
" <td>0</td>\n", | |
" <td>Water supply by public utility</td>\n", | |
" <td>Water supply by public utility</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" atri_kodas reik_reiksme reik_pav \\\n", | |
"172 8 2 Vietinis vandentiekis \n", | |
"173 8 0 Nėra \n", | |
"174 8 1 Komunalinis vandentiekis \n", | |
"175 8 3 !!!Miesto ir vietinio kombinac \n", | |
"176 8 4 !!!Komunalinis vandentiekis \n", | |
"\n", | |
" reik_pav_i reik_koregavimo_data \\\n", | |
"172 Vietinis vandentiekis 2014-10-21 14:25:28.0 \n", | |
"173 Nėra 2014-10-21 14:25:28.0 \n", | |
"174 Komunalinis vandentiekis 2014-10-21 14:25:28.0 \n", | |
"175 Miesto ir vietinio vandentiekio kombinacija 2014-10-21 14:25:28.0 \n", | |
"176 Komunalinis vandentiekis 2014-10-21 14:25:28.0 \n", | |
"\n", | |
" reik_naudojama reik_pav_en \\\n", | |
"172 1 Local water supply \n", | |
"173 1 No \n", | |
"174 1 Water supply by public utility \n", | |
"175 0 Distr.&local watersupply comb. \n", | |
"176 0 Water supply by public utility \n", | |
"\n", | |
" reik_pav_i_en \n", | |
"172 Local water supply \n", | |
"173 No \n", | |
"174 Water supply by public utility \n", | |
"175 Combination of district and local water supply \n", | |
"176 Water supply by public utility" | |
] | |
}, | |
"execution_count": 211, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"atributu_reiksmes[atributu_reiksmes['atri_kodas'] == 8]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Aha, paanšu, kad man reikalingas laukas yra `reik_reiksme`, bandau apjungi ir žiūrim kas gausis:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 217, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>vandentiekis</th>\n", | |
" <th>reik_pav</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>1148528</td>\n", | |
" <td>Nėra</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>251873</td>\n", | |
" <td>Komunalinis vandentiekis</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>214891</td>\n", | |
" <td>Vietinis vandentiekis</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>379</td>\n", | |
" <td>!!!Miesto ir vietinio kombinac</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>1</td>\n", | |
" <td>!!!Komunalinis vandentiekis</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" vandentiekis reik_pav\n", | |
"0 1148528 Nėra\n", | |
"1 251873 Komunalinis vandentiekis\n", | |
"2 214891 Vietinis vandentiekis\n", | |
"3 379 !!!Miesto ir vietinio kombinac\n", | |
"4 1 !!!Komunalinis vandentiekis" | |
] | |
}, | |
"execution_count": 217, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"pd.concat(\n", | |
" [\n", | |
" df['vandentiekis'].dropna().astype(int).value_counts().rename('vandentiekis'),\n", | |
" atributu_reiksmes[atributu_reiksmes['atri_kodas'] == 8].set_index('reik_reiksme'),\n", | |
" ],\n", | |
" axis=1, join='inner',\n", | |
")[['vandentiekis', 'reik_pav']]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Didžioji dalis pastatų neturi vandentiekio, dabar daro tą patį tik su gyvenamaisiais pastatais:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 219, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>vandentiekis</th>\n", | |
" <th>reik_pav</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>177902</td>\n", | |
" <td>Komunalinis vandentiekis</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>150894</td>\n", | |
" <td>Vietinis vandentiekis</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>135601</td>\n", | |
" <td>Nėra</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>322</td>\n", | |
" <td>!!!Miesto ir vietinio kombinac</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" vandentiekis reik_pav\n", | |
"1 177902 Komunalinis vandentiekis\n", | |
"2 150894 Vietinis vandentiekis\n", | |
"0 135601 Nėra\n", | |
"3 322 !!!Miesto ir vietinio kombinac" | |
] | |
}, | |
"execution_count": 219, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"frame = pd.concat(\n", | |
" [\n", | |
" gyvenamieji['vandentiekis'].dropna().astype(int).value_counts().rename('vandentiekis'),\n", | |
" atributu_reiksmes[atributu_reiksmes['atri_kodas'] == 8].set_index('reik_reiksme'),\n", | |
" ],\n", | |
" axis=1, join='inner',\n", | |
")[['vandentiekis', 'reik_pav']]\n", | |
"frame" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Verčiam į procentus:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 222, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>reik_pav</th>\n", | |
" <th>vandentiekis</th>\n", | |
" <th>proc</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>Komunalinis vandentiekis</td>\n", | |
" <td>177902</td>\n", | |
" <td>31.705935</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>Vietinis vandentiekis</td>\n", | |
" <td>150894</td>\n", | |
" <td>26.892533</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>Nėra</td>\n", | |
" <td>135601</td>\n", | |
" <td>24.166993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>!!!Miesto ir vietinio kombinac</td>\n", | |
" <td>322</td>\n", | |
" <td>0.057387</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" reik_pav vandentiekis proc\n", | |
"1 Komunalinis vandentiekis 177902 31.705935\n", | |
"2 Vietinis vandentiekis 150894 26.892533\n", | |
"0 Nėra 135601 24.166993\n", | |
"3 !!!Miesto ir vietinio kombinac 322 0.057387" | |
] | |
}, | |
"execution_count": 222, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"frame['proc'] = frame['vandentiekis'] / gyvenamieji.shape[0] * 100\n", | |
"frame[['reik_pav', 'vandentiekis', 'proc']]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Kagi, išvada aiški. Iš visų gyvenamųjų pastatų, kurių Lietuvoje viso yra tik:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 224, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"561,100\n" | |
] | |
} | |
], | |
"source": [ | |
"print(f'{gyvenamieji.shape[0]:,}')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Net 24% neturi vandentiekio. Tikriausiai toks procentas nelabai atspindi realybės, nes vienas kaimo namelis yra sulyginamas su daugiaukščiu pastatu, kuriame gyvana labai daug žmonių. Todėl būtų tiksliau skaičius normalizuoti pagal registruotų gyventojų skaičių pastate.\n", | |
"\n", | |
"O Registrų Centras daro labai gerą pažangą!" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.3" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment