Created
September 30, 2020 06:33
-
-
Save sk413025/f99d4b21427d0cd4f4df9a751c142430 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import tensorflow as tf | |
| from keras.models import Model | |
| from keras.layers import Input | |
| from keras.layers.core import Reshape, Dense, Dropout, Flatten | |
| from keras.layers.advanced_activations import LeakyReLU | |
| from keras.losses import MSE | |
| from keras.optimizers import SGD | |
| from keras import backend as K | |
| from keras import initializers | |
| from visdom import Visdom | |
| | |
| viz = Visdom() | |
| np.random.seed(1000) | |
| sess = tf.Session() | |
| K.set_session(sess) | |
| | |
| randomDim = 100 | |
| | |
| # given two different random seed | |
| seed_true = np.random.uniform(-1, 1, size=100*randomDim).reshape(100, randomDim) | |
| seed_test = np.random.uniform(-3, 3, size=100*randomDim).reshape(100, randomDim) | |
| seed_var = K.variable(seed_test) | |
| | |
| | |
| seed = Input(shape=(randomDim,), tensor=seed_var) | |
| _ = Dense(256, input_dim=randomDim, kernel_initializer=initializers.RandomNormal(stddev=0.02))(seed) | |
| _ = LeakyReLU(0.2)(_) | |
| _ = Dense(512)(_) | |
| _ = LeakyReLU(0.2)(_) | |
| _ = Dense(1024)(_) | |
| _ = LeakyReLU(0.2)(_) | |
| image = Dense(784, activation='tanh')(_) | |
| generator = Model(seed, image) | |
| generator.load_weights("./models/gan_generator_epoch_200.h5") | |
| | |
| D_true = sess.run(generator.output , {seed: seed_true}) | |
| viz.images(D_true.reshape(100, 1, 28, 28), nrow=10, win='image_true', opts={'caption': 'image_true'}) | |
| | |
| noise = np.random.normal(0, 0.5, size=100*784).reshape(100, 784) | |
| D_noise = D_true + noise | |
| viz.images(D_noise.reshape(100, 1, 28, 28), nrow=10, win='image_noise', opts={'caption': 'image_noise'}) | |
| | |
| D_test = sess.run(generator.output, {seed: seed_test}) | |
| viz.images(D_test.reshape(100, 1, 28, 28), nrow=10, win='image_test', opts={'caption': 'image_test'}) | |
| viz.images(D_test.reshape(100, 1, 28, 28), nrow=10, win='image_recover', opts={'caption': 'image_recover'}) | |
| | |
| opt = SGD() | |
| loss_func = K.mean(MSE(D_noise, generator.output), axis=None) | |
| dx = opt.get_gradients(loss_func, generator.input) | |
| old = seed_var | |
| new = K.clip(seed_var - 0.3 * dx[0], -2., 2.) | |
| train = K.function([], [loss_func], [(old, new)]) | |
| | |
| step = 0 | |
| loss_value = [np.inf] | |
| | |
| while loss_value[0] > 0.05: | |
| loss_value = train([]) | |
| if step % 1000 == 0: | |
| seed_test = K.eval(seed_var) | |
| D_test = sess.run(generator.output , {seed: seed_test}) | |
| viz.images(D_test.reshape(100, 1, 28, 28), nrow=10, win='image_recover', opts={'caption': 'image_recover'}) | |
| update = 'append' if viz.win_exists('loss') else None | |
| viz.line(X=np.array([step]), Y=np.array(loss_value), win='loss', update=update) | |
| | |
| step += 1 | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment