lspci | grep -i nvidia
lspci | grep -i nvidia
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import asyncio | |
from datetime import datetime, timezone | |
import os | |
def utc_now(): | |
# utcnow returns a naive datetime, so we have to set the timezone manually <sigh> | |
return datetime.utcnow().replace(tzinfo=timezone.utc) | |
class Terminator: | |
pass |
FFmpeg and libav's playbook: Advanced encoding options with hardware-based acceleration, NVIDIA's NVENC and Intel's VAAPI-based encoder.
Hello guys,
Continuing from this guide to building ffmpeg and libav with NVENC and VAAPI enabled, this snippet will cover advanced options that you can use with ffmpeg and libav on both NVENC and VAAPI hardware-based encoders.
For ffmpeg:
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Example for my blog post at: | |
# http://danijar.com/introduction-to-recurrent-networks-in-tensorflow/ | |
import functools | |
import sets | |
import tensorflow as tf | |
def lazy_property(function): | |
attribute = '_' + function.__name__ |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.layers import Input, Dense | |
from keras.models import Model, Sequential | |
from keras.datasets import mnist | |
from keras.layers.normalization import BatchNormalization as BN | |
autoencoder1 = Sequential([ | |
Dense(128, activation='relu',input_shape=(784,)), | |
BN(), | |
Dense(784, activation='relu'), | |
]) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
A keras attention layer that wraps RNN layers. | |
Based on tensorflows [attention_decoder](https://github.com/tensorflow/tensorflow/blob/c8a45a8e236776bed1d14fd71f3b6755bd63cc58/tensorflow/python/ops/seq2seq.py#L506) | |
and [Grammar as a Foreign Language](https://arxiv.org/abs/1412.7449). | |
date: 20161101 | |
author: wassname | |
url: https://gist.github.com/wassname/5292f95000e409e239b9dc973295327a | |
""" |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
A weighted version of categorical_crossentropy for keras (1.1.0). This lets you apply a weight to unbalanced classes. | |
@url: https://gist.github.com/wassname/ce364fddfc8a025bfab4348cf5de852d | |
@author: wassname | |
""" | |
from keras import backend as K | |
class weighted_categorical_crossentropy(object): | |
""" | |
A weighted version of keras.objectives.categorical_crossentropy | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class AttentionWithContext(Layer): | |
""" | |
Attention operation, with a context/query vector, for temporal data. | |
Supports Masking. | |
Follows the work of Yang et al. [https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf] | |
"Hierarchical Attention Networks for Document Classification" | |
by using a context vector to assist the attention | |
# Input shape | |
3D tensor with shape: `(samples, steps, features)`. | |
# Output shape |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
from keras import backend as K | |
from keras.engine import Input, Model, InputSpec | |
from keras.layers import Dense, Activation, Dropout, Lambda | |
from keras.layers import Embedding, LSTM | |
from keras.optimizers import Adam | |
from keras.preprocessing import sequence | |
from keras.utils.data_utils import get_file | |
from keras.datasets import imdb |